Mathematica Aeterna, Vol. 2, 2012, no. 6, 497-508

Relations and modal operators

Yong Chan Kim
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea
yck@gwnu.ac.kr

Abstract

We show that reflexive, transitive, symmetric relations can be induced by modal, necessity, sufficiency and co-sufficiency operators. We give their examples.

Mathematics Subject Classification: 03E72, 06A15,06B30
Keywords: Modal, necessity, sufficiency and co-sufficiency operators

1 Introduction

Pawlak [8] introduced rough set theory to generalize the classical set theory. Rough approximations are defined by a partition of the universe which is corresponding to the equivalence relation about information. An information consists of (X, A) where X is a set of objects and A is a set of attributes, a map $a: X \rightarrow P\left(A_{a}\right)$ where A_{a} is the value set of the attribute a. Recently, intensional modal-like logics with the propositional operators induced by relations are important mathematical tools for data analysis and knowledge processing [1-9]. In [6], we investigated the properties of modal, necessity, sufficiency and co-sufficiency operators.

In this paper, we show that reflexive, transitive, symmetric relations can be induced by modal, necessity, sufficiency and co-sufficiency operators. We give their examples.

2 Preliminaries

Definition 2.1 [3,6] Let $P(X), P(Y)$ be the families of subsets on X and Y, respectively. Then a map $F: P(X) \rightarrow P(Y)$ is called
(1) modal operator if $F\left(\bigcup_{i \in \Gamma} A_{i}\right)=\bigcup_{i \in \Gamma} F\left(A_{i}\right), F(\emptyset)=\emptyset$.
(2) necessity operator if $F\left(\bigcap_{i \in \Gamma} A_{i}\right)=\bigcap_{i \in \Gamma} F\left(A_{i}\right), F(X)=Y$.
(3) sufficiency operator if $F\left(\bigcup_{i \in \Gamma} A_{i}\right)=\bigcap_{i \in \Gamma} F\left(A_{i}\right), F(\emptyset)=Y$.
(4) co-sufficiency operator if $F\left(\bigcap_{i \in \Gamma} A_{i}\right)=\bigcup_{i \in \Gamma} F\left(A_{i}\right), F(X)=\emptyset$.
(5) a dual operator F^{∂} is defined by $F^{\partial}(A)=F\left(A^{c}\right)^{c}$. Moreover, its complementary counterpart $F^{c}(A)=(F(A))^{c}$ and $F^{*}(A)=F\left(A^{c}\right)$.

Let $R \in L^{X \times X}$ be a relation. R is called:
(1) reflexive if $(x, x) \in R$ for all $x \in X$.
(2) symmetric if $(x, y) \in R$ implies $(y, x) \in R$ for all $x, y \in X$.
(3) transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$ for $x, y, z \in X$.

Definition $2.2[3,7]$ Let $R \subset P(X \times Y)$ be a relation. For each $A \in P(X)$, we define operations $(y, x) \in R^{-1}$ iff $(x, y) \in R$ and $[R],[[R]],\langle R\rangle,\langle\langle R\rangle\rangle,[R]^{*},\langle R\rangle^{*}$: $P(X) \rightarrow P(Y)$ as follows:

$$
\begin{gathered}
{[R](A)=\{y \in Y \mid(\forall x)((x, y) \in R \rightarrow x \in A)\},} \\
{[[R]](A)=\{y \in Y \mid(\forall x \in X)(x \in A \rightarrow(x, y) \in R)\}} \\
\langle R\rangle(A)=\{y \in Y \mid(\exists x \in X)((x, y) \in R, x \in A)\} \\
\langle\langle R\rangle\rangle(A)=\left\{y \in Y \mid(\exists x \in X)\left((x, y) \in R^{c}, x \in A^{c}\right)\right\} . \\
{[R]^{*}(A)=\left\{y \in Y \mid(\forall x \in X)\left((x, y) \in R \rightarrow x \in A^{c}\right)\right\}} \\
\langle R\rangle^{*}(A)=\left\{y \in Y \mid(\exists x \in X)\left((x, y) \in R, x \in A^{c}\right)\right\} .
\end{gathered}
$$

Lemma 2.3 [3,6] (1) A map $F: P(X) \rightarrow P(Y)$ is a modal operator iff $F^{\partial}: P(X) \rightarrow P(Y)$ is a necessity operator.
(2) A map $F: P(X) \rightarrow P(Y)$ is a sufficiency operator iff $F^{\partial}: P(X) \rightarrow$ $P(Y)$ is a co-sufficiency operator operator.
(3) A map $F: P(X) \rightarrow P(Y)$ is a modal operator iff $F^{c}: P(X) \rightarrow P(Y)$ is a sufficient operator.
(4) A map $F: P(X) \rightarrow P(Y)$ is a co-sufficiency operator iff $F^{c}: P(X) \rightarrow$ $P(Y)$ is a necessity operator operator.
(5) A map $F: P(X) \rightarrow P(Y)$ is a sufficiency operator iff $F^{*}: P(X) \rightarrow$ $P(Y)$ is a necessity operator operator.
(6) A map $F: P(X) \rightarrow P(Y)$ is a modal operator iff $F^{*}: P(X) \rightarrow P(Y)$ is a co-sufficiency operator.

Theorem $2.4[3,6]$ Let $R \subset P(X \times Y)$ be a relation.
(1) $\langle R\rangle$ is a modal operator and $[R]$ is a necessity operator with $\langle R\rangle(A)=$ $\left([R]\left(A^{c}\right)\right)^{c}=[R]^{\partial}(A)$, for each $A \in P(X)$
(2) If $F: P(X) \rightarrow P(Y)$ is a modal operator on $P(X)$, there exists a unique relation $R_{F} \subset P(X \times Y)$ such that $\left\langle R_{F}\right\rangle=F$ and $\left[R_{F}\right]=F^{\partial}$ where $(x, y) \in R_{F}$ iff $y \in F(\{x\})$.
(3) $R_{\langle R\rangle}=R$.

Theorem 2.5 [6] Let $R \in P(X \times Y)$ be a relation.
(1) $[R]^{*}$ is a sufficiency operator and $\langle R\rangle^{*}$ is a co-sufficiency operator with $[R]^{*}(A)=\left(\langle R\rangle^{*}\left(A^{c}\right)\right)^{c}$.
(2) If $F: P(X) \rightarrow P(Y)$ is a sufficiency operator on $P(X)$, there exists a unique relation $R_{F} \in P(X \times Y)$ such that $\left[R_{F}\right]^{*}=F$ and $\left\langle R_{F}\right\rangle^{*}=F^{\partial}$ where $(x, y) \in R_{F}$ iff $y \in F(\{x\})^{c}$.
(3) $R_{[R]^{*}}=R$.

Theorem 2.6 [6] Let $R \subset P(X \times Y)$ be a relation.
(1) If $F: P(X) \rightarrow P(Y)$ is a necessity operator on $P(X)$, there exists a unique relation $R_{F} \in P(X \times Y)$ such that $\left[R_{F}\right]=F$ and $\left\langle R_{F}\right\rangle=F^{a}$ where $(x, y) \in R_{F}$ iff $y \in F\left(\{x\}^{c}\right)^{c}$.
(2) $R_{[R]}=R$.

Theorem 2.7 [6] Let $R \in P(X \times Y)$ be a relation.
(1) If $F: P(X) \rightarrow P(Y)$ is a co-sufficiency operator on $P(X)$, there exists a unique relation $R_{F} \in P(X \times Y)$ such that $\left\langle R_{F}\right\rangle^{*}=F$ and $\left[R_{F}\right]^{*}=F^{\partial}$ where $(x, y) \in R_{F}$ iff $y \in F\left(\{x\}^{c}\right)$.
(2) $R_{\left\langle R_{F}\right\rangle^{*}}=R$.

3 Relations and modal operators

Theorem 3.1 Let $F: P(X) \rightarrow P(X)$ be a modal operator. Define $(x, y) \in$ R_{F} iff $y \in F(\{x\})$. Then we have the following properties:
(1) R_{F} is reflexive iff $A \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F(\{x\})$ for all $x \in X$.
(2) R_{F} is transitive iff $F(F(A)) \subset F(A)$ for all $A \in P(X)$ iff $F(F(\{x\})) \subset$ $F(\{x\})$ for all $x \in X$.
(3) R_{F} is symmetric iff $F\left(F^{\partial}(A)\right) \subset A$ for all $A \in P(X)$ iff $F\left(F^{\partial}\left(\{x\}^{c}\right)\right) \subset$ $\{x\}^{c}$ for all $x \in X$.

Proof. (1) First, we will show that $A \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset$ $F(\{x\})$ for all $x \in X$. Conversely, since $\{x\} \subset F(\{x\})$ and $A=\bigcup_{x \in A}\{x\}$, we have

$$
A=\bigcup_{x \in A}\{x\} \subset \bigcup_{x \in A} F(\{x\})=F\left(\bigcup_{x \in A}\{x\}\right)=F(A)
$$

Second, R_{F} is reflexive iff $A \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F(\{x\})$ for all $x \in X$.

Let R_{F} be reflexive. Since $(x, x) \in R_{F}$, then $\{x\} \subset F(\{x\})$. Conversely, since $\{x\} \subset F(\{x\})$. Hence $(x, x) \in R_{F}$.
(2) First, $F(F(A)) \subset F(A)$ for all $A \in P(X)$ iff $F(F(\{x\})) \subset F(\{x\})$ for all $x \in X$ from:

$$
\begin{aligned}
F(F(A)) & =F\left(F\left(\bigcup_{x \in A}\{x\}\right)\right)=F\left(\cup_{x \in A} F(\{x\})\right)=\bigcup_{x \in A} F(F(\{x\}) \\
& \subset \bigcup_{x \in A} F(\{x\})=F\left(\cup_{x \in A}\{x\}\right)=F(A) .
\end{aligned}
$$

Second, we will show that R_{F} is transitive iff $F(F(\{x\})) \subset F(\{x\})$ for all $x \in X$.

Let R_{F} be transitive. Since $(\exists y \in X)\left((x, y) \in R_{F} \&(y, z) \in R_{F}\right)$ iff $(\exists y \in X)(y \in F(\{x\}) \& z \in F(\{y\}))$ implies $(x, z) \in R_{F}$ iff $z \in F(\{x\})$, respectively and $F(\{x\})=\bigcup_{y \in F(\{x\})}\{y\}$, we have:

$$
\begin{array}{ll}
z \in F(F(\{x\})) & \text { iff } z \in F\left(\cup_{y \in F(\{x\})}\{y\}\right)=\cup_{y \in F(\{x\})} F(\{y\}) \\
& \text { iff }(\exists y)(y \in F(\{x\}) \& z \in F(\{y\})) \\
& \text { implies } z \in F(\{x\}) .
\end{array}
$$

Conversely, since $F(F(\{x\})) \subset F(\{x\})$ and $F(\{x\})=\bigcup_{y \in F(\{x\})}\{y\}$, we have

$$
\begin{array}{ll}
(\exists y)\left((x, y) \in R_{F} \&(y, z) \in R_{F}\right) & \text { iff }(\exists y)(y \in F(\{x\}) \& z \in F(\{y\})) \\
& \text { iff } z \in F(F(\{x\})) \text { implies } z \in F(\{x\}) .
\end{array}
$$

Thus, $(x, z) \in R_{F}$.
(3) First, if R_{F} is symmetric, then $F\left(F^{\partial}(A)\right) \subset A$ for all $A \in P(X)$.

Let R_{F} be symmetric. Since $A=\bigcap_{x \in A^{c}}\{x\}^{c}$ and F^{∂} is a necessity operator, then $F^{\partial}(A)=F^{\partial}\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)=\bigcap_{x \in A^{c}} F^{\partial}\left(\{x\}^{c}\right)$. and $x \in F(\{y\})$ iff $y \in$ $F(\{x\})$, we have:

$$
F\left(F^{\partial}(A)\right)=F\left(\bigcup_{y \in F^{\partial}(A)}\{y\}\right)=\bigcup_{y \in F^{\partial}(A)} F(\{y\}),
$$

$$
\begin{aligned}
z \in F\left(F^{\partial}(A)\right) & \text { iff }(\exists y)\left(y \in F^{\partial}(A) \& z \in F(\{y\})\right. \\
& \text { iff }(\exists y)\left((\forall x \in X)\left(x \in A^{c} \rightarrow y \in F^{\partial}\left(\{x\}^{c}\right)\right) \& y \in F(\{z\})\right) \\
& \text { implies }(\exists y)\left(\left(z \in A^{c} \rightarrow y \in F^{\partial}\left(\{z\}^{c}\right) \& y \in F(\{z\})\right.\right. \\
& \text { implies }(\exists y)\left(\left(y \in F^{\partial}\left(\{z\}^{c}\right)^{c} \rightarrow z \in A\right) \& y \in F(\{z\})\right. \\
& \text { implies }(\exists y)((y \in F(\{z\}) \rightarrow z \in A) \& y \in F(\{z\}) \\
& \text { implies } z \in A .
\end{aligned}
$$

Second, if $F\left(F^{\partial}(A)\right) \subset A$ for all $A \in P(X)$, put $A=\{x\}^{c}$, then $F\left(F^{\partial}\left(\{x\}^{c}\right)\right) \subset$ $\{x\}^{c}$ for all $x \in X$.

Finally, if $F\left(F^{\partial}\left(\{x\}^{c}\right)\right) \subset\{x\}^{c}$ for all $x \in X$, then R_{F} is symmetric from the following statements:

Since $F\left(F^{\partial}\left(\{x\}^{c}\right)\right) \subset\{x\}^{c}$ and $F^{\partial}\left(\{x\}^{c}\right)=\bigcup_{y \in F^{\partial}\left(\{x\}^{c}\right)}\{y\}$, we have

$$
\begin{aligned}
F\left(F^{\partial}\left(\{x\}^{c}\right)\right) & =\bigcup_{y \in F^{\partial}\left(\left\{x c^{c}\right)\right.} F(\{y\}) \subset\{x\}^{c}, \\
\{x\} & \subset\left(\bigcup_{y \in F^{\partial}\left(\{x\}^{c}\right)} F(\{y\})\right)^{c}=\bigcap_{y \in F^{\partial}\left(\{x\}^{c}\right)} F(\{y\})^{c}, \\
z \in\{x\} & \text { implies }(\forall y)\left(y \in F^{\partial}\left(\{x\}^{c}\right) \rightarrow z \in F\left(\{y\} c^{c}\right),\right. \\
z \in\{x\} & \text { implies }(\forall y)\left(z \in F(\{y\}) \rightarrow y \in F^{\partial}\left(\{x\}^{c}\right)^{c}\right) .
\end{aligned}
$$

Thus, $(x, y) \in R_{F} \rightarrow(y, x) \in R_{F}$. Similarly, $(y, x) \in R_{F} \rightarrow(x, y) \in R_{F}$.

Example 3.2 Let R be a relation. Since $\langle R\rangle: P(X) \rightarrow P(X)$ is a modal operator, we define $(x, y) \in R_{\langle R\rangle}$ iff $y \in\langle R\rangle(\{x\})$. Since $R_{\langle R\rangle}=R$ and $\langle R\rangle^{\partial}=[R]$ from Theorem 2.4, we obtain:
(1) R is reflexive iff $A \subset\langle R\rangle(A)$ for all $A \in P(X)$ iff $\{x\} \subset\langle R\rangle(\{x\})$ for all $x \in X$.
(2) R is transitive iff $\langle R\rangle(\langle R\rangle(A)) \subset\langle R\rangle(A)$ for all $A \in P(X)\langle R\rangle(\langle R\rangle(\{x\})) \subset$ $\langle R\rangle(\{x\})$ for all $x \in X$.
(3) R is symmetric iff $\langle R\rangle([R](A)) \subset A$ for all $A \in P(X)$ iff $\langle R\rangle\left([R]\left(\{x\}^{c}\right)\right) \subset$ $\{x\}^{c}$ for all $x \in X$.

Theorem 3.3 Let $F: P(X) \rightarrow P(X)$ be a necessity operator. Define $(x, y) \in R_{F}$ iff $y \in F\left(\{x\}^{c}\right)^{c}$. Then we have the following properties:
(1) R_{F} is reflexive iff $F(A) \subset A$ for all $A \in P(X)$ iff $F\left(\{x\}^{c}\right) \subset\{x\}^{c}$ for all $x \in X$.
(2) R_{F} is transitive iff $F(A) \subset F(F(A))$ for all $A \in P(X)$ iff $F\left(\{x\}^{c}\right) \subset$ $F\left(F\left(\{x\}^{c}\right)\right)$ for all $x \in X$.
(3) R_{F} is symmetric iff $A \subset F\left(F^{\partial}(A)\right)$ for all $A \in P(X)$ iff $\{x\} \subset$ $F\left(F^{\partial}(\{x\})\right)$ for all $x \in X$.

Proof. (1) First, we show that if R_{F} is reflexive, then $F(A) \subset A$ for all $A \in P(X)$. Let R_{F} be reflexive. Then $\{x\} \subset F\left(\{x\}^{c}\right)^{c}$. Since $A=\bigcap_{x \in A^{c}}\{x\}^{c}$ and $F\left(\{x\}^{c}\right) \subset\{x\}^{c}$,

$$
F(A)=F\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)=\bigcap_{x \in A^{c}} F\left(\{x\}^{c}\right) \subset \bigcap_{x \in A^{c}}\{x\}^{c}=A
$$

Second, if $F(A) \subset A$ for all $A \in P(X)$, put $A=\{x\}^{c}$, then $F\left(\{x\}^{c}\right) \subset\{x\}^{c}$ for all $x \in X$.

Finally, since $\{x\} \subset F\left(\{x\}^{c}\right)^{c}$, then $(x, x) \in R_{F}$.
(2) First, we easily show that $F(A) \subset F(F(A))$ for all $A \in P(X)$ iff $F\left(\{x\}^{c}\right) \subset F\left(F\left(\{x\}^{c}\right)\right)$ for all $x \in X$ from:

$$
\begin{aligned}
F(F(A)) & \left.=F\left(F\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)\right)\right)=F\left(\bigcap_{x \in A^{c}} F\left(\{x\}^{c}\right)\right)=\bigcap_{x \in A^{c}} F\left(F\left(\{x\}^{c}\right)\right) \\
& \supset \bigcap_{x \in A^{c}} F\left(\{x\}^{c}\right)=F\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)=F(A) .
\end{aligned}
$$

Second, we show that R_{F} is transitive iff $F\left(\{x\}^{c}\right) \subset F\left(F\left(\{x\}^{c}\right)\right)$ for all $x \in X$. Let R_{F} be transitive. Since $(\exists y \in X)\left((x, y) \in R_{F} \&(y, z) \in R_{F}\right)$ iff $(\exists y \in X)\left(y \in F\left(\{x\}^{c}\right)^{c} \& z \in F\left(\{y\}^{c}\right)^{c}\right)$ implies $(x, z) \in R_{F}$ iff $z \in F\left(\{x\}^{c}\right)^{c}$, respectively and $F\left(\{x\}^{c}\right)=\bigcap_{y \in F\left(\{x\}^{c}\right)^{c}}\{y\}^{c}$, we have:

$$
\begin{aligned}
&(\exists y \in X)\left(y \in F\left(\{x\}^{c}\right)^{c} \& z \in F\left(\{y\}^{c}\right)^{c}\right) \rightarrow z \in F\left(\{x\}^{c}\right)^{c} . \\
& z \in F\left(\{x\}^{c}\right) \text { imlies }\left((\exists y \in X)\left(y \in F\left(\{x\}^{c}\right)^{c} \& z \in F\left(\{y\}^{c}\right)^{c}\right)\right)^{c} \\
& \text { iff }(\forall y \in X)\left(y \in F\left(\{x\}^{c}\right)^{c} \rightarrow z \in F\left(\{y\}^{c}\right)\right) \\
& \text { iff } z \in F\left((\forall y \in X)\left(y \in F\left(\{x\}^{c}\right)^{c} \rightarrow\{y\}^{c}\right)\right. \\
& \text { iff } z \in F\left(F\left(\{x\}^{c}\right)\right) .
\end{aligned}
$$

Conversely, since $F\left(\{x\}^{c}\right) \subset F\left(F\left(\{x\}^{c}\right)\right)$ and $F\left(\{x\}^{c}\right)=\bigcap_{y \in F\left(\{x\}^{c}\right)^{c}}\{y\}^{c}$, we have

$$
F\left(\{x\}^{c}\right) \subset F\left(F\left(\{x\}^{c}\right)\right)=F\left(\bigcap_{y \in F\left(\{x\}^{c}\right)}\{y\}^{c}\right)=\bigcap_{y \in F\left(\{x\}^{c}\right)^{c}} F\left(\{y\}^{c}\right) .
$$

Then

$$
\begin{aligned}
& \vdash(\forall z \in X)\left(z \in F\left(\{x\}^{c}\right) \rightarrow z \in \bigcap_{y \in F\left(\{x\}^{c}\right)^{c}} F\left(\{y\}^{c}\right)\right) \\
& \text { iff } \vdash(\forall z \in X)\left(z \in F\left(\{x\}^{c}\right) \rightarrow\left(y \in F\left(\{x\}^{c}\right)^{c} \rightarrow z \in F\left(\{y\}^{c}\right)\right)\right. \\
& \text { iff } \vdash(\forall z \in X)\left((\exists y \in X)\left(y \in F\left(\{x\}^{c}\right)^{c} \& z \in F\left(\{y\}^{c}\right)^{c}\right) \rightarrow z \in F\left(\{x\}^{c}\right)^{c}\right) .
\end{aligned}
$$

Thus,

$$
(\exists y \in X)\left((x, y) \in R_{F} \&(y, z) \in R_{F}\right) \rightarrow(x, z) \in R_{F} .
$$

(3) First, we show that if R_{F} is symmetric, then $A \subset F\left(F^{\partial}(A)\right)$ for all $A \in P(X)$. Let R_{F} be symmetric. Since $A=\cup_{x \in A}\{x\}$ and F^{∂} is a modal operator, then $F^{\partial}(A)=F^{\partial}\left(\bigcup_{x \in A}\{x\}\right)=\bigcup_{x \in A} F^{\partial}(\{x\})$ and $x \in F\left(\{y\}^{c}\right)^{c}$ iff $y \in F\left(\{x\}^{c}\right)^{c}$, we have:

$$
\left.F\left(F^{\partial}(A)\right)=F\left(\bigcap_{y \in F^{\partial}(A)^{c}}\{y\}^{c}\right)\right)=\bigcap_{y \in F^{\partial}(A)^{c}} F\left(\{y\}^{c}\right) .
$$

$$
\begin{array}{ll}
x \in F\left(F^{\partial}(A)\right) & \text { iff }(\exists y \in X)\left(y \in F^{\partial}(A)^{c} \rightarrow x \in F\left(\{y\}^{c}\right)\right), \\
x \in F\left(F^{\partial}(A)\right) & \text { iff }(\exists y \in X)\left(x \in F\left(\{y\}^{c}\right)^{c} \rightarrow y \in F^{\partial}(A)\right), \\
x \in F\left(F^{\partial}(A)\right) & \text { iff }(\exists y \in X)\left(x \in F\left(\{y\}^{c}\right)^{c} \rightarrow(\exists x \in X)\left(x \in A \& y \in F^{\partial}(\{x\})\right) .\right.
\end{array}
$$

Since $\vdash x \in A \rightarrow\left((\exists y \in X)\left(x \in F\left(\{y\}^{c}\right)^{c} \rightarrow(\exists x \in X)(x \in A \& y \in\right.\right.$ $\left.\left.F^{\partial}(\{x\})\right)\right)$ iff $\vdash x \in A \rightarrow x \in F\left(F^{\partial}(A)\right)$, then $A \subset F\left(F^{\partial}(A)\right)$.

Second, if $A \subset F\left(F^{\partial}(A)\right)$ for all $A \in P(X)$, put $A=\{x\}$, then $\{x\} \subset$ $F\left(F^{\partial}(\{x\})\right)$ for all $x \in X$.

Finally, we show that if $\{x\} \subset F\left(F^{\partial}(\{x\})\right)$ for all $x \in X$, then R_{F} is symmetric from the following statements. Since $\{x\} \subset F\left(F^{\partial}(\{x\})\right)$ and $F^{\partial}(\{x\})=\bigcap_{y \in F^{\partial}(\{x\})^{c}}\{y\}^{c}$, we have

$$
\begin{aligned}
& \quad F\left(F^{\partial}(\{x\})\right)=F\left(\bigcap_{y \in F^{\partial}(\{x\})^{c}}\{y\}^{c}\right)=\bigcap_{y \in F^{\partial}(\{x\})^{c}} F\left(\{y\}^{c}\right), \\
& \vdash(\forall z \in X)\left(z \in\{x\} \rightarrow z \in F\left(F^{\partial}(\{x\})\right)\right) \\
& \text { iff } \vdash(\forall z \in X)\left(z \in\{x\} \rightarrow(\exists y)\left(y \in F^{\partial}(\{x\})^{c} \rightarrow z \in F\left(\{y\}^{c}\right)\right)\right. \\
& \text { iff } \vdash\left((\exists y)\left(y \in F^{\partial}(\{x\})^{c} \rightarrow x \in F\left(\{y\}^{c}\right)\right)\right. \\
& \text { iff } \vdash y \in F\left(\{x\}^{c}\right) \rightarrow x \in F\left(\{y\}^{c}\right) .
\end{aligned}
$$

Hence $(x, y) \notin R_{F}$ implies $(y, x) \notin R_{F}$. Similarly, $(y, x) \notin R_{F}$ implies $(x, y) \notin$ R_{F}. Thus R_{F} is a symmetric relation.

Example 3.4 Let R be a relation. Since $[R]: P(X) \rightarrow P(X)$ is a necessity operator, we define $(x, y) \in R_{[R]}$ iff $y \in[R]\left(\{x\}^{c}\right)^{c}$. Since $R_{[R]}=R$ and $[R]^{\partial}=\langle R\rangle$ from Theorem 2.6, we obtain:
(1) R is reflexive iff $[R](A) \subset A$ for all $A \in P(X)$ iff $[R]\left(\{x\}^{c}\right) \subset\{x\}^{c}$ for all $x \in X$.
(2) R is transitive iff $[R](A) \subset[R]([R](A))$ for all $A \in P(X)$ iff $[R]\left(\{x\}^{c}\right) \subset$ $[R]\left([R]\left(\{x\}^{c}\right)\right)$ for all $x \in X$.
(3) R is symmetric iff $A \subset[R](\langle R\rangle(A))$ for all $A \in P(X)$ iff $\{x\} \subset$ $[R](\langle R\rangle(\{x\}))$ for all $x \in X$.

Theorem 3.5 Let $F: P(X) \rightarrow P(X)$ be a sufficiency operator. Define $(x, y) \in R_{F}$ iff $y \in F(\{x\})^{c}$. Then we have the following properties:
(1) R_{F} is reflexive iff $F(A) \subset A^{c}$ for all $A \in P(X)$ iff $F(\{x\}) \subset\{x\}^{c}$ for all $x \in X$.
(2) R_{F} is transitive iff $F(A) \subset F\left(F^{c}(A)\right)$ for all $A \in P(X)$ iff $F(\{x\}) \subset$ $F\left(F^{c}(\{x\})\right)$ for all $x \in X$.
(3) R_{F} is symmetric iff $A \subset F(F(A))$ for all $A \in P(X)$ iff $\{x\} \subset$ $F(F(\{x\}))$ for all $x \in X$.

Proof. (1) We easily proved R_{F} is reflexive iff $F(\{x\}) \subset\{x\}^{c}$ for all $x \in X$.
$F(A) \subset A^{c}$ for all $A \in P(X)$ iff $F(\{x\}) \subset\{x\}^{c}$ for all $x \in X$ from the following statements: For $A=\bigcup_{x \in A}\{x\}$, we have

$$
\begin{aligned}
F(A) & =F\left(\cup_{x \in A}\{x\}\right)=\bigcap_{x \in A} F(\{x\}) \\
& \subset \bigcap_{x \in A}\{x\}^{c}=A^{c} .
\end{aligned}
$$

(2) Since $F\left(\{x\}^{c}\right)=\bigcup_{y \in F(\{x\})^{c}}\{y\}$ and F^{c} is a modal operator, we have:

$$
\begin{aligned}
F\left(F^{c}(A)\right) & =F\left(F^{c}\left(\bigcup_{x \in A}\{x\}\right)\right)=F\left(\bigcup_{x \in A} F^{c}(\{x\})\right)=\bigcap_{x \in A} F\left(F^{c}(\{x\})\right. \\
& \supset \bigcap_{x \in A} F(\{x\})=F\left(\bigcup_{x \in A}\{x\}\right)=F(A) .
\end{aligned}
$$

Hence we easily prove that $F(A) \subset F\left(F^{c}(A)\right)$ for all $A \in P(X)$ iff $F(\{x\}) \subset$ $F\left(F^{c}(\{x\})\right)$ for all $x \in X$.

Let R_{F} be transitive. Since $(\exists y \in X)\left((x, y) \in R_{F} \&(y, z) \in R_{F}\right)$ iff $(\exists y \in X)\left(y \in F(\{x\})^{c} \& z \in F(\{y\})^{c}\right)$ implies $(x, z) \in R_{F}$ iff $z \in F(\{x\})^{c}$, respectively, then

$$
\begin{aligned}
& \vdash z \in F(\{y\}) \rightarrow\left((\exists y \in X)\left(y \in F(\{x\})^{c} \& z \in F(\{y\})^{c}\right)\right)^{c}, \\
& \vdash z \in F(\{y\}) \rightarrow(\forall y \in X)\left(y \in F(\{x\})^{c} \rightarrow z \in F(\{y\})\right), \\
& F(\{x\}) \subset \bigcap_{y \in F(\{x\})^{c}} F(\{y\})=F\left(\bigcup_{y \in F(\{x\})^{c}}\{y\}\right)=F\left(F(\{x\})^{c}\right) .
\end{aligned}
$$

Conversely, let $F\left(F^{c}(\{x\})\right) \supset F(\{x\})$ and $F^{c}(\{x\})=\bigcup_{y \in F^{c}(\{x\})}\{y\}$, we have

$$
\begin{aligned}
& F\left(F^{c}(\{x\})\right)=F\left(\cup_{y \in F^{c}(\{x\})}\{y\}\right)=\bigcap_{y \in F^{c}(\{x\})} F(\{y\}), \\
& z \in F\left(F^{c}(\{x\})\right) \text { iff }(\forall y \in X)\left(y \in F^{c}(\{x\}) \rightarrow z \in F(\{y\})\right) .
\end{aligned}
$$

Since $F\left(F^{c}(\{x\})\right) \supset F(\{x\})$, we have

$$
\begin{aligned}
& F\left(F^{c}(\{x\})\right)^{c} \subset F(\{x\})^{c} \\
& \text { iff }\left(\cap_{y \in X}\left(y \in F^{c}(\{x\}) \rightarrow z \in F(\{y\})\right)\right)^{c} \text { implies } z \in F(\{x\})^{c} \\
& \text { iff }(\exists y)\left(y \in F^{c}(\{x\}) \& z \in F^{c}(\{y\})\right) \text { implies } z \in F(\{x\})^{c} .
\end{aligned}
$$

Thus, $(x, y) \in R_{F} \&(y, z) \in R_{F}$ implies $(x, z) \in R_{F}$.
(3) First, we show that if R_{F} is symmetric, then $A \subset F(F(A))$ for all $A \in P(X)$.

Let R_{F} be symmetric. Since $F(A)=\bigcup_{x \in F(A)}\{x\}$ and $z \in F(\{x\})^{c}$ iff $x \in F(\{z\})^{c}$, then

$$
\begin{array}{ll}
\quad F(F(A)) & =F\left(\cup_{x \in F(A)}\{x\}\right)=\bigcap_{x \in F(A)} F(\{x\}), \\
z \in F(F(A)) & \text { iff }(\forall x)(x \in F(A) \rightarrow z \in F(\{x\})), \\
z \in F(F(A)) & \text { iff }(\forall x)((\forall y)(y \in A \rightarrow x \in F(\{y\})) \rightarrow z \in F(\{x\})) .
\end{array}
$$

Since $\vdash(\forall x)((z \in A \rightarrow x \in F(\{z\})) \rightarrow z \in F(\{x\})) \rightarrow(\forall x)((\forall y)(y \in A \rightarrow$ $x \in F(\{y\})) \rightarrow z \in F(\{x\}))$ and $z \in F(\{x\})$ iff $(z, x) \notin R_{F}$ iff $(x, z) \notin R_{F}$ iff $x \in F(\{z\})$, then

$$
\vdash(\forall x)(z \in A \&(z \in A \rightarrow x \in F(\{z\})) \rightarrow x \in F(\{z\})),
$$

$$
\vdash(\forall x)((z \in A \rightarrow x \in F(\{z\})) \rightarrow z \in F(\{x\})) \rightarrow z \in F(F(A)) .
$$

By Modus Ponens, $\vdash(\forall x)(z \in A \rightarrow z \in F(F(A)))$. Hence $A \subset F(F(A))$.
Second, if $A \subset F(F(A))$ for all $A \in P(X)$, put $A=\{x\}$, then $\{x\} \subset$ $F(F(\{x\}))$ for all $x \in X$.

Finally, we show that if $\{x\} \subset F(F(\{x\}))$ for all $x \in X$, then R_{F} is symmetric from the following statements. Since $F(F(\{x\})) \supset\{x\}$ and $F(\{x\})=$ $\bigcup_{y \in F(\{x\})}\{y\}$, we have

$$
\begin{aligned}
& F(F(\{x\}))=F\left(\cup_{y \in F(\{x\})}\{y\}\right)=\bigcup_{y \in F(\{x\})} F(\{y\}), \\
& \vdash(\forall z \in X)(z \in\{x\} \rightarrow(\exists y)(y \in F(\{x\}) \rightarrow z \in F(\{y\})), \\
& \vdash(\forall z \in X)((z \in\{x\} \& y \in F(\{x\})) \rightarrow z \in F(\{y\})) .
\end{aligned}
$$

Hence $y \in F(\{x\}) \rightarrow x \in F(\{y\})$ iff $x \in F(\{y\})^{c} \rightarrow y \in F(\{x\})^{c}$ iff $(y, x) \in$ $R_{F} \rightarrow(x, y) \in R_{F}$.

Example 3.6 Let R be a relation. Since $[R]^{*}: P(X) \rightarrow P(X)$ is a sufficiency operator, we define $(x, y) \in R_{[R]^{*}}$ iff $y \in[R]^{*}(\{x\})^{c}$. Since $R_{[R]^{*}}=R$ and $\left([R]^{*}\right)^{\partial}=\langle R\rangle^{*}$ from Theorem 2.5, we obtain:
(1) R is reflexive iff $[R]^{*}(A) \subset A^{c}$ for all $A \in P(X)$ iff $[R]^{*}(\{x\}) \subset\{x\}^{c}$ for all $x \in X$.
(2) R is transitive iff $[R]^{*}(A) \subset[R]^{*}\left(\left([R]^{*}\right)^{c}(A)\right)$ for all $A \in P(X)$ iff $[R]^{*}(\{x\}) \subset[R]^{*}\left(\left([R]^{*}\right)^{c}(\{x\})\right)$ for all $x \in X$.
(3) R is symmetric iff $A \subset[R]^{*}\left([R]^{*}(A)\right)$ for all $A \in P(X)$ iff $\{x\} \subset$ $[R]^{*}\left([R]^{*}(\{x\})\right)$ for all $x \in X$.

Theorem 3.7 Let $F: P(X) \rightarrow P(X)$ be a co-sufficiency operator. Define $(x, y) \in R_{F}$ iff $y \in F\left(\{x\}^{c}\right)$. Then we have the following properties:
(1) R_{F} is reflexive iff $A^{c} \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F\left(\{x\}^{c}\right)$ for all $x \in X$.
(2) R_{F} is transitive iff $F\left(F^{c}(A)\right) \subset F(A)$ for all $A \in P(X)$ iff $F\left(F^{c}\left(\{x\}^{c}\right)\right) \subset$ $F\left(\{x\}^{c}\right)$ for all $x \in X$.
(3) R_{F} is symmetric iff $F(F(A)) \subset A$ for all $A \in P(X)$ iff $F\left(F\left(\{x\}^{c}\right)\right) \subset$ $\{x\}^{c}$ for all $x \in X$.

Proof. (1) Let R_{F} be reflexive. Since $A=\bigcap_{x \in A^{c}}\{x\}^{c}$ and $\{x\} \subset F\left(\{x\}^{c}\right)$, $F(A)=F\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)=\bigcup_{x \in A^{c}} F\left(\{x\}^{c}\right) \supset \bigcup_{x \in A^{c}}\{x\}=A^{c}$.

Put $A=\{x\}^{c}$. Then $\{x\} \subset F\left(\{x\}^{c}\right)$. Let $\{x\} \subset F\left(\{x\}^{c}\right)$. Then $(x, x) \in$ R_{F}.
(2) First, we show that $F\left(F^{c}(A)\right) \subset F(A)$ for all $A \in P(X)$ iff $F\left(F^{c}\left(\{x\}^{c}\right)\right) \subset$ $F\left(\{x\}^{c}\right)$ for all $x \in X$. Since F^{c} is a necessity operator, we have:

$$
\begin{aligned}
F\left(F^{c}(A)\right) & \left.=F\left(F^{c}\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)\right)\right)=F\left(\bigcap_{x \in A^{c}} F^{c}\left(\{x\}^{c}\right)\right)=\bigcup_{x \in A^{c}} F\left(F^{c}\left(\{x\}^{c}\right)\right) \\
& \subset \bigcup_{x \in A^{c}} F\left(\{x\}^{c}\right)=F\left(\bigcap_{x \in A^{c}}\{x\}^{c}\right)=F(A) .
\end{aligned}
$$

Conversely, put $A=\{x\}^{c}$. It is trivial.
Second, R_{F} is transitive iff $F\left(F^{c}\left(\{x\}^{c}\right)\right) \subset F\left(\{x\}^{c}\right)$ for all $x \in X$. Let R_{F} be transitive. Since $(\exists y \in X)\left((x, y) \in R_{F} \&(y, z) \in R_{F}\right)$ iff $(\exists y \in$ $X)\left(y \in F\left(\{x\}^{c}\right) \& z \in F\left(\{y\}^{c}\right)\right)$ implies $(x, z) \in R_{F}$ iff $z \in F\left(\{x\}^{c}\right)$ and $F^{c}\left(\{x\}^{c}\right)=\bigcap_{y \in F\left(\{x\}^{c}\right)}\{y\}^{c}$, we have:

$$
\begin{array}{ll}
F\left(\left(F^{c}\left(\{x\}^{c}\right)\right)\right. & =F\left(\bigcap_{y \in F\left(\{x\}^{c}\right)}\{y\}^{c}\right)=\bigcup_{y \in F\left(\{x\}^{c}\right)} F\left(\{y\}^{c}\right) \\
z \in F\left(\left(F^{c}\left(\{x\}^{c}\right)\right)\right. & \text { iff }(\exists y)\left(y \in F\left(\{x\}^{c}\right) \& z \in F\left(\{y\}^{c}\right)\right. \\
& \text { implies } z \in F\left(\{x\}^{c}\right) .
\end{array}
$$

Hence $F\left(\left(F^{c}\left(\{x\}^{c}\right)\right) \subset F\left(\{x\}^{c}\right)\right.$.
Conversely, since $F\left(F^{c}\left(\{x\}^{c}\right)\right) \subset F\left(\{x\}^{c}\right)$ and $F^{c}\left(\{x\}^{c}\right)=\bigcap_{y \in F\left(\{x\}^{c}\right)}\{y\}^{c}$, we have

$$
\begin{aligned}
F\left(\{x\}^{c}\right) & \supset F\left(F^{c}\left(\{x\}^{c}\right)\right)=F\left(\bigcap_{y \in F\left(\{x\}^{c}\right)}\{y\}^{c}\right) \\
& =\bigcup_{y \in F\left(\{x\}^{c}\right)} F\left(\{y\}^{c}\right) .
\end{aligned}
$$

Thus $z \in \bigcup_{y \in F\left(\{x\}^{c}\right)} F\left(\{y\}^{c}\right)$ implies $z \in F\left(\{x\}^{c}\right)$. Hence $(x, y) \in R_{F} \&(y, z) \in$ $R_{F} \rightarrow(x, z) \in R_{F}$.
(3) First, we will show that if R_{F} is symmetric, then $F(F(A)) \subset A$ for all $A \in P(X)$. Let R_{F} be symmetric. Since $A=\bigcap_{x \in A^{c}}\{x\}^{c}$ and F^{c} is a necessity operator, then $F^{c}(A)=\bigcap_{x \in A^{c}} F^{c}\left(\{x\}^{c}\right), F(A)=\bigcap_{x \in F(A)^{c}}\{x\}^{c}$ and $x \in F\left(\{y\}^{c}\right)$ iff $y \in F\left(\{x\}^{c}\right)$, we have:

$$
F(F(A))=F\left(\bigcap_{y \in F^{c}(A)}\{y\}^{c}\right)=\bigcup_{y \in F^{c}(A)} F\left(\{y\}^{c}\right)
$$

$$
x \in F(F(A)) \quad \text { iff } x \in \bigcup_{y \in F^{c}(A)} F\left(\{y\}^{c}\right)
$$

$$
\text { iff }(\exists y)\left(y \in F^{c}(A) \& x \in F\left(\{y\}^{c}\right)\right.
$$

$$
\text { iff } \left.(\exists y)\left((\forall x \in X)\left(x \in A^{c} \rightarrow y \in F^{c}\left(\{x\}^{c}\right)\right)\right) \& y \in F\left(\{x\}^{c}\right)\right)
$$

$$
\text { iff }(\exists y)\left(\left((\forall x \in X)\left(y \in F\left(\{x\}^{c}\right) \rightarrow x \in A\right)\right) \& y \in F\left(\{x\}^{c}\right)\right)
$$

$$
\text { implies } x \in A \text {. }
$$

Second, if $F(F(A)) \subset A$ for all $A \in P(X)$, put $A=\{x\}^{c}$, then $F\left(F\left(\{x\}^{c}\right)\right) \subset$ $\{x\}^{c}$ for all $x \in X$.

Finally, we will show if $F\left(F\left(\{x\}^{c}\right)\right) \subset\{x\}^{c}$ for all $x \in X$, then R_{F} is symmetric. Since $F\left(F\left(\{x\}^{c}\right)\right) \subset\{x\}^{c}$ and $F\left(\{x\}^{c}\right)=\bigcap_{y \in F^{c}(\{x\})^{c}}\{y\}^{c}$, we have

$$
F\left(F\left(\{x\}^{c}\right)\right)=F\left(\bigcap_{y \in F^{c}(\{x\})^{c}}\{y\}^{c}\right)=\bigcup_{y \in F^{c}(\{x\})^{c}} F\left(\{y\}^{c}\right) \subset\{x\}^{c} .
$$

Thus $z \in\{x\} \rightarrow(\forall y \in X)\left(y \in F^{c}\left(\{x\}^{c}\right) \rightarrow z \in F^{c}(\{y\})^{c}\right)$. Put $x=z$, then $\vdash x \in F\left(\{y\}^{c}\right) \rightarrow y \in F\left(\{x\}^{c}\right)$. Similarly, $\vdash y \in F\left(\{x\}^{c}\right) \rightarrow x \in F\left(\{y\}^{c}\right)$.

Example 3.8 Let R be a relation. Since $\langle R\rangle^{*}: P(X) \rightarrow P(X)$ is a sufficiency operator, we define $(x, y) \in R_{\langle R\rangle^{*}}$ iff $y \in\langle R\rangle^{*}(\{x\})^{c}$. Since $R_{\langle R\rangle^{*}}=R$ and $\left(\langle R\rangle^{*}\right)^{\partial}=[R]^{*}$ from Theorem 2.7, we obtain:
(1) R is reflexive iff $A^{c} \subset\langle R\rangle^{*}(A)$ for all $A \in P(X)$ iff $\{x\} \subset\langle R\rangle^{*}\left(\{x\}^{c}\right)$ for all $x \in X$.
(2) R is transitive iff $\langle R\rangle^{*}(\langle R\rangle(A)) \subset\langle R\rangle^{*}(A)$ for all $A \in P(X)$ iff $\langle R\rangle^{*}\left(\langle R\rangle\left(\{x\}^{c}\right)\right) \subset$ $\langle R\rangle^{*}\left(\{x\}^{c}\right)$ for all $x \in X$.
(3) R is symmetric iff $\langle R\rangle^{*}\left(\langle R\rangle^{*}(A)\right) \subset A$ for all $A \in P(X)$ iff $\langle R\rangle^{*}\left(\langle R\rangle^{*}\left(\{x\}^{c}\right)\right) \subset$ $\{x\}^{c}$ for all $x \in X$.

Example 3.9 Let $X=\{a, b, c, d\}$ be a set. Define $F, G: P(X) \rightarrow P(X)$
as

$$
\begin{gathered}
F(\{a\})=\{a, b\}, F(\{b\})=\{b\}, F(\{c\})=\{a, c\}, F(\{d\})=\{a, d\} \\
G(\{a\})=\{c, d\}, G(\{b\})=\{c, d\}, G(\{c\})=\{a, b\}, G(\{d\})=\{a, b\} \\
H(\{b, c, d\})=\{b, c\}, H(\{a, c, d\})=\{c, d\}, H(\{a, b, d\})=\{a, d\}, H(\{a, b, c\})=\{a, b\}
\end{gathered}
$$

(1) If F is a modal operator, then, by Theorem 3.1,

$$
R_{F}=\{(a, a),(a, b),(b, b),(c, a),(c, c),(d, a),(d, d)\}
$$

Since R_{F} is reflexive, then $A \subset F(A)$. Since $(c, a) \in R_{F}$ and $(a, b) \in R_{F}$ but $(c, b) \notin R_{F}$, then R_{F} is not transitive. Thus, $\{a, b, c\}=F(F(\{c\})) \not \subset F(\{c\})=$ $\{a, c\}$. Since R_{F} is not symmetric,

$$
\{a, b, c\}=F\left(F^{\partial}\left(\{d\}^{c}\right)\right) \not \subset\{d\}^{c}=\{b, c\} .
$$

(2) If G is a sufficiency operator, then, by Theorem 3.5,

$$
R_{G}=\{(a, a),(a, b),(b, a),(b, b),(c, b),(c, c),(d, c),(d, d)\}
$$

Since R_{G} is reflexive, transitive and symmetric, then $G(A) \subset A^{c}, G(A) \subset$ $G\left(G^{c}(A)\right)$ and $A \subset G(G(A))$.
(3) If H is a necessity operator, then, by Theorem 3.3,

$$
R_{H}=\{(a, a),(a, d),(b, a),(b, b),(c, c),(c, d),(d, c),(d, d)\}
$$

Since R_{H} is reflexive, then $H(A) \subset A$. Since $(b, a) \in R_{H}$ and $(a, d) \in R_{H}$ but $(b, d) \notin R_{H}$, then R_{H} is not transitive. Thus, $\{a, d\}=H(\{a, b, d\}) \not \subset$ $H(H(\{a, b, d\}))=\{d\}$. Since R_{H} is not symmetric,

$$
\{c\} \not \subset H\left(H^{\partial}(\{c\})\right)=H(\{b, c\})=H(\{a, b, c\}) \cap H(\{b, c, d\})=\{b\} .
$$

(4) If H is a co-sufficiency operator, then by Theorem 3.7,

$$
R_{H}=\{(a, b),(a, c),(b, c),(b, d),(c, a),(c, b),(d, a),(d, b)\} .
$$

Since R_{H} is not reflexive, we have $\{a\}^{c} \not \subset H\left(\{a\}^{c}\right)$. Since R_{H} is not transitive,

$$
\{a, c, d\}=H\left(H^{c}\left(\{a\}^{c}\right)\right) \not \subset H\left(\{a\}^{c}\right)=\{b, c\} .
$$

Since R_{H} is not symmetric, $H\left(H\left(\{a\}^{c}\right)\right)=H(H(\{b, c, d\}))=H(\{b, c\})=$ $H(\{a, b, c\} \cap\{b, c d\}=H(\{a, b, c\}) \cup H(\{b, c d\})=\{a, b, c\}$. Thus

$$
\{a, b, c\}=H\left(H\left(\{a\}^{c}\right)\right) \not \subset\{a\}^{c}=\{b, c, d\} .
$$

References

[1] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation 10 (6) (2000) 823-845.
[2] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log. 41 (2002) 83-90.
[3] Ivo. Düntsch, Ewa Orlowska, Boolean algebras arising from information systems, Annals of Pure and Applied Logic 127 (2004) 77-98.
[4] J. Järvinen, M. Kondo, J. Kortelainen, Logics from Galois connections, Int. J. Approx. Reasoning 49 (2008) 595-606.
[5] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht (1998).
[6] Y.C. Kim, Modal, necesserty, sufficiency and co-sufficiency operators, J. Korean (to appear).
[7] Ewa Orlowska, I. Rewitzky Algebras for Galois-style connections and their discrete duality, Fuzzy Sets and Systems 161 (2010) 1325-1342.
[8] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11(1982) 341-356.
[9] Y.Y. Yao, Two Views of the Theory of Rough Swts in Finite Universes, Int. J. Approx. Reasoning 15 (1996) 291-317.

Received: July, 2012

