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Abstract

The removable singularities for very weak solution of A-harmonic

equation with differential form is considered based on the higher inte-

grability of very weak solutions.
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1 Introduction

Differential form has important roles in many fields. They can be used to de-
scribe various systems of partial differential equations and to express different
geometrical structures on manifolds[1−2]. The aim of this present paper is to
obtain the removability theorem of a class of elliptic equation with differential
form.

In this present paper, we consider the following A-harmonic equation

d∗A(x, du) = B(x, du), (1.1)
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where A : Ω × ∧l(Rn) → ∧l+1(Rn), B : Ω × ∧l(Rn) → ∧l(Rn) satisfy the
conditions

〈A (x, ξ) , ξ〉 ≥ α|ξ|p, |A (x, ξ) | ≤ β1|ξ|
p−1, |B (x, ξ) | ≤ β2|ξ|

p−1, (1.2)

for almost every x ∈ Ω and all ξ ∈ ∧l (Rn). Here α, β1, β2 > 0 are constants,
max{1, p− 1} ≤ r < p < n.

Definition 1.1 A differential form u ∈ W 1,r
loc (Ω,∧

l−1) with max{1, p−1} ≤
r < p is called a very weak solution of A-harmonic equation (1.1) if u satisfies

∫

Ω

〈A(x, du), dϕ〉dx =

∫

Ω

B(x, du)ϕdx. (1.3)

for any test function ϕ ∈ W 1, r
r−p+1 (Ω,

∧l−1).

Before discussing we refer to some notations we shall use. Throughout this
paper, Ω will denote an open, connected subset of Rn, and E is a closed set
of zero Lebesgue measure in R

n. In order to avoid some technical difficulties
related to the imbedding theorem we shall illustrate our approach only for p
smaller than the spatial dimension of Ω.

Definition 1.2 [3,4] A compact set E ⊂ R
n is said to have zero r-capacity

for 1 < r ≤ n, if for some bounded domain Ω containing E there exists a
sequence {ϕk(x)}, k = 1, 2, ..., of functions ϕk(x) ∈ C∞

0 (Ω), such that

(1) 0 ≤ ϕk(x) ≤ 1,

(2) each ϕk(x) equals to 1 on its own neighborhood of E,

(3) lim
k→∞

‖∇ϕk(x)‖r = 0,

(4) lim
k→∞

ϕk(x) = 0, ∀x ∈ Ω \ E.

A closed set E ⊂ R
n has zero r-capacity if every compact subset of E has zero

r-capacity.

Notice that for r = p− ε, 0 < ε < n− 1, a closed set E ⊂ R
n of Hausdorff

dimension dimH(E) < ε has zero r-capacity.

Definition 1.3 [3,4] Let E ⊂ R
n be a compact subset of zero Hausdorff

measure of n-dimension in R
n. A peak function defined in E is a function

ρ(x) ∈ C∞(Rn \ E) for which lim
x→a

ρ(x) = ∞, whenever a ∈ E.

Next is the main results of this present paper.

Theorem 1.4 Suppose that Ω is a bounded convex domain in R
n, E ⊂ R

n

be a compact subset of zero Hausdorff measure of n-dimension in R
n. If

u ∈ W 1,r
loc

(

Ω \E,∧l−1
)

is a very weak solution of (1.1), and the peak func-

tion defined in E satisfies ρ(x) ∈ W 1,n
loc (Ω), then u extends to Ω as a very

weak solution of (1.1) in the whole domain Ω. In particular, it belongs to
W 1,p

loc

(

Ω,∧l−1
)

.
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2 Proof of Theorem 1.4

Our results significantly dependent on the following Lemma.

Lemma 2.1 [5] Let Ω be a bounded convex domain of Rn. There exists
exponents 1 < r1 = r1(n, p, β1, β2) < p < r2 = r2(n, p, β1, β2) < ∞ such that if
u ∈ W 1,r1

loc

(

Ω,∧l−1
)

is a very weak solution of (1.1), then u ∈ W 1,r2
loc

(

Ω,∧l−1
)

.

In particular, u ∈ W 1,p
loc

(

Ω,∧l−1
)

is a weak solution of (1.1) in the usual sense.

The above Lemma is the higher integrability of very weak solutions to
equation (1.1). With the aid of it, we can give the proof of our main result.

Proof of Theorem 1.4 Let u ∈ W 1,r
loc

(

Ω \ E,∧l−1
)

be a very weak solu-
tion of (1.1). The proof can be logically divided into three parts.

Step 1. First, we prove that u ∈ W 1,r
loc (Ω,∧

l−1). Let ρ(x) be a peak
function defined in E, a sequence {ρk(x)} of Lipschitz functions defined as
follows,

ρk(x) =











1, if ρ(x) ≥ k + 1;

ρ(x)− k, if k ≤ ρ(x) ≤ k + 1;

0, if ρ(x) ≤ k.

(2.1)

Each of these functions is equal to 1 in its own neighborhood of E. Moreover,
lim
k→∞

ρk(x) = 0 for all x ∈/E. Noticing that dρk is supported in Ωk = {x ∈ Ω :

k ≤ ρ(x) ≤ k + 1}. For fixed ϕ ∈ C∞
0 (Ω,∧l−1), let

ηk(x) = [1− ρk(x)]ϕ(x). (2.2)

By (2.1), the sequence {ηk(x)} is supported in Ω \ E, and

dηk = −ϕ ∧ dρk + [1− ρk(x)]dϕ. (2.3)

Since u ∈ W 1,r
loc (Ω\E,∧l−1) is a very weak solution of (1.1), the formula of inte-

gration by parts holds for any Lipschitz functions sequence {ηk(x)} supported
in Ω \ E, i.e.

∫

Ω\E

(ηk ∧ du)dx = −

∫

Ω\E

(u ∧ dηk)dx, ∀ηk ∈ C∞
0 (Ω \ E,∧l−1). (2.4)

For ηk = (1− ρk)ϕ for all ϕ ∈ C∞
0 (Ω,∧l−1), then

∫

Ω

((1− ρk)ϕ ∧ du)dx

= −

∫

Ω

((1− ρk)u ∧ dϕ)dx+

∫

Ω

(ϕ ∧ u ∧ dρk)dx. (2.5)
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Since |dρk| ≤ |dρ|, lim
k→∞

|dρk| = 0, a.e., then

∫

Ω

(ϕ ∧ u ∧ dρk)dx → 0 when

k → ∞. By (2.5),
∫

Ω

(ϕ ∧ du)dx = −

∫

Ω

(u ∧ dϕ)dx, ∀ϕ ∈ C∞
0 (Ω,∧l−1). (2.6)

Hence u ∈ W 1,r
loc (Ω,∧

l−1).

Step 2. Next, we need the result u ∈ W 1,p
loc (Ω,∧

l−1). For u ∈ W 1,r
loc (Ω,∧

l−1)
we have proved in step 1, then by Lemma 2.1, we have u ∈ W 1,p

loc (Ω,∧
l−1), that

is, u is the weak solution of (1.1) in Ω.

Step 3. Finally, we verify that u is really the weak solution of (1.1) in Ω,
i.e.

∫

Ω

〈A(x, du), dη〉dx =

∫

Ω

B(x, du)ηdx, ∀η ∈ C∞
0 (Ω,∧l−1). (2.7)

Since u ∈ W 1,r
loc (Ω \ E,∧l−1) is the very weak solution of (1.1) in Ω \ E,

∫

Ω\E

〈A(x, du), dϕ〉dx =

∫

Ω\E

B(x, du)ϕdx, ∀ϕ ∈ C∞
0 (Ω \ E,∧l−1). (2.8)

Let

ϕk = (1− ρk)η, ∀η ∈ C∞
0 (Ω,∧l−1), (2.9)

we shall use ϕk in (2.9) in place of ϕ in (2.8), then (2.8) becomes
∫

Ω

(1− ρk)〈A(x, du), dη〉dx

=

∫

Ω

〈A(x, du), η ∧ dρk〉dx+

∫

Ω

(1− ρk)B(x, du)ηdx. (2.10)

Now we estimate the right-hand side of the above inequality. Noticing that
dρk is supported in set Ωk = {x ∈ Ω : k ≤ ρ(x) ≤ k + 1}, |dρk| ≤ |dρ|. By
condition (i), the Hölder inequality,

∣

∣

∣

∣

∫

Ω

〈A(x, du), η ∧ dρk〉dx

∣

∣

∣

∣

≤ α

∫

Ωk

|η||du|p−1|dρk|dx

≤ α‖η‖∞

(
∫

Ωk

|du|pdx

)1− 1

p
(
∫

Ωk

|dρ|pdx

)
1

p

≤ α‖η‖∞|Ωk|
1

p
− 1

n

(
∫

Ωk

|du|pdx

)1− 1

p
(
∫

Ωk

|dρ|ndx

)
1

n

. (2.11)
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For η ∈ C∞
0 (Ω,∧l−1), u ∈ W 1,p

loc (Ω,∧
l−1) , ρ ∈ W 1,n

loc (Ω), and |Ωk| → 0 as
k → ∞, then we conclude that the integrals in the above inequality converge
to zero. Then (2.10) becomes

∫

Ω

〈A(x, du), dη〉dx =

∫

Ω

B(x, du)ηdx. (2.12)

This completes the proof of Theorem 1.4.
�
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