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Abstract

Removable Singularities for weak solutions of A class of elliptic vari-
ational inequalities is obtained in this paper.
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1 Introduction

It is well known that variational inequalities are systematically used in the
theory of many practical problems. In this paper, we will consider a class of
elliptic variational inequalities, we are committed to the removable singularities
for weak solutions.

Let €2 be a bounded domain of R". let Bx be a cube with radius R. B,p is
the ball with the same center and radius pR. |FE| denotes the Lebesgue measure
of a setE C R™. And let WP(Q2), 1 < p < oo, be the first-order Sobolev space
of functions u € LP(§2) whose distributional gradient Vu belongs to LP(f2).
Suppose that 1, ¥, are any functions in {2 with values in RU{+oc}, and that
6 € WhP(Q). Let

ICgvp

i (§1) = {v € WHP(Q) 1 4py < v <y, a.e.andv — 6 € Wol’p(Q)}. (1.1)

The functions 11, ¥y are the obstacle functions and € determines the boundary
value.
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In this paper, we consider a class of elliptic variational inequalities

= /cf;;fjwz(ﬂ),

/Q(A(x, Vu), V(v —u))dr >0,

(1.2)

where A(z,£) : Q@ x R" — R" is any Carathéodory function, for almost all
x € (), all £ € R", satisfying the coercivity and growth conditions:

(A(2,€),€) = algls Az, &)] < Blg", (1.3)

where «, § are some nonnegative constants, 1 < p < n.

Definition 1.1 =2 A compact set E C R" is said to have zero r-capacity
for 1 < p < n, if for some bounded domain ) containing E there exists a
sequence {or(2)}, k= 1,2, ..., of functions gr(x) € C§°(QY) such that

A closed set EC R™ has zero r-capacity if every compact subset of E has zero
p-capacity.

Notice that for p=n—¢,0 < e <n—1, aclosed set £ C R" of Hausdorff
dimension dimy(E) < ¢ has zero p-capacity.

Definition 1.2 =2 Let E C R" be a compact subset of zero Hausdorff
measure of n-dimension in R™. A peak function defined in E is a function
p(x) € C*(R™\ E) for which lim p(z) = oo, whenever a € E.

r—a

Next is the main result in this present paper.

Theorem 1.3 Let Q) be a bounded domain of R™, E C R™ be a compact sub-
set of zero Hausdorff measure of n-dimension in R™. Let 11,1y € L>® (). If
u € WEP(Q\ E) is a weak solution of elliptic variational inequality (1.1) such
that the peak function, defined in E as that above, satisfies p(x) € VVllof(Q),
then u extends to 2 as a weak solution of the elliptic variational inequality
(1.1) in the whole domain Q. In particular, it belongs to the Sobolev class
WP (Q).

loc
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2 Proof of Theorem 1.3

Proof First, we want to prove that u € W,2”(Q). Let p(z) be a peak function
defined in E, we define a sequence {px(z)} of Lipschitz functions as follows,

1, if p(z) > k+1;
pe(z) =< plx) —k, itk <pz) <k+1; (2.1)
0, if p(z) < k.

Each of these functions is equal to 1 in its own neighborhood of E. Moreover,
klim pr(x) =0 for all  ¢E and we have
—00

0, if p(x) > k + 1;
Vor=1 Vplz), itk <plx)<k+1; (2.2)
0, if p(z) < k.

So we observe that Vpj is supported on the set Q) = {x € Q : k < p(x) <
k+1}.

For fixed ¢ € C§°(2), consider the sequence {n;} of Lipschitz functions
supported in Q \ E and given by

k() = [1 = p(x)]p(), (2.3)
By (2.1),
0, if p(x) > k+1;
m(@) =9 [k+1—p(@)e(z), ifk<plz) <k+1L (2.4)
o(z), if p(z) < k.

It is easy to know that the sequence {n;} of Lipschitz functions supported in
O\ E, and

Vi = —Vpr, + [1 — pp(2)]Vep. (2.5)

Since u € WP(Q\ E), the formula of integration by parts holds for any

loc

Lipschitz functions sequence {n;(x)} supported in Q\ E, i.e.

/Q\E(UkVu)d:)s = —/ (uVng)dz, Vi, € C3°(Q\ E). (2.6)

Q\E

Let np = (1 — pi)p for all p € C5°(Q2), then

/Q((l — pr)pVu)dr = — /Q((l — pr)uNVe)dz + /Q(wquk)d:c. (2.7)
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Since |Vpi| < [Vpl, klim |Vpr| = 0, a.e., then /(gpquk)dat — 0. Then by
— 00 0
(2.7),

/Q(ngu)d:B = —/(uVap)da:, Yo € C5°(92). (2.8)

Q

Hence u € W,2P(Q).

loc
Next we verify that u solves the elliptic variational inequality (1.1) in €,

1.e.

/Q (A(z, V), V(0 — w))dz > 0, Vo e K2, (Q). (2.9)

SInce u € W,oP(Q\ E) is a weak solution of elliptic variational inequality (1.1)

loc

in Q\ F, then

/ (A(x,Vu), V(0 —u))de >0, Yo e ICZ’ﬁwz(Q \ E). (2.10)
Q\E
Let
T=u+(1—p)(v—u), YoeKky’, (Q). (2.11)
Since
v—0=(u—0)+(1—-pp)(v—u) EWOI“”(Q\E), (2.12)
U= (w—=11) + (1 —pi)(v —u)
= (u—v1)+ (1= pp)[(v—11) = (u— )]
(w—11) + (1= p)(v — 1) = (1 = pi)(u—¢n)
= pe(u—11) + (1 = pr)(v — 1)
> 0, (2.13)
U=ty = (u—12)+(1—pp)(v—u)
= (u—t) + (1= pr)[(v —tha) — (u — 1a)]
= (u—v2) + (1 — pr)(v—2) — (1 — pg)(u —¢2)
= pr(u—1to) + (1= p)(v —¢2)
< 0, (2.14)

then v in (2.10) can be choosen as (2.11), then (2.10) becomes

/Q(l — pr)(A(z, Vu), V(v — u))dx > /(A(m, Vu), (v —u)Vpg)dz. (2.15)

Q
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Now we estimate the integral in the right-hand side of (2.15). Noticing that
U1,y € L®(Q), v —u| < g — 1)y, dpg is supported in Q = {x € Q: k <
p(x) < k+ 1}, |dpk| < |dp|. By condition (i) and the Holder inequality, we
have

/Q (A(z, du), (v — )V py)de

< a/ |v — u||VulP~V o |da
Qk

1-1 1
< aflthy = Y]l (/ \Vu|pd:c) ( \Vp|pdx)
Qk Qk

1-1 1
< allthy = Y1 ool QP (/ |Vu|pd:)5) ( |V,0|"dx) (2.16)
Q Qp

A

Since 1y, 1y € L®(Q), u € W,2P(Q) , p € WL (), and || — 0 when k — oo,
then we conclude that the integrals in the above inequality converge to zero.
Then (2.17) becomes

/Q (A(z, V), V(0 — w))dz > 0, Vo e K2, (Q). (2.17)

This completes the proof of Theorem 1.3.
O
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