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1 Introduction

Relative entropy plays an important role, as a mathematical device, in the
stability analysis of master equations [16] and Fokker-Planck equations [15],
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and in isothermal equilibrium fluctuations and transient nonequilibrium de-
viations [14] (see also [4], [15]). To study noncompatible random events in
quantum statistical mechanics, Birkhoff and Von Neumann [3] proposed a new
mathematical model, called quantum logic. The notion of entropy of parti-
tions in the context of Boolean algebras is a useful tool in studying dynamical
systems and has been applied on many other structures ([1], [13], [15]). Yuan
[17] introduced the entropy of partitions on quantum logic (or a orthomodular
lattice) using the notion of a state (or a probability measure) and Yue-Xu and
Zhi-Hao [18] studied conditional entropy of partitions on the same structure.

In the present paper, we employ the theory of entropy and conditional en-
tropy of partitions of a quantum space of orthomodular lattices with Bayes’
property, as developed in [6], [7], and put forward the notions of relative en-
tropy and mutual information. The results proved in the present paper gen-
eralize the corresponding results of classical quantum space to that on ortho-
modular lattices. Prerequisites for the paper are collected in Section 2. We
introduce and study the notion of relative entropy for a given partition of a
quantum space in Section 3. Various useful properties of relative entropy are
proved and its relation with mutual information is explored. In particular,
convexity of relative entropy with respect to Bayesian states, chain rules for
entropy and that for mutual information are established. We have proved the
data processing inequality in the framework of quantum logic that may form
foundation for the corresponding theory of sufficient statistics.

2 Preliminaries and basic notions

2.1 ([2], [5]). Let L = {L, 0, 1,∨,∧} be a bounded poset, where 0 and 1 are
smallest and greatest elements in L. An orthocomplementation on L is a unary
operation ′ on L satisfying, for a, b ∈ L:

(i) a ≤ b =⇒ b
′

≤ a
′

,

(ii) (a
′

)
′

= a,

(iii) the supremum a∨a
′

and the infimum a∧a′ exist; the equations a∨a
′

= 1
and a ∧ a′ = 0 hold.

An orthoposet L is a bounded poset with an orthocomplementation. The
relation orthogonal ⊥ for elements a, b of an orthoposet L is defined by a⊥b (a
is orthogonal to b) if a ≤ b

′

holds. An ortholattice is an orthoposet which is also
a lattice. An orthomodular lattice (abbr. OML) is an ortholattice satisfying
orthomodular law:

a, b ∈ L, a ≤ b =⇒ b = a ∨ (a
′

∧ b).

Orthomodularity is a weaker form of modularity, which holds for orthogonal
elements. The orthomodular law is a kind of distributivity: for a ≤ b, we



Relative Entropy and Mutual Information on a Quantum Logic 557

have a ∨ (a′ ∧ b) = b = 1 ∧ b = (a ∨ a′) ∧ (a ∨ b). If an OML L satisfies:
a ∧ b = 0 =⇒ a ≤ b′, then L is a Boolean algebra (see [2], [5]).

2.2. A map s : L −→ [0, 1] such that
(i) s(0) = 0, and
(ii) a, b ∈ L, a⊥b =⇒ s(a ∨ b) = s(a) + s(b),

is called a state on L. It may be observed that s(1) = 1, s is monotone and
s(a′) = 1− s(a), a ∈ L.

We denote by N the set of all natural numbers.
2.3. A (finite) system A = {a1, a2, . . . , an} (n ∈ N) of elements of an OML

L is said to be a partition of L corresponding to a state s defined on L (or
simply a partition of the couple (L, s)) if

(i)A is a ∨-orthogonal system, i.e. (
∨k

i=1 ai) ⊥ ak+1 for k = 1, 2, 3, . . . , n−1,
(ii) s(

∨n
i=1 ai) = 1.

Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} (n,m ∈ N) be partitions
of (L, s). Then A and B are called independent if, s(ai∧bj) = s(ai)s(bj), where
i = 1, 2, . . . , n; j = 1, 2, . . . , m. The common refinement of partitions A and B
is defined as A∨B := {ai ∧ bj : ai ∈ A, bj ∈ B, i = 1, 2, . . . , n; j = 1, 2, . . . , m}.

The common refinement A ∨ B of partitions A and B turns out to be a
partition of L corresponding to state s, provided s has the Bayes’ property (or s
is Bayesian): s(

∨m
j=1(a∧bj)) = s(a) for every a ∈ L. For, s(

∨n
i=1

∨m
j=1(ai∧bj)) =

∑n
i=1 s(

∨m
j=1(ai∧bj)) =

∑n
i=1 s(ai) = s(

∨n
i=1 ai) = s(1).We call the couple (L, s)

a quantum space if s has the Bayes’ property.
Let us recall the following log sum inequality, which we shall use in the

sequel to establish various results: for nonnegative real numbers, x1, x2, . . . , xn

and y1, y2, . . . , yn,

n
∑

i=1

xi log
xi

yi
≥ (

n
∑

i=1

xi) log

∑n
i=1 xi

∑n
i=1 yi

;

equality holds if and only if xi

yi
is constant. Here we follow the convention that

x log x
0
=∞ if x > 0, and 0 log 0

0
= 0.

3 Quantum relative entropy and mutual infor-

mation

Let the systems A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} be partitions of
a couple (L, s). Then the entropy Hs(A) of the partition A with respect to s

is defined by

Hs(A) := −
n
∑

i=1

g(s(ai)),

where g : [0,∞] −→ R is the convex function, called Shannon’s function, given
by g(x) = x log x, if x > 0 and g(0) = 0. The conditional entropy Hs(A|B) is
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defined by

Hs(A|B) := −
m
∑

j=1

n
∑

i=1

s(bj)g(s(ai|bj)).

Notice that Hs(A|B) ≥ 0, and Hs(A|A) = 0.
We refer to [6], [7] where a study of entropy and conditional entropy of

partitions of a couple (L, s), (here s is a state on the OML L) is made, and its
relation with the theory of commutators, boolean quotients in orthomodular
lattices [2], [8], [9], [10], and Bell inequalities [11], [12], is discussed. Now we
recall the following results from [6] that are used in the sequel.

Theorem 3.1 Let A,B and C be partitions of a quantum space (L, s). Then

1. Hs(A∨B) ≤ Hs(A) +Hs(B); equality holds if A and B are independent

partitions of (L, s).

2. Hs(A|B) = Hs(A) if and only if A and B are independent partitions of

(L, s).

3. Hs(A∨B) = Hs(A)+Hs(B|A), and henceHs(A∨B) ≥ max{Hs(A), Hs(B)}.

4. Hs(A∨ B|C) = Hs(A|C) +Hs(B|A ∨ C).

5. Hs(A|B ∨ C) ≤ H(A|B).

Theorem 3.2 (Concavity of entropy). Let L be an OML and r and s be

states on it. If A is a partition of L corresponding to r and s, then for α ∈ [0, 1],
we have

αHs(A) + (1− α)Hr(A) ≤ Hαs+(1−α)r(A),

showing that Hs(A) is a concave function of s.

Proof. Let A = {a1, a2, . . . , an} be a partition of (L, r) and (L, s). Then

αHs(A) + (1− α)Hr(A) = −α
n
∑

i=1

g(s(ai))− (1− α)
n
∑

i=1

g(r(ai))

= −
n
∑

i=1

[αg(s(ai)) + (1− α)g(r(ai))]

≤ −
n
∑

i=1

g(α(s(ai)) + (1− α)(r(ai)))

= −
n
∑

i=1

g((αs+ (1− α)r)(ai))

= Hαs+(1−α)r(A).
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Theorem 3.3 (Chain rules for entropy). Let A1,A2, . . . ,An (n ∈ N), and
C be partitions of a quantum space (L, s). Then

(i) Hs(A1 ∨ A2 ∨ · · · ∨ An) =
n
∑

i=1

Hs(Ai | (Ai−1 ∨ · · · ∨ A1)).

(ii) Hs(
n
∨

i=1

Ai|C) =
n
∑

i=1

Hs(Ai|
i−1
∨

k=1

Ak ∨ C).

(iii) Hs(A1 ∨ A2 ∨A3) ≤ Hs(A1 ∨A2) +Hs(A1 ∨ A3)−Hs(A1).

Proof. (i). By Theorem 3.1(3) and (4), we have Hs(A1 ∨ A2) = Hs(A1)+
Hs(A2 | A1). For n = 3, Hs(A1 ∨ A2 ∨ A3) = Hs(A1) +Hs(A2 ∨ A3 | A1) =
Hs(A1)+ Hs(A2 | A1) + Hs(A3 | A1 ∨ A2). Now suppose that the result is
true for a specific value of n ∈ N. Then

Hs(A1 ∨A2 ∨ · · · ∨ An ∨An+1)

= Hs(A1 ∨A2 ∨ · · · ∨ An) +Hs(An+1 | (A1 ∨A2 ∨ · · · ∨ An))

=
n
∑

i=1

Hs(Ai | (A1 ∨ · · · ∨ Ai−1)) +Hs(An+1 | (A1 ∨ · · · ∨ An))

=
n+1
∑

i=1

Hs(Ai | (A1 ∨ · · · ∨ Ai−1)).

Proof of (ii) follows similarly, using Theorem 3.1(4) inductively.
(iii) By Theorem 3.1(3) and (5), we get

Hs(A1 ∨A2 ∨ A3) = Hs(A1 ∨A2) +Hs(A3 | A1 ∨ A2)

≤ Hs(A3 | A1) +Hs(A1 ∨A2)

= Hs(A1 ∨A2) +Hs(A1 ∨ A3)−Hs(A1).

Definition 3.4 Let s1 and s2 be states on an OML L, and let A = {a1, a2,
. . . , an} be a partition of L corresponding to both s1 and s2. Then the relative

entropy DA(s1 ‖ s2) is defined as

DA(s1 ‖ s2) :=
n
∑

i=1

s1(ai) log
s1(ai)

s2(ai)
.

The following result suggests interpretation of relative entropy as a distance
between two states, i.e. a measure of how different the two states are. Due to
non-availability of symmetry and the triangle inequality, it is not a metric in
a true sense.

Theorem 3.5 If A = {a1, a2, . . . , an} is a partition of L corresponding to

states s1 and s2, then DA(s1 ‖ s2) ≥ 0, with equality if and only if s1(ai) =
s2(ai), for each i ∈ {1, 2, . . . , n}.
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Proof. In the log sum inequality, let xi = s1(ai) and yi = s2(ai) for
i ∈ {1, 2, . . . , n}. Then

∑n
i=1 xi =

∑n
i=1 s1(ai) = s1(

∨n
i=1 ai) = 1. Similarly,

∑n
i=1 yi = 1. Hence DA(s1 ‖ s2) ≥ 0. Also, DA(s1 ‖ s2) = 0 if and only if

s1(ai) = αs2(ai)∀i, where α is a constant. Summing over all i, we get α = 1.
Thus DA(s1 ‖ s2) = 0 if and only if s1(ai) = s2(ai), ∀i.

Theorem 3.6 Let A be a partition of (L, s). The relative entropy DA(s1 ‖
s2) is convex in the pair (s1, s2), i.e. if (s

′

1, s
′

2), (s
′′

1 , s
′′

2) are pairs of states on

L, then

DA((αs
′

1+(1−α)s
′′

1) ‖ (αs
′

2+(1−α)s
′′

2)) ≤ αDA(s
′

1 ‖ s
′

2)+(1−α)DA(s
′′

1 ‖ s
′′

2),

for all α with α ∈ [0, 1].

Proof. Fix i ∈ {1, 2, . . . , n}. Putting x1 = αs
′

1(ai), x2 = (1 − α)s
′′

1(ai),
y1 = αs

′

2(ai), and y2 = (1− α)s
′′

2(ai) in the log sum inequality, we have

(αs
′

1(ai) + (1− α)s
′′

1(ai)) log
αs

′

1(ai) + (1− α)s
′′

1(ai)

αs
′

2(ai) + (1− α)s
′′

2(ai)

≤ αp
′

1(ai) log
αs

′

1(ai)

αs
′

2(ai)
+ (1− α)s

′′

1(ai) log
(1− α)s

′′

1(ai)

(1− α)s
′′

2(ai)
.

Summing these inequalities over all i, the result follows.

Definition 3.7 Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} be parti-

tions of (L, s). Define mutual information as

I(A : B) :=
m
∑

j=1

n
∑

i=1

s(ai ∧ bj) log
s(ai ∧ bj)

s(ai)s(bj)
.

Notice that I(A : B) = I(B : A). Also, if A and B are independent, then
I(A : B) = 0.

Theorem 3.8 Let A and B be partitions of a quantum space (L, s). Then

I(A : B) = Hs(A)−Hs(A | B) = Hs(A) +Hs(B)−Hs(A∨ B).

Consequently, I(A : B) ≥ 0, and I(A : A) = 0,

Proof. By Theorem 3.1(3), we have

I(A : B) =
m
∑

j=1

n
∑

i=1

s(ai ∧ bj) log
s(ai ∧ bj)

s(ai)s(bj)

=
m
∑

j=1

n
∑

i=1

s(ai ∧ bj) log
s(ai ∧ bj)

s(bj)
−

m
∑

j=1

n
∑

i=1

s(ai ∧ bj) log s(ai)
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= −Hs(A | B)−
m
∑

j=1

n
∑

i=1

s(ai ∧ bj) log s(ai)

= −Hs(A | B)−
n
∑

i=1

s(ai) log s(ai)

= Hs(A)−Hs(A | B).
= Hs(A) +Hs(B)−Hs(A∨ B).

Theorem 3.9 For partitions A and B of a quantum space (L, s), we have

I(A ∨ B : C) ≥ I(A : C).

Proof. By Theorem 3.1(3), (4) and Theorem 3.8, we have I(A ∨ B : C) =
Hs(A∨B)−Hs(A∨B | C) = Hs(A) +Hs(B | A)−Hs(A | C)−Hs(B | A∨ C)
= I(A : C) +Hs(B | A)−Hs(B | A ∨ C) ≥ I(A : C).

Definition 3.10 Let A,B and C be partitions of a quantum space (L, s).
The conditional mutual information of A and B given C is defined by

I(A : B | C) := Hs(A | C)−Hs(A | (B ∨ C)).

Theorem 3.11 (Chain rule for mutual information) If A1,A2, . . . ,An (n ∈
N), and B are partitions of a quantum space (L, s), then

I(
n
∨

i=1

Ai : B) =
n
∑

i=1

I(Ai : B |
i−1
∨

k=1

Ak).

Proof. By Theorem 3.3 and Theorem 3.8, we have

I(
n
∨

i=1

Ai : B) = Hs(
n
∨

i=1

Ai)−Hs(
n
∨

i=1

Ai | B)

=
n
∑

i=1

Hs(Ai |
i−1
∨

k=1

Ak)−
n
∑

i=1

Hs(Ai |
i−1
∨

k=1

Ak ∨ B)

=
n
∑

i=1

(

Hs(Ai |
i−1
∨

k=1

Ak)−Hs(Ai |
i−1
∨

k=1

Ak ∨ B)
)

=
n
∑

i=1

I(Ai : B |
i−1
∨

k=1

Ak).

Definition 3.12 Let A,B and C be partitions of (L, s). Then A is called

conditionally independent to B given C (written as A −→ B −→ C) if

I(A : C|B) = 0.

Theorem 3.13 A −→ B −→ C ⇐⇒ C −→ B −→ A.
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Proof. Let A −→ B −→ C. Then 0 = I(A : C|B) = Hs(A|B)−
Hs(A|B ∨ C). Then by Theorem 3.1(3) we have, HsA|B = Hs(A|B ∨ C) =
Hs(A∨ B ∨A)−Hs(B ∨ C).

Now, again by Theorem 3.1(3), I(C : A|B) = Hs(C|B) − Hs(C|A ∨ B) =
Hs(B∨C)−Hs(B)−Hs(A∨B∨C)+Hs(B∨C) = Hs(A∨B)−Hs(B)−Hs(A|B)
= 0.

Remark. In view of the above theorem we may write A ←→ B ←→ C for
A −→ B −→ C and we may say that A and C are conditionally independent

given B.

Theorem 3.14 For any partition A,B, C of (L, s), we have I(A : B∨C) =
I(A : B) + I(A : C|B) = I(A : C) + I(A : B|C).

Proof. By Theorem 3.8 we get, I(A : B) + I(A : C|B) = HsA−Hs(A|B) +
Hs(A|B)−Hs(A|B ∨ C) = Hs(A)−Hs(A|B ∨ C) = I(A : B ∨ C).

Theorem 3.15 Let A −→ B −→ C. Then
(i) I(A ∨ B : C) = I(B : C);
(ii) I(B : C) = I(A : C) + I(C : B | A);
(iii) I(A : B|C) ≤ I(A : B). (Data Processing Inequality)

Proof. (i) Let A −→ B −→ C, i.e. I(A : C|B) = 0. So, by the chain rule
for mutual information, we have I(A ∨ B : C) = I(B ∨ A : C) = I(B : C)+
I(A : C|B) = I(B : C).

(ii) By Theorem 3.14, we have

I(A ∨ B : C) = I(A : C) + I(C : B|A).

Using (i), it follows that I(B : C) = I(A : C) + I(C : B | A).
(iii) It follows from (ii) that, I(C : B|A) ≤ I(B : C) = I(C : B). In view of

Theorem 3.13, interchanging A and C, we get I(A : B|C) ≤ I(A : B).
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