Mathematica Aeterna, Vol. 6, 2016, no. 2, 255 - 259

Removable Singularities for a class of Elliptic Variational Inequalities

Jiantao Gu

College of Science, North China University of Science and Technology, Tangshan, Hebei, 063009, China

Xiaoli Liu

Jitang College, North China University of Science and Technology, Tangshan, Hebei, 063009, China

Abstract

Removable Singularities for weak solutions of A class of elliptic variational inequalities is obtained in this paper.

Mathematics Subject Classification: 35J20, 35A20

Keywords: Removable Singularities, weak solution, variational inequality

1 Introduction

It is well known that variational inequalities are systematically used in the theory of many practical problems. In this paper, we will consider a class of elliptic variational inequalities, we are committed to the removable singularities for weak solutions.

Let Ω be a bounded domain of \mathbb{R}^n . let B_R be a cube with radius R. $B_{\rho R}$ is the ball with the same center and radius ρR . |E| denotes the Lebesgue measure of a set $E \subseteq \mathbb{R}^n$. And let $W^{1,p}(\Omega)$, 1 , be the first-order Sobolev space $of functions <math>u \in L^p(\Omega)$ whose distributional gradient ∇u belongs to $L^p(\Omega)$. Suppose that ψ_1, ψ_2 are any functions in Ω with values in $\mathbb{R} \cup \{\pm \infty\}$, and that $\theta \in W^{1,p}(\Omega)$. Let

$$\mathcal{K}_{\psi_1,\psi_2}^{\theta,p}(\Omega) = \left\{ v \in W^{1,p}(\Omega) : \psi_1 \le v \le \psi_2, \text{ a.e. and } v - \theta \in W_0^{1,p}(\Omega) \right\}.$$
(1.1)

The functions ψ_1, ψ_2 are the obstacle functions and θ determines the boundary value.

In this paper, we consider a class of elliptic variational inequalities

$$\begin{cases} u \in \mathcal{K}^{\theta, p}_{\psi_1, \psi_2}(\Omega), \\ \int_{\Omega} \langle A(x, \nabla u), \nabla(v - u) \rangle dx \ge 0, \end{cases}$$
(1.2)

where $A(x,\xi) : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ is any Carathéodory function, for almost all $x \in \Omega$, all $\xi \in \mathbb{R}^n$, satisfying the coercivity and growth conditions:

$$\langle A(x,\xi),\xi\rangle \ge \alpha |\xi|^p; \quad |A(x,\xi)| \le \beta |\xi|^{p-1}, \tag{1.3}$$

where α, β are some nonnegative constants, 1 .

Definition 1.1 ^[1-2] A compact set $E \subset \mathbf{R}^n$ is said to have zero r-capacity for $1 , if for some bounded domain <math>\Omega$ containing E there exists a sequence $\{\varphi_k(x)\}, k = 1, 2, ..., of$ functions $\varphi_k(x) \in C_0^{\infty}(\Omega)$ such that

> (1) $0 \leq \varphi_k(x) \leq 1;$ (2) each $\varphi_k(x)$ equals to 1 on its own neighborhood of E, (3) $\lim_{k \to \infty} \|\nabla \varphi_k(x)\|_p = 0,$ (4) $\lim_{k \to \infty} \varphi_k(x) = 0, \ \forall x \in \Omega \setminus E,$

A closed set $E \subset \mathbb{R}^n$ has zero r-capacity if every compact subset of E has zero p-capacity.

Notice that for $p = n - \varepsilon$, $0 < \varepsilon < n - 1$, a closed set $E \subset \mathbb{R}^n$ of Hausdorff dimension $\dim_H(E) < \varepsilon$ has zero *p*-capacity.

Definition 1.2 ^[1-2] Let $E \subset \mathbf{R}^n$ be a compact subset of zero Hausdorff measure of n-dimension in \mathbb{R}^n . A peak function defined in E is a function $\rho(x) \in C^{\infty}(\mathbf{R}^n \setminus E)$ for which $\lim_{x \to \infty} \rho(x) = \infty$, whenever $\alpha \in E$.

Next is the main result in this present paper.

Theorem 1.3 Let Ω be a bounded domain of \mathbb{R}^n , $E \subset \mathbb{R}^n$ be a compact subset of zero Hausdorff measure of n-dimension in \mathbb{R}^n . Let $\psi_1, \psi_2 \in L^{\infty}(\Omega)$. If $u \in W_{loc}^{1,p}(\Omega \setminus E)$ is a weak solution of elliptic variational inequality (1.1) such that the peak function, defined in E as that above, satisfies $\rho(x) \in W_{loc}^{1,n}(\Omega)$, then u extends to Ω as a weak solution of the elliptic variational inequality (1.1) in the whole domain Ω . In particular, it belongs to the Sobolev class $W_{loc}^{1,p}(\Omega)$.

2 Proof of Theorem 1.3

Proof First, we want to prove that $u \in W_{loc}^{1,p}(\Omega)$. Let $\rho(x)$ be a peak function defined in E, we define a sequence $\{\rho_k(x)\}$ of Lipschitz functions as follows,

$$\rho_k(x) = \begin{cases}
1, & \text{if } \rho(x) \ge k+1; \\
\rho(x) - k, & \text{if } k \le \rho(x) \le k+1; \\
0, & \text{if } \rho(x) \le k.
\end{cases}$$
(2.1)

Each of these functions is equal to 1 in its own neighborhood of E. Moreover, $\lim_{k\to\infty} \rho_k(x) = 0$ for all $x \notin E$ and we have

$$\nabla \rho_k = \begin{cases} 0, & \text{if } \rho(x) \ge k+1; \\ \nabla \rho(x), & \text{if } k \le \rho(x) \le k+1; \\ 0, & \text{if } \rho(x) \le k. \end{cases}$$
(2.2)

So we observe that $\nabla \rho_k$ is supported on the set $\Omega_k = \{x \in \Omega : k \leq \rho(x) \leq k+1\}.$

For fixed $\varphi \in C_0^{\infty}(\Omega)$, consider the sequence $\{\eta_k\}$ of Lipschitz functions supported in $\Omega \setminus E$ and given by

$$\eta_k(x) = [1 - \rho_k(x)]\varphi(x), \qquad (2.3)$$

By (2.1),

$$\eta_k(x) = \begin{cases} 0, & \text{if } \rho(x) \ge k+1; \\ [k+1-\rho(x)]\varphi(x), & \text{if } k \le \rho(x) \le k+1; \\ \varphi(x), & \text{if } \rho(x) \le k. \end{cases}$$
(2.4)

It is easy to know that the sequence $\{\eta_k\}$ of Lipschitz functions supported in $\Omega \setminus E$, and

$$\nabla \eta_k = -\varphi \nabla \rho_k + [1 - \rho_k(x)] \nabla \varphi.$$
(2.5)

Since $u \in W^{1,p}_{loc}(\Omega \setminus E)$, the formula of integration by parts holds for any Lipschitz functions sequence $\{\eta_k(x)\}$ supported in $\Omega \setminus E$, i.e.

$$\int_{\Omega \setminus E} (\eta_k \nabla u) dx = -\int_{\Omega \setminus E} (u \nabla \eta_k) dx, \quad \forall \eta_k \in C_0^\infty(\Omega \setminus E).$$
(2.6)

Let $\eta_k = (1 - \rho_k)\varphi$ for all $\varphi \in C_0^{\infty}(\Omega)$, then

$$\int_{\Omega} ((1-\rho_k)\varphi\nabla u)dx = -\int_{\Omega} ((1-\rho_k)u\nabla\varphi)dx + \int_{\Omega} (\varphi u\nabla\rho_k)dx.$$
(2.7)

Since $|\nabla \rho_k| \leq |\nabla \rho|$, $\lim_{k \to \infty} |\nabla \rho_k| = 0$, a.e., then $\int_{\Omega} (\varphi u \nabla \rho_k) dx \to 0$. Then by (2.7),

$$\int_{\Omega} (\varphi \nabla u) dx = -\int_{\Omega} (u \nabla \varphi) dx, \quad \forall \varphi \in C_0^{\infty}(\Omega).$$
(2.8)

Hence $u \in W^{1,p}_{loc}(\Omega)$.

Next we verify that u solves the elliptic variational inequality (1.1) in Ω , i.e.

$$\int_{\Omega} \langle \mathcal{A}(x, \nabla u), \nabla(v-u) \rangle dx \ge 0, \quad \forall v \in \mathcal{K}^{\theta, p}_{\psi_1, \psi_2}(\Omega).$$
(2.9)

Since $u \in W^{1,p}_{loc}(\Omega \setminus E)$ is a weak solution of elliptic variational inequality (1.1) in $\Omega \setminus E$, then

$$\int_{\Omega \setminus E} \langle \mathcal{A}(x, \nabla u), \nabla(\widetilde{v} - u) \rangle dx \ge 0, \quad \forall \widetilde{v} \in \mathcal{K}^{\theta, p}_{\psi_1, \psi_2}(\Omega \setminus E).$$
(2.10)

Let

$$\widetilde{v} = u + (1 - \rho_k)(v - u), \quad \forall v \in \mathcal{K}^{\theta, p}_{\psi_1, \psi_2}(\Omega).$$
(2.11)

Since

$$\widetilde{v} - \theta = (u - \theta) + (1 - \rho_k)(v - u) \in W_0^{1,p}(\Omega \setminus E),$$
(2.12)

$$\widetilde{v} - \psi_{1} = (u - \psi_{1}) + (1 - \rho_{k})(v - u)
= (u - \psi_{1}) + (1 - \rho_{k})[(v - \psi_{1}) - (u - \psi_{1})]
= (u - \psi_{1}) + (1 - \rho_{k})(v - \psi_{1}) - (1 - \rho_{k})(u - \psi_{1})
= \rho_{k}(u - \psi_{1}) + (1 - \rho_{k})(v - \psi_{1})
\ge 0,$$
(2.13)

$$\widetilde{v} - \psi_2 = (u - \psi_2) + (1 - \rho_k)(v - u)
= (u - \psi_2) + (1 - \rho_k)[(v - \psi_2) - (u - \psi_2)]
= (u - \psi_2) + (1 - \rho_k)(v - \psi_2) - (1 - \rho_k)(u - \psi_2)
= \rho_k(u - \psi_2) + (1 - \rho_k)(v - \psi_2)
\leq 0,$$
(2.14)

then \tilde{v} in (2.10) can be choosen as (2.11), then (2.10) becomes

$$\int_{\Omega} (1 - \rho_k) \langle \mathcal{A}(x, \nabla u), \nabla(v - u) \rangle dx \ge \int_{\Omega} \langle \mathcal{A}(x, \nabla u), (v - u) \nabla \rho_k \rangle dx. \quad (2.15)$$

258

Now we estimate the integral in the right-hand side of (2.15). Noticing that $\psi_1, \psi_2 \in L^{\infty}(\Omega), |v-u| \leq \psi_2 - \psi_1, d\rho_k$ is supported in $\Omega_k = \{x \in \Omega : k \leq \rho(x) \leq k+1\}, |d\rho_k| \leq |d\rho|$. By condition (i) and the Hölder inequality, we have

$$\begin{aligned} \left| \int_{\Omega} \langle \mathcal{A}(x, du), (v - u) \nabla \rho_k \rangle dx \right| \\ &\leq \alpha \int_{\Omega_k} |v - u| |\nabla u|^{p-1} |\nabla \rho_k| dx \\ &\leq \alpha \|\psi_2 - \psi_1\|_{\infty} \left(\int_{\Omega_k} |\nabla u|^p dx \right)^{1 - \frac{1}{p}} \left(\int_{\Omega_k} |\nabla \rho|^p dx \right)^{\frac{1}{p}} \\ &\leq \alpha \|\psi_2 - \psi_1\|_{\infty} |\Omega_k|^{\frac{1}{p} - \frac{1}{n}} \left(\int_{\Omega_k} |\nabla u|^p dx \right)^{1 - \frac{1}{p}} \left(\int_{\Omega_k} |\nabla \rho|^n dx \right)^{\frac{1}{n}} (2.16) \end{aligned}$$

Since $\psi_1, \psi_2 \in L^{\infty}(\Omega), u \in W^{1,p}_{loc}(\Omega)$, $\rho \in W^{1,n}_{loc}(\Omega)$, and $|\Omega_k| \to 0$ when $k \to \infty$, then we conclude that the integrals in the above inequality converge to zero. Then (2.17) becomes

$$\int_{\Omega} \langle \mathcal{A}(x, \nabla u), \nabla(v-u) \rangle dx \ge 0, \quad \forall v \in \mathcal{K}^{\theta, p}_{\psi_1, \psi_2}(\Omega).$$
(2.17)

This completes the proof of Theorem 1.3.

ACKNOWLEDGEMENTS. The research is supported by Scientific Research Foundation of North China University of Science and Technology(z201219) and National Science Foundation of Hebei Province (A2013209278).

References

- Budney, L., Iwaniec, T. Removability of singularities of A-harmonic functions. Differential and integral equations, 12(2): 261-274 (1999).
- [2] Iwaniec, T. p-harmonic tensor and quasiregular mappings. Ann. Math., 136: 589-624 (1992).
- [3] Koskela, P., Martio, O. Removability theorems for solution of degenerate elliptic PDE. Ark. Mat., 31: 339-353 (1993).

Received: January 16, 2016