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1 Introduction

Pawlak [8] introduced rough set theory to generalize the classical set the-
ory. Rough approximations are defined by a partition of the universe which is
corresponding to the equivalence relation about information. An information
consists of (X, A) where X is a set of objects and A is a set of attributes, a map
a:X — P(A,) where A, is the value set of the attribute a. Recently, inten-
sional modal-like logics with the propositional operators induced by relations
are important mathematical tools for data analysis and knowledge processing
[1-9]. In [6], we investigated the properties of modal, necessity, sufficiency and
co-sufficiency operators.

In this paper, we show that reflexive, transitive, symmetric relations can
be induced by modal, necessity, sufficiency and co-sufficiency operators. We
give their examples.

2 Preliminaries

Definition 2.1 [3,6] Let P(X), P(Y) be the families of subsets on X and
Y, respectively. Then a map F : P(X ) P(Y) is called
(1) modal operator if F(U;er Ai) = User F(4:), F(0) = 0.
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(2) necessity operator if F(Ner Ai) = Nier F(A;), F(X)

(3) sufficiency operator if F(U;er Ai) = Mier F(A:), F(0) =

(4) co-sufficiency operator if F(Nier Ai) = User FI(A;), F(X) = 0.

(5) a dual operator F? is defined by F?(A) = F(A°)¢. Moreover, its com-
plementary counterpart F¢(A) = (F(A))¢ and F*(A) = F(A°).

Y.
Y.

Let R € LX*X be a relation. R is called:

(1) reflexive if (z,z) € R for all z € X.

(2) symmetric if (xz,y) € R implies (y,z) € R for all z,y € X.

(3) transitive if (x,y) € R and (y, z) € R implies (z, 2) € R for z,y,z € X.

Definition 2.2 [3,7] Let R C P(X xY) be a relation. For each A € P(X),
we define operations (y, z) € R iff (z,y) € Rand [R], [[R]], (R), ((R)), [R]*, (R)* :
P(X) — P(Y) as follows:

[RI(A) = {y e Y [ (vo)((z,y) € R >z € A)},

[R)(A) ={yeY |(Vz e X)(x € A= (x,y) € R)}

(R)(A) ={y €Y | Bz € X)((z,y) € R, z € A)}

(B)(A)={y €Y | (E@reX)((x,y) € R, x € A%)}.

[RI*(A) ={y €YV | (V& € X)((z,y) € R — x € A°)}

(Ry*(A) ={y €Y | 3z € X)((z,y) € R, x € A°)}.
)

Lemma 2.3 [3,6] (1) A map F : P(X
F?: P(X)— P(Y) is a necessity operator.

(2) A map F : P(X) — P(Y) is a sufficiency operator iff F? : P(X) —
P(Y) is a co-sufficiency operator operator.

(3) A map F : P(X) — P(Y) is a modal operator iff F¢: P(X) — P(Y)
s a sufficient operator.

(4) A map F: P(X) — P(Y) is a co-sufficiency operator iff F¢: P(X) —
P(Y) is a necessity operator operator.

(5) A map F : P(X) — P(Y) is a sufficiency operator iff ['* : P(X) —
P(Y) is a necessity operator operator.

(6) A map F : P(X) — P(Y) is a modal operator iff F* : P(X) — P(Y)
s a co-sufficiency operator.

— P(Y) is a modal operator iff

Theorem 2.4 [3,6] Let R C P(X xY) be a relation.

(1) (R) is a modal operator and [R] is a necessity operator with (R)(A) =
([R](A))¢ = [R]?(A), for each A € P(X)

(2) If F : P(X) — P(Y) is a modal operator on P(X), there exists a
unique relation Rp C P(X x Y) such that (Rp) = F and [Rp] = F° where
(z,y) € Rr iffy € F({z}).

(3) Ry = R.
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Theorem 2.5 [6] Let R € P(X xY) be a relation.

(1) [R]* is a sufficiency operator and (R)* is a co-sufficiency operator with
[R]*(A) = ((R)"(A%))°.

(2) If F: P(X) — P(Y) is a sufficiency operator on P(X), there exists a
unique relation Rp € P(X x Y) such that [Rp]* = F and (Rp)* = F? where
(z,y) € Rr iffy € F({z})°.

(3) Rig = R.

Theorem 2.6 [6] Let R C P(X xY) be a relation.

(1) If F: P(X) — P(Y) is a necessity operator on P(X), there erists a
unique relation Rp € P(X x Y) such that [Rp] = F and (Rp) = F? where
(7,y) € Rp iffy € F({z})".

(2) Rip = R.

Theorem 2.7 [6] Let R € P(X xY) be a relation.

(1) If F: P(X) — P(Y) is a co-sufficiency operator on P(X), there exists
a unique relation Rp € P(X xY) such that (Rp)* = F and [Rp]* = F? where
(7,y) € Rp iff y € F({z}°).

(2) Rippy = R.

3 Relations and modal operators

Theorem 3.1 Let F': P(X) — P(X) be a modal operator. Define (x,y) €
Rr iff y € F({x}). Then we have the following properties:
(1) Rp is reflexive iff A C F(A) for all A € P(X) iff {z} C F({z}) for all
reX.
(2) Ry is transitive iff F(F(A)) C F(A) forall A € P(X) iff F(F({z})) C
F{{x}) forallz € X.
(3) Rp is symmetric iff F(F?(A)) C A for all A € P(X) iff F(F?({z}°)) C
{z}¢ forallz € X.

Proof. (1) First, we will show that A C F(A) for all A € P(X) iff {z} C
F({z}) for all x € X. Conversely, since {z} C F({z}) and A = Uyea{z}, we

have
A= Ufa} c U F({a}) = F(U{a}) = F(A).
z€A z€A z€A
Second, Rp is reflexive iff A C F(A) for all A € P(X) iff {x} C F({z}) for
all z € X.
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Let Rp be reflexive. Since (z,z) € Rp, then {z} C F({z}). Conversely,
since {x} C F({z}). Hence (z,x) € Rp.

(2) First, F(F(A)) C F(A) for all A € P(X) iff F(F({z})) C F({z}) for
all z € X from:

F(F(A)) = F(F(Useafz})) = F(Usea F({2})) = Usea F(F({2})
C Usea F({z}) = F(Usea{r}) = F(A).

Second, we will show that Rp is transitive iff F'(F({z})) C F({z}) for all
reX.

Let Rp be transitive. Since (Jy € X)((z,y) € Rr & (y,2) € Rp) iff
(Jy € X)(y € F{z}) & z € F({y})) implies (z,2) € Rp iff z € F({z}),
respectively and F'({r}) = Uyepay{y}, we have:

z€ F(F({z})) iff 2 € F(Uyerqaniv}) = Uyerqap F{y})

iff (Fy)(y € F({z}) & z € F({y}))
implies z € F({z}).

) Conversely, since F'(F({z})) C F({z}) and F({z}) = Uyep.piy}, we

Gu)((w,y) € B & (y,2) € Rp) it Fy)(y € F({z}) & z € F({y}))
iff z € F(F({x})) implies z € F({x}).

Thus, (z,z) € Rp.

(3) First, if Rp is symmetric, then F(F?(A)) C A for all A € P(X).

Let Ry be symmetric. Since A = (,c4c{2}¢ and F? is a necessity operator,
then FO(A) = FO((,esefe}’) = Moene FP({2}). and @ € F({y}) iff y €
F({z}), we have:

F(FP(A)=rC U {whH= U F{yh.

yEFD(A) yeFI(A)

z € P(FO(A)) iff (Fy)(y € FO(A) & = € F({y})
iff (Jy) (Ve € X)(z € A° = y € FO({2}9)) &y € F({z}))
implies (Jy)((z € A° — y € FO({2}°) &y € F({z})
implies (Jy)((y € FP({z}°)° = 2€ A) &y € F({z})
%mpi%es (Hy)j(él(y € F({z}) = ze€A) &yec F({z})
mplies z € A.

Second, if F(F?(A)) C Aforall A € P(X),put A = {x}°, then F(F?({x}¢)) C
{z}¢ for all z € X.

Finally, if F(F?({z}¢)) C {x}¢ for all z € X, then Ry is symmetric from
the following statements:
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Since F(F?({x}°)) C {2} and FO({x}°) = Uyero((s}{y}, we have

F(F({2}9) = Uyeroquye) F{y}) Cc{i’f}c,
{z} - (UyEFa({w}C) F({y})) = Nyero(zye) F{y})"
z€{z}  implies (Vy)(y € F7({z}) = 2z € F({y})"),

z € {x} implies (Vy)(z € F({y}) — vy € F?({z}°)°).

Thus, (x,y) € Rr — (y,z) € Rp. Similarly, (y,z) € Rp — (z,y) € Rr.

Example 3.2 Let R be a relation. Since (R) : P(X) — P(X) is a modal
operator, we define (x,y) € R iff y € (R)({z}). Since Rz = R and
(R)? = [R] from Theorem 2.4, we obtain:

(1) R is reflexive iff A C (R)(A) for all A € P(X) iff {z} C (R)({z}) for
all z € X.

(2) Ris transitive iff (R)((R)(A)) C (R)(A)forall A € P(X) (R)((R)({z})) C
(RY({x}) for all z € X.

(3) Ris symmetric iff (R)([R](A)) C Aforall A € P(X)iff (R)([R]({z}°)) C
{z}¢ for all z € X.

Theorem 3.3 Let F' : P(X) — P(X) be a necessity operator. Define
(x,y) € Rr iff y € F({x}°)¢. Then we have the following properties:

(1) Rp is reflexive iff F(A) C A for all A € P(X) iff F({z}°) C {x}¢ for
all x € X.

(2) Rp is transitive iff F(A) C F(F(A)) for all A € P(X) iff F({z}°) C
F(F({z}9)) foralz e X.

(3) Rp is symmetric iff A C F(F9(A)) for all A € P(X) iff {x} C
F(F?({x})) for allz € X.

Proof. (1) First, we show that if Rp is reflexive, then F(A) C A for all
A € P(X). Let Rp be reflexive. Then {z} C F({z})¢. Since A = Nyeac{x}*
and F({z}) C {z}",

F(A) =F(({z})= 1 F{a}) c N {z} = A
TEAC xE€AC TCAC
Second, if F'(A) C Aforall A € P(X), put A = {z}¢, then F({z}°) C {x}°
for all x € X.
Finally, since {z} C F({z}°)¢, then (z,x) € Rp.
(2) First, we easily show that F(A) C F(F(A)) for all A € P(X) iff
F{z}°) Cc F(F({z})) for all x € X from:

F(F(A)) = F(F(Meac{z}))) = F(Npeac F{2}%)) = Nueae FF{z}))
D Meeae F({}) = F(Myeac{}) = F(A).
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Second, we show that Rp is transitive iff F'({x}¢) C F(F({z}¢)) for all
x € X. Let Rp be transitive. Since (Jy € X)((z,y) € Rr & (y,2) € Rp) iff
(Fy € X)(y € F({z}9)° & z € F({y})°) implies (z, z) € Rp iff z € F({z}°)¢,
respectively and F'({7}°) = Nyepqaye)cly e, we have:

By e X)(y € F({z}) &z € F({y})) = 2 € F({z})".

z€ F({z}) imlies ((Jy € X)(y € F({z}*)° & = € F({y})))
iff (Vy € X)(y € F({z})° — 2z € F({y}))
iff 2 € F((¥y € X)(y € F({z}°)° = {y}°)
iff z € F(F({z}%)).
Conversely, since F'({x}°) C F(F({x}°)) and F({2}°) = Nyepqaye) 1y}

we have

F({z}) c PF(F{«}) =F( ] {v})= [ F{y})

yeF({z}°) yeF({z}o)°

Then

(V2 € X)(z € F({}) = 2 € Nyerqayr F{}))
iff - (V2e X)(ze F({z}*) = (y € F({a:} ) =z € F({y}?))
iff - (V2 € X)((3y € X)(y € F({2}9)° & z € F({y}*)*) = 2 € F({z}*)).

Thus,
(Jy € X)((z,y) € Rr & (y,2) € Rp) — (2,2) € Rp.

(3) First, we show that if Rp is symmetric, then A C F(F?(A)) for all
A € P(X). Let Rp be symmetric. Since A = Uyea{r} and F? is a modal
operator, then FO(A) = FO(Uyea{r}) = Upen F?({2}) and x € F({y}°) iff
y € F({z}°)°, we have:

F(FPA)=F( ) )= N F{y.

yeF9(A)e yeFI(A)e
v € F(FO(A)) iff (3y € X)(y € F(A)F — x € F({y})),
x € F(FO(A)) iff By € X)(z € F({y})" —y € F(A)),
z € F(FO(A)) iff Qye X)(ze Fy}) = Bz e X)(z € A&y e FO({z})).
Since -z € A = ((Fy € X)(z € F({y}?)* > Gz € X)z € A& y €
Fo({z}))) iff 2 € A — x € F(FO(A)), then A C F(F°(A)).

Second, if A C F(F?(A)) for all A € P(X), put A = {z}, then {2} C
F(F?({x})) for all z € X.
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Finally, we show that if {z} C F(F?({z})) for all z € X, then Rp
is symmetric from the following statements. Since {z} C F(F?({x})) and

Fo({x}) = Nyero((z)-1y}¢, we have

F(F({ah)) =F( (1 {y})=

N Py
yeFd({x})e yeF9({x})°
- (Vz € X)(z € {x} = 2z € F(F?({z})))
iff (V2 e X)(z € {2} = (Fy)(y € F'({z})* — 2z € F{y}))
iff = ((3y)(y € FP({z})* = = € F({y}*))
iff Fye F({z}°) —z¢e F({y}°).

Hence (z,y) € Rp implies (y,x) € Rp. Similarly, (y,z) € Rp implies (x,y) &
Rp. Thus Rp is a symmetric relation.

Example 3.4 Let R be a relation. Since [R] : P(X) — P(X) is a necessity
operator, we define (z,y) € Rip iff y € [R]({x}°)°. Since Rjp = R and
[R]? = (R) from Theorem 2.6, we obtain:

(1) R is reflexive iff [R](A) C A for all A € P(X) iff [R]({z}¢) C {x}° for
all z € X.

(2) R is transitive iff [R](A) C [R]([R](A)) for all A € P(X) iff [R]({z}°) C
[R)([R]({z}°)) for all z € X.

(3) R is symmetric iff A C [R]((R)(A)) for all A € P(X) iff {} C
[R]((R)({z})) for all x € X.

Theorem 3.5 Let F' : P(X) — P(X) be a sufficiency operator. Define
(x,y) € Rp iff y € F({z})°. Then we have the following properties:

(1) Rp is reflexive iff F(A) C A° for all A € P(X) iff F({z}) C {z}° for
allz € X.

(2) Rp is transitive iff F(A) C F(F°(A)) for all A € P(X) iff F({z}) C
F(Fe({x})) for alz € X.

(3) Rp is symmetric iff A C F(F(A)) for all A € P(X) iff {x} C
F(F({x})) for allx € X.

Proof. (1) We easily proved Rp is reflexive iff F'({z}) C {z}°forallz € X.
F(A) Cc Acfor all A € P(X) iff F({z}) C {z}¢ for all z € X from the
following statements: For A = U,ca{z}, we have

F(A) = F(Upea{z}) = Nuea F({z})
C Npea{r}c = A
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(2) Since F({7}°) = Uyer a1y} and F¢ is a modal operator, we have:

F(F(A)) = F(F(Upea{r})) = F(Uzea F°({2})) = Npea F(F({z})
D Meea F({z}) = F(Usea{z}) = F(A).
Hence we easily prove that F(A) C F(F¢(A)) for all A € P(X) iff F({z}) C
F(F¢({z})) for all z € X.
Let Rp be transitive. Since (Jy € X)((z,y) € Rr & (y,2) € Rp) ift
(Fy € X)gy EhF({:c})c & z € F({y})°) implies (x,z) € Rp iff z € F({z})¢,
respectively, then

Fze F{y}) = (By e X)(y € F({a}) &z € F({y})))

Fze F({y}) = (vy € X)(y € F({z})" = 2 € F({y})),
F({z}) C Q})CF({?J}) = I L(g}).{y}) = F(F({z})).

) Conversely, let F(F({z})) D F({z}) and F°({z}) = Uyepeup iy}, we

C
Y

F(Fe({z})) = F(Uyereaniv}) = Nyerean FHY}),
z € F(Fe({x})) iff (Vy € X)(y € F°({z}) — z € F({y})).

Since F'(F°({z})) D F({z}), we have

F(Ee({z}))" C F({z})? .
iff (Nyex(y € P({z}) = z € F({y}))) implies z € F({x})"
iff (Jy)(y € F°({z}) & z € F°({y})) implies z € F({z})".

Thus, (z,y) € Rr & (y,2) € Rp implies (z, 2) € Rp.

(3) First, we show that if Rp is symmetric, then A C F(F(A)) for all
Ae P(X).

Let Rp be symmetric. Since F(A) = Uzepair} and z € F({x})° iff
x € F({z})°, then

F(F(A) = FUerm{z}) = Neera F({z}),
z € F(F(A)) iff (Va)(z € F(A) — z € F({z})),
ze F(F(A) it (Vo)(Vy)ly € A=z € F({y})) = z € F({z})).
Since - (Vx)((z € A >z € F({z})) — z € F({z})) —» (Vo)((Vy)(y € A —
x € F({y})) — z€ F({z})) and z € F({z}) iff (z,2) € Rp iff (z,2) & Rp iff
x € F({z}), then

F(Va)(ze A& (€ A—x e F({z})) =z € F({z})),
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F(V2)(z € A= 2 € F({z}) = z€ F({z})) » z € F(F(A)).

By Modus Ponens, F (Vz)(z € A — z € F(F(A))). Hence A C F(F(A)).
Second, if A C F(F(A)) for all A € P(X), put A = {z}, then {2} C
F(F({z})) for all z € X.
Finally, we show that if {z} C F(F({z})) for all z € X, then Rp is sym-
metric from the following statements. Since F(F({z})) D {z} and F({z}) =

Uyerap 1y}, we have

F(F({r})) = F(Uyerqaniy}) = Uyerqah FHY}),
(V2 e X)(z€{z} = (Fy)(ye F{z}) = 2 € F({y})),

F(VzeX)((ze{z} &ye F({z})) = 2z € F({y})).

Hence y € F({z}) -z € F({y}) if z € F({y})* = y € F({z})° iff (y,z) €
RF — (a:,y) - RF

Example 3.6 Let R be a relation. Since [R]* : P(X) — P(X) is a suffi-
ciency operator, we define (x,y) € Rp- iff y € [R]*({x})°. Since Rip- = R
and ([R]*)? = (R)* from Theorem 2.5, we obtain:

(1) R is reflexive iff [R]*(A) C A° for all A € P(X) iff [R]*({z}) C {z}* for
all z € X.

(2) R is transitive iff [R]*(A) C [R]*(([R]*)°(A)) for all A € P(X) iff
[RI*({«}) < [B]*(([R]")*({«})) for all z € X.

(3) R is symmetric iff A C [R]*([R]*(A)) for all A € P(X) iff {z} C
[RI*([R]*({z})) for all x € X.

Theorem 3.7 Let F': P(X) — P(X) be a co-sufficiency operator. Define
(x,y) € Rr iff y € F({x}¢). Then we have the following properties:

(1) Rp is reflexive iff A C F(A) for all A € P(X) iff {z} C F({z}°) for
all zv € X.

(2) Rp is transitive iff F(F°(A)) C F(A) forall A € P(X) iff F(F¢({z}¢)) C
F{x}°) forallz € X.

(3) Rp is symmetric iff F(F(A)) C A for all A € P(X) iff F(F({x}°)) C
{z}¢ for allx € X.

Proof. (1) Let Rp be reflexive. Since A = N, cac-{z}° and {z} C F({z}°),
F(A) = F(oeaAn}) = Upen FU}) 5 Upenc{r} = A°
. Put A = {z}¢. Then {z} C F({z}°). Let {z} C F({z}°). Then (z,z) €
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(2) First, we show that F(F(A)) C F(A) forall A € P(X)iff F(Fe({z}%)) C
F({z}°) for all x € X. Since F* is a necessity operator, we have:

F(Fe(A)) = F(F(Nweac{2}))) = F(Moeac F°({2})) = Usene F(F({2}°))
C Useae F({z}) = F(Nsenc{r}?) = F(A).

Conversely, put A = {z}¢. It is trivial.

Second, Rp is transitive iff F(F°({x}¢)) C F({z}°) for all x € X. Let
Rp be transitive. Since (Jy € X)((z,y) € Rr & (y,2) € Rp) iff (Jy €
X)(y € F({z}°) & z € F({y}°)) implies (z,z) € Rp iff z € F({z}°) and
Fe({z}) = Nyer(tzy {y}*, we have:

F((Fe({z}) = F(Nyerqaroiv}®) = Uyerore F Y1)
z € F((Fe({z}9)) iff Qy)(y € F({z}) & 2 € F({y}°)
implies z € F({z}°).

Hence F((F°({z}°)) C F({z}°).
Conversely, since F(F°({z}¢)) C F({x}°) and F°({x}°) = Nyepa3) 1y}

we have
F({a}) > FF({2}) = F(Nyerao{v}©)
= Uyerare) F{y}°).

Thus 2z € Uyep(qate) F({y}°) implies z € F({z}¢). Hence (v,y) € Rr & (y,2) €
RF — (ZL’, Z) € RF.

(3) First, we will show that if Rp is symmetric, then F(F(A)) C A for
all A € P(X). Let Rp be symmetric. Since A = N,cqc{z}¢ and F° is a
necessity operator, then F(A) = Nyeae F({7}°), F(A) = Nyepa)-12}® and
rxe F({y}o)iff y € F({:B}c) we have:

F(F(A ﬂ {y} U F{y})
yeF yeF°(A)
ze F(F(A) iff 2 € Uyepea ({y} )
iff (3y)(y € FC( ) &ze F({y})
iff (3y)((Ve € X)(x € A° =y € F*({z}))) &y € F({z}))
iff (Fy) (Ve € X)(y € F({z}°) =z € A) &y e F({z}))
implies z € A.
Second, if F(F(A)) C Aforall A € P(X), put A = {z}¢, then F(F({z})) C
{z}¢ for all z € X.
Finally, we will show if F(F({z}¢)) C {z}° for all x € X, then Rp is
symmetric. Since F(F'({x}°)) C {x}° and F({z}) = Nyepea})- {y} we have

FE({2}9) = F(Nyereqape{y}) = Uyereape F({y19) C {z}*.

Thus z € {z} = (Vy € X)(y € F°({z}°) — z € F°({y})°). Put x = z, then
Fxe F{y}) — y € F({z}°). Similarly, Fy € F({z}°) — = € F({y}°).
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Example 3.8 Let R be a relation. Since (R)* : P(X) — P(X) is a suffi-
ciency operator, we define (z,y) € Rip~ iff y € (R)*({x})°. Since Rpy = R
and ((R)*)? = [R]* from Theorem 2.7, we obtain:

(1) R is reflexive iff A° C (R)*(A) for all A € P(X) iff {z} C (R)*({z}°)
for all x € X.

(2) Ris transitive iff (R)*((R)(A)) C (R)*(A) forall A € P(X)iff (R)*((R)({z}¢)) C
(RY*({x}°) for all z € X.

(3) Ris symmetric iff (R)*((R)*(A)) C Aforall A € P(X)iff (R)*((R)*({z}°)) C
{z}¢ for all z € X.

Example 3.9 Let X = {a,b,¢,d} be a set. Define F,G : P(X) — P(X)
as

F({a}) = {a, b}, F({b}) = {b}, F({c}) = {a, ¢}, F({d}) = {a, d}
G({a}) ={c,d},G({b}) = {c,d}, G({c}) = {a, b}, G({d}) = {a, b}
H{{b,c,d}) ={b,c}, H{a,c,d}) ={c,d}, H({a,b,d}) = {a,d}, H({a,b,c}) = {a, b}
(1) If F'is a modal operator, then, by Theorem 3.1,
Re = {(a), (0.0) (01), (c,0), (650), (0, 0), (0, )}

Since Rp is reflexive, then A C F'(A). Since (c¢,a) € Rp and (a,b) € Rp but
(¢,b) € Rp, then Rp is not transitive. Thus, {a,b,c} = F(F({c})) ¢ F({c}) =
{a, c}. Since Rp is not symmetric,

{a,b,¢} = F(FP({d}*)) ¢ {d}* = {b,c}.
(2) If G is a sufficiency operator, then, by Theorem 3.5,
Re = {(a, a),(a,b),(b,a), (b,b),(c,b), (c,c),(d, ), (d,d)}.

Since R is reflexive, transitive and symmetric, then G(A) C A°, G(A) C
G(G°(A)) and A C G(G(A)).
(3) If H is a necessity operator, then, by Theorem 3.3,

Ry = {(a,a), (a,d), (b, a), (b,b), (c,c), (c,d), (d, ), (d,d)}.
Since Ry is reflexive, then H(A) C A. Since (b,a) € Ry and (a,d) € Ry
but (b,d) € Ry, then Ry is not transitive. Thus, {a,d} = H({a,b,d}) ¢
H(H({a,b,d})) = {d}. Since Ry is not symmetric,

{c} ¢ H(H({c})) = H({b,c}) = H({a,b,c}) N H({b,c,d}) = {b}.
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(4) If H is a co-sufficiency operator, then by Theorem 3.7,
Ry = {(a,b), (a,c), (b, c), (b,d), (c,a),(c,b),(d,a),(d,b)}.
Since Ry is not reflexive, we have {a}¢ ¢ H({a}°). Since Ry is not transitive,
{a,¢,d} = H(H({a}%)) & H({a}*) = {b,c}.

Since Ry is not symmetric, H(H ({a}%)) = H(H({b,c,d})) = H({b,c}) =
H({a,b,c} N{b,cd} = H({a,b,c}) U H({b,cd}) = {a,b,c}. Thus

{a,b,¢} = H(H({a}*)) £ {a}® = {b,c,d}.
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