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Abstract

Removable Singularities for weak solutions of A class of elliptic vari-

ational inequalities is obtained in this paper.
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1 Introduction

It is well known that variational inequalities are systematically used in the
theory of many practical problems. In this paper, we will consider a class of
elliptic variational inequalities, we are committed to the removable singularities
for weak solutions.

Let Ω be a bounded domain of Rn. let BR be a cube with radius R. BρR is
the ball with the same center and radius ρR. |E| denotes the Lebesgue measure
of a setE ⊆ R

n. And let W 1,p(Ω), 1 < p <∞, be the first-order Sobolev space
of functions u ∈ Lp(Ω) whose distributional gradient ∇u belongs to Lp(Ω).
Suppose that ψ1, ψ2 are any functions in Ω with values in R∪{±∞}, and that
θ ∈ W 1,p(Ω). Let

Kθ,p
ψ1,ψ2

(Ω) =
{
v ∈ W 1,p(Ω) : ψ1 ≤ v ≤ ψ2, a.e. and v − θ ∈ W 1,p

0 (Ω)
}
. (1.1)

The functions ψ1, ψ2 are the obstacle functions and θ determines the boundary
value.
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In this paper, we consider a class of elliptic variational inequalities





u ∈ Kθ,p
ψ1,ψ2

(Ω),∫

Ω

〈A(x,∇u),∇(v − u)〉dx ≥ 0,
(1.2)

where A(x, ξ) : Ω × R
n → R

n is any Carathéodory function, for almost all
x ∈ Ω, all ξ ∈ R

n, satisfying the coercivity and growth conditions:

〈A(x, ξ), ξ〉 ≥ α|ξ|p; |A(x, ξ)| ≤ β|ξ|p−1, (1.3)

where α, β are some nonnegative constants, 1 < p < n.

Definition 1.1 [1−2] A compact set E ⊂ Rn is said to have zero r-capacity
for 1 < p ≤ n, if for some bounded domain Ω containing E there exists a
sequence {ϕk(x)}, k = 1, 2, ..., of functions ϕk(x) ∈ C∞

0 (Ω) such that

(1) 0 ≤ ϕk(x) ≤ 1;

(2) each ϕk(x)equals to 1 on its own neighborhood of E,

(3) lim
k→∞

‖∇ϕk(x)‖p = 0,

(4) lim
k→∞

ϕk(x) = 0, ∀x ∈ Ω \ E,

A closed set E ⊂ Rn has zero r-capacity if every compact subset of E has zero
p-capacity.

Notice that for p = n− ε, 0 < ε < n− 1, a closed set E ⊂ Rn of Hausdorff
dimension dimH(E) < ε has zero p-capacity.

Definition 1.2 [1−2] Let E ⊂ Rn be a compact subset of zero Hausdorff
measure of n-dimension in R

n. A peak function defined in E is a function
ρ(x) ∈ C∞(Rn \ E) for which lim

x→a
ρ(x) = ∞, whenever α ∈ E.

Next is the main result in this present paper.

Theorem 1.3 Let Ω be a bounded domain of Rn, E ⊂ R
n be a compact sub-

set of zero Hausdorff measure of n-dimension in R
n. Let ψ1, ψ2 ∈ L∞ (Ω). If

u ∈ W 1,p
loc (Ω \ E) is a weak solution of elliptic variational inequality (1.1) such

that the peak function, defined in E as that above, satisfies ρ(x) ∈ W 1,n
loc (Ω),

then u extends to Ω as a weak solution of the elliptic variational inequality
(1.1) in the whole domain Ω. In particular, it belongs to the Sobolev class
W 1,p
loc (Ω).
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2 Proof of Theorem 1.3

Proof First, we want to prove that u ∈ W 1,p
loc (Ω). Let ρ(x) be a peak function

defined in E, we define a sequence {ρk(x)} of Lipschitz functions as follows,

ρk(x) =





1, if ρ(x) ≥ k + 1;

ρ(x)− k, if k ≤ ρ(x) ≤ k + 1;

0, if ρ(x) ≤ k.

(2.1)

Each of these functions is equal to 1 in its own neighborhood of E. Moreover,
lim
k→∞

ρk(x) = 0 for all x ∈/E and we have

∇ρk =





0, if ρ(x) ≥ k + 1;

∇ρ(x), if k ≤ ρ(x) ≤ k + 1;

0, if ρ(x) ≤ k.

(2.2)

So we observe that ∇ρk is supported on the set Ωk = {x ∈ Ω : k ≤ ρ(x) ≤
k + 1}.

For fixed ϕ ∈ C∞
0 (Ω), consider the sequence {ηk} of Lipschitz functions

supported in Ω \ E and given by

ηk(x) = [1− ρk(x)]ϕ(x), (2.3)

By (2.1),

ηk(x) =





0, if ρ(x) ≥ k + 1;

[k + 1− ρ(x)]ϕ(x), if k ≤ ρ(x) ≤ k + 1;

ϕ(x), if ρ(x) ≤ k.

(2.4)

It is easy to know that the sequence {ηk} of Lipschitz functions supported in
Ω \ E, and

∇ηk = −ϕ∇ρk + [1− ρk(x)]∇ϕ. (2.5)

Since u ∈ W 1,p
loc (Ω \ E), the formula of integration by parts holds for any

Lipschitz functions sequence {ηk(x)} supported in Ω \ E, i.e.

∫

Ω\E

(ηk∇u)dx = −

∫

Ω\E

(u∇ηk)dx, ∀ηk ∈ C∞
0 (Ω \ E). (2.6)

Let ηk = (1− ρk)ϕ for all ϕ ∈ C∞
0 (Ω), then

∫

Ω

((1− ρk)ϕ∇u)dx = −

∫

Ω

((1− ρk)u∇ϕ)dx+

∫

Ω

(ϕu∇ρk)dx. (2.7)
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Since |∇ρk| ≤ |∇ρ|, lim
k→∞

|∇ρk| = 0, a.e., then

∫

Ω

(ϕu∇ρk)dx → 0. Then by

(2.7),
∫

Ω

(ϕ∇u)dx = −

∫

Ω

(u∇ϕ)dx, ∀ϕ ∈ C∞
0 (Ω). (2.8)

Hence u ∈ W 1,p
loc (Ω).

Next we verify that u solves the elliptic variational inequality (1.1) in Ω,
i.e.

∫

Ω

〈A(x,∇u),∇(v − u)〉dx ≥ 0, ∀v ∈ Kθ,p
ψ1,ψ2

(Ω). (2.9)

SInce u ∈ W 1,p
loc (Ω \E) is a weak solution of elliptic variational inequality (1.1)

in Ω \ E, then
∫

Ω\E

〈A(x,∇u),∇(ṽ − u)〉dx ≥ 0, ∀ṽ ∈ Kθ,p
ψ1,ψ2

(Ω \ E). (2.10)

Let

ṽ = u+ (1− ρk)(v − u), ∀v ∈ Kθ,p
ψ1,ψ2

(Ω). (2.11)

Since

ṽ − θ = (u− θ) + (1− ρk)(v − u) ∈ W 1,p
0 (Ω \ E), (2.12)

ṽ − ψ1 = (u− ψ1) + (1− ρk)(v − u)

= (u− ψ1) + (1− ρk)[(v − ψ1)− (u− ψ1)]

= (u− ψ1) + (1− ρk)(v − ψ1)− (1− ρk)(u− ψ1)

= ρk(u− ψ1) + (1− ρk)(v − ψ1)

≥ 0, (2.13)

ṽ − ψ2 = (u− ψ2) + (1− ρk)(v − u)

= (u− ψ2) + (1− ρk)[(v − ψ2)− (u− ψ2)]

= (u− ψ2) + (1− ρk)(v − ψ2)− (1− ρk)(u− ψ2)

= ρk(u− ψ2) + (1− ρk)(v − ψ2)

≤ 0, (2.14)

then ṽ in (2.10) can be choosen as (2.11), then (2.10) becomes
∫

Ω

(1− ρk)〈A(x,∇u),∇(v − u)〉dx ≥

∫

Ω

〈A(x,∇u), (v − u)∇ρk〉dx. (2.15)
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Now we estimate the integral in the right-hand side of (2.15). Noticing that
ψ1, ψ2 ∈ L∞(Ω), |v − u| ≤ ψ2 − ψ1, dρk is supported in Ωk = {x ∈ Ω : k ≤
ρ(x) ≤ k + 1}, |dρk| ≤ |dρ|. By condition (i) and the Hölder inequality, we
have

∣∣∣∣
∫

Ω

〈A(x, du), (v − u)∇ρk〉dx

∣∣∣∣

≤ α

∫

Ωk

|v − u||∇u|p−1|∇ρk|dx

≤ α‖ψ2 − ψ1‖∞

(∫

Ωk

|∇u|pdx

)1− 1

p
(∫

Ωk

|∇ρ|pdx

) 1

p

≤ α‖ψ2 − ψ1‖∞|Ωk|
1

p
− 1

n

(∫

Ωk

|∇u|pdx

)1− 1

p
(∫

Ωk

|∇ρ|ndx

) 1

n

(2.16)

Since ψ1, ψ2 ∈ L∞(Ω), u ∈ W 1,p
loc (Ω) , ρ ∈ W 1,n

loc (Ω), and |Ωk| → 0 when k → ∞,
then we conclude that the integrals in the above inequality converge to zero.
Then (2.17) becomes

∫

Ω

〈A(x,∇u),∇(v − u)〉dx ≥ 0, ∀v ∈ Kθ,p
ψ1,ψ2

(Ω). (2.17)

This completes the proof of Theorem 1.3.
�
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