Mathematica Aeterna, Vol. 2, 2012, no. 6, 497 - 508

Relations and modal operators

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

We show that reflexive, transitive, symmetric relations can be induced by modal, necessity, sufficiency and co-sufficiency operators. We give their examples.

Mathematics Subject Classification: 03E72, 06A15,06B30

Keywords: Modal, necessity, sufficiency and co-sufficiency operators

1 Introduction

Pawlak [8] introduced rough set theory to generalize the classical set theory. Rough approximations are defined by a partition of the universe which is corresponding to the equivalence relation about information. An information consists of (X, A) where X is a set of objects and A is a set of attributes, a map $a: X \to P(A_a)$ where A_a is the value set of the attribute a. Recently, intensional modal-like logics with the propositional operators induced by relations are important mathematical tools for data analysis and knowledge processing [1-9]. In [6], we investigated the properties of modal, necessity, sufficiency and co-sufficiency operators.

In this paper, we show that reflexive, transitive, symmetric relations can be induced by modal, necessity, sufficiency and co-sufficiency operators. We give their examples.

2 Preliminaries

Definition 2.1 [3,6] Let P(X), P(Y) be the families of subsets on X and Y, respectively. Then a map $F : P(X) \to P(Y)$ is called

(1) modal operator if $F(\bigcup_{i\in\Gamma} A_i) = \bigcup_{i\in\Gamma} F(A_i), \ F(\emptyset) = \emptyset$.

- (2) necessity operator if $F(\bigcap_{i \in \Gamma} A_i) = \bigcap_{i \in \Gamma} F(A_i), F(X) = Y$.
- (3) sufficiency operator if $F(\bigcup_{i\in\Gamma} A_i) = \bigcap_{i\in\Gamma} F(A_i), \ F(\emptyset) = Y.$
- (4) co-sufficiency operator if $F(\bigcap_{i\in\Gamma} A_i) = \bigcup_{i\in\Gamma} F(A_i), \ F(X) = \emptyset$.

(5) a dual operator F^{∂} is defined by $F^{\partial}(A) = F(A^c)^c$. Moreover, its complementary counterpart $F^c(A) = (F(A))^c$ and $F^*(A) = F(A^c)$.

Let $R \in L^{X \times X}$ be a relation. R is called:

- (1) reflexive if $(x, x) \in R$ for all $x \in X$.
- (2) symmetric if $(x, y) \in R$ implies $(y, x) \in R$ for all $x, y \in X$.
- (3) transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$ for $x, y, z \in X$.

Definition 2.2 [3,7] Let $R \subset P(X \times Y)$ be a relation. For each $A \in P(X)$, we define operations $(y, x) \in R^{-1}$ iff $(x, y) \in R$ and $[R], [[R]], \langle R \rangle, \langle \langle R \rangle \rangle, [R]^*, \langle R \rangle^* : P(X) \to P(Y)$ as follows:

$$[R](A) = \{y \in Y \mid (\forall x)((x, y) \in R \to x \in A)\},$$

$$[[R]](A) = \{y \in Y \mid (\forall x \in X)(x \in A \to (x, y) \in R)\}$$

$$\langle R \rangle (A) = \{y \in Y \mid (\exists x \in X)((x, y) \in R, x \in A)\}$$

$$\langle \langle R \rangle \rangle (A) = \{y \in Y \mid (\exists x \in X)((x, y) \in R^c, x \in A^c)\}.$$

$$[R]^*(A) = \{y \in Y \mid (\forall x \in X)((x, y) \in R \to x \in A^c)\}$$

$$\langle R \rangle^*(A) = \{y \in Y \mid (\exists x \in X)((x, y) \in R, x \in A^c)\}.$$

Lemma 2.3 [3,6] (1) A map $F : P(X) \to P(Y)$ is a modal operator iff $F^{\partial} : P(X) \to P(Y)$ is a necessity operator.

(2) A map $F : P(X) \to P(Y)$ is a sufficiency operator iff $F^{\partial} : P(X) \to P(Y)$ is a co-sufficiency operator operator.

(3) A map $F : P(X) \to P(Y)$ is a modal operator iff $F^c : P(X) \to P(Y)$ is a sufficient operator.

(4) A map $F : P(X) \to P(Y)$ is a co-sufficiency operator iff $F^c : P(X) \to P(Y)$ is a necessity operator operator.

(5) A map $F : P(X) \to P(Y)$ is a sufficiency operator iff $F^* : P(X) \to P(Y)$ is a necessity operator operator.

(6) A map $F : P(X) \to P(Y)$ is a modal operator iff $F^* : P(X) \to P(Y)$ is a co-sufficiency operator.

Theorem 2.4 [3,6] Let $R \subset P(X \times Y)$ be a relation.

(1) $\langle R \rangle$ is a modal operator and [R] is a necessity operator with $\langle R \rangle (A) = ([R](A^c))^c = [R]^{\partial}(A)$, for each $A \in P(X)$

(2) If $F : P(X) \to P(Y)$ is a modal operator on P(X), there exists a unique relation $R_F \subset P(X \times Y)$ such that $\langle R_F \rangle = F$ and $[R_F] = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\})$.

(3) $R_{\langle R \rangle} = R.$

Theorem 2.5 [6] Let $R \in P(X \times Y)$ be a relation.

(1) $[R]^*$ is a sufficiency operator and $\langle R \rangle^*$ is a co-sufficiency operator with $[R]^*(A) = (\langle R \rangle^*(A^c))^c$.

(2) If $F : P(X) \to P(Y)$ is a sufficiency operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $[R_F]^* = F$ and $\langle R_F \rangle^* = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\})^c$.

(3) $R_{[R]^*} = R$.

Theorem 2.6 [6] Let $R \subset P(X \times Y)$ be a relation.

(1) If $F : P(X) \to P(Y)$ is a necessity operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $[R_F] = F$ and $\langle R_F \rangle = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\}^c)^c$. (2) $R_{[R]} = R$.

Theorem 2.7 [6] Let $R \in P(X \times Y)$ be a relation.

(1) If $F : P(X) \to P(Y)$ is a co-sufficiency operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $\langle R_F \rangle^* = F$ and $[R_F]^* = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\}^c)$. (2) $R_{\langle R_F \rangle^*} = R$.

3 Relations and modal operators

Theorem 3.1 Let $F : P(X) \to P(X)$ be a modal operator. Define $(x, y) \in R_F$ iff $y \in F(\{x\})$. Then we have the following properties:

(1) R_F is reflexive iff $A \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F(\{x\})$ for all $x \in X$.

(2) R_F is transitive iff $F(F(A)) \subset F(A)$ for all $A \in P(X)$ iff $F(F(\{x\})) \subset F(\{x\})$ for all $x \in X$.

(3) R_F is symmetric iff $F(F^{\partial}(A)) \subset A$ for all $A \in P(X)$ iff $F(F^{\partial}(\{x\}^c)) \subset \{x\}^c$ for all $x \in X$.

Proof. (1) First, we will show that $A \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F(\{x\})$ for all $x \in X$. Conversely, since $\{x\} \subset F(\{x\})$ and $A = \bigcup_{x \in A} \{x\}$, we have

$$A = \bigcup_{x \in A} \{x\} \subset \bigcup_{x \in A} F(\{x\}) = F(\bigcup_{x \in A} \{x\}) = F(A).$$

Second, R_F is reflexive iff $A \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F(\{x\})$ for all $x \in X$.

Let R_F be reflexive. Since $(x, x) \in R_F$, then $\{x\} \subset F(\{x\})$. Conversely, since $\{x\} \subset F(\{x\})$. Hence $(x, x) \in R_F$.

(2) First, $F(F(A)) \subset F(A)$ for all $A \in P(X)$ iff $F(F(\{x\})) \subset F(\{x\})$ for all $x \in X$ from:

$$F(F(A)) = F(F(\bigcup_{x \in A} \{x\})) = F(\bigcup_{x \in A} F(\{x\})) = \bigcup_{x \in A} F(F(\{x\})) = \bigcup_{x \in A} F(\{x\}) = F(\bigcup_{x \in A} \{x\}) = F(A).$$

Second, we will show that R_F is transitive iff $F(F(\{x\})) \subset F(\{x\})$ for all $x \in X$.

Let R_F be transitive. Since $(\exists y \in X)((x, y) \in R_F \& (y, z) \in R_F)$ iff $(\exists y \in X)(y \in F(\{x\}) \& z \in F(\{y\}))$ implies $(x, z) \in R_F$ iff $z \in F(\{x\})$, respectively and $F(\{x\}) = \bigcup_{y \in F(\{x\})} \{y\}$, we have:

$$z \in F(F(\{x\})) \quad \text{iff } z \in F(\bigcup_{y \in F(\{x\})} \{y\}) = \bigcup_{y \in F(\{x\})} F(\{y\}) \\ \text{iff } (\exists y)(y \in F(\{x\}) \& z \in F(\{y\})) \\ \text{implies } z \in F(\{x\}).$$

Conversely, since $F(F(\{x\})) \subset F(\{x\})$ and $F(\{x\}) = \bigcup_{y \in F(\{x\})} \{y\}$, we have

$$(\exists y)((x,y) \in R_F \& (y,z) \in R_F) \quad \text{iff } (\exists y)(y \in F(\{x\}) \& z \in F(\{y\})) \\ \text{iff } z \in F(F(\{x\})) \text{ implies } z \in F(\{x\}).$$

Thus, $(x, z) \in R_F$.

(3) First, if R_F is symmetric, then $F(F^{\partial}(A)) \subset A$ for all $A \in P(X)$.

Let R_F be symmetric. Since $A = \bigcap_{x \in A^c} \{x\}^c$ and F^∂ is a necessity operator, then $F^\partial(A) = F^\partial(\bigcap_{x \in A^c} \{x\}^c) = \bigcap_{x \in A^c} F^\partial(\{x\}^c)$. and $x \in F(\{y\})$ iff $y \in F(\{x\})$, we have:

$$F(F^{\partial}(A)) = F(\bigcup_{y \in F^{\partial}(A)} \{y\}) = \bigcup_{y \in F^{\partial}(A)} F(\{y\}),$$

$$\begin{aligned} z \in F(F^{\partial}(A)) & \text{iff } (\exists y)(y \in F^{\partial}(A) \& z \in F(\{y\}) \\ & \text{iff } (\exists y) \Big((\forall x \in X)(x \in A^c \to y \in F^{\partial}(\{x\}^c)) \& y \in F(\{z\}) \Big) \\ & \text{implies } (\exists y)((z \in A^c \to y \in F^{\partial}(\{z\}^c) \& y \in F(\{z\})) \\ & \text{implies } (\exists y)((y \in F^{\partial}(\{z\}^c)^c \to z \in A) \& y \in F(\{z\})) \\ & \text{implies } (\exists y)((y \in F(\{z\}) \to z \in A) \& y \in F(\{z\})) \\ & \text{implies } z \in A. \end{aligned}$$

Second, if $F(F^{\partial}(A)) \subset A$ for all $A \in P(X)$, put $A = \{x\}^c$, then $F(F^{\partial}(\{x\}^c)) \subset \{x\}^c$ for all $x \in X$.

Finally, if $F(F^{\partial}(\{x\}^c)) \subset \{x\}^c$ for all $x \in X$, then R_F is symmetric from the following statements:

Since
$$F(F^{\partial}(\{x\}^c)) \subset \{x\}^c$$
 and $F^{\partial}(\{x\}^c) = \bigcup_{y \in F^{\partial}(\{x\}^c)} \{y\}$, we have

$$\begin{aligned} F(F^{\partial}(\{x\}^c)) &= \bigcup_{y \in F^{\partial}(\{x\}^c)} F(\{y\}) \subset \{x\}^c, \\ \{x\} &\subset \left(\bigcup_{y \in F^{\partial}(\{x\}^c)} F(\{y\})\right)^c = \bigcap_{y \in F^{\partial}(\{x\}^c)} F(\{y\})^c, \\ z \in \{x\} & \text{implies } (\forall y)(y \in F^{\partial}(\{x\}^c) \to z \in F(\{y\})^c), \\ z \in \{x\} & \text{implies } (\forall y)(z \in F(\{y\}) \to y \in F^{\partial}(\{x\}^c)^c). \end{aligned}$$

Thus, $(x, y) \in R_F \to (y, x) \in R_F$. Similarly, $(y, x) \in R_F \to (x, y) \in R_F$.

Example 3.2 Let R be a relation. Since $\langle R \rangle : P(X) \to P(X)$ is a modal operator, we define $(x, y) \in R_{\langle R \rangle}$ iff $y \in \langle R \rangle (\{x\})$. Since $R_{\langle R \rangle} = R$ and $\langle R \rangle^{\partial} = [R]$ from Theorem 2.4, we obtain:

(1) R is reflexive iff $A \subset \langle R \rangle(A)$ for all $A \in P(X)$ iff $\{x\} \subset \langle R \rangle(\{x\})$ for all $x \in X$.

(2) R is transitive iff $\langle R \rangle (\langle R \rangle (A)) \subset \langle R \rangle (A)$ for all $A \in P(X) \langle R \rangle (\langle R \rangle (\{x\})) \subset \langle R \rangle (\{x\})$ for all $x \in X$.

(3) R is symmetric iff $\langle R \rangle([R](A)) \subset A$ for all $A \in P(X)$ iff $\langle R \rangle([R](\{x\}^c)) \subset \{x\}^c$ for all $x \in X$.

Theorem 3.3 Let $F : P(X) \to P(X)$ be a necessity operator. Define $(x, y) \in R_F$ iff $y \in F(\{x\}^c)^c$. Then we have the following properties:

(1) R_F is reflexive iff $F(A) \subset A$ for all $A \in P(X)$ iff $F(\{x\}^c) \subset \{x\}^c$ for all $x \in X$.

(2) R_F is transitive iff $F(A) \subset F(F(A))$ for all $A \in P(X)$ iff $F(\{x\}^c) \subset F(F(\{x\}^c))$ for all $x \in X$.

(3) R_F is symmetric iff $A \subset F(F^{\partial}(A))$ for all $A \in P(X)$ iff $\{x\} \subset F(F^{\partial}(\{x\}))$ for all $x \in X$.

Proof. (1) First, we show that if R_F is reflexive, then $F(A) \subset A$ for all $A \in P(X)$. Let R_F be reflexive. Then $\{x\} \subset F(\{x\}^c)^c$. Since $A = \bigcap_{x \in A^c} \{x\}^c$ and $F(\{x\}^c) \subset \{x\}^c$,

$$F(A) = F(\bigcap_{x \in A^c} \{x\}^c) = \bigcap_{x \in A^c} F(\{x\}^c) \subset \bigcap_{x \in A^c} \{x\}^c = A.$$

Second, if $F(A) \subset A$ for all $A \in P(X)$, put $A = \{x\}^c$, then $F(\{x\}^c) \subset \{x\}^c$ for all $x \in X$.

Finally, since $\{x\} \subset F(\{x\}^c)^c$, then $(x, x) \in R_F$.

(2) First, we easily show that $F(A) \subset F(F(A))$ for all $A \in P(X)$ iff $F(\{x\}^c) \subset F(F(\{x\}^c))$ for all $x \in X$ from:

$$F(F(A)) = F(F(\bigcap_{x \in A^c} \{x\}^c))) = F(\bigcap_{x \in A^c} F(\{x\}^c)) = \bigcap_{x \in A^c} F(F(\{x\}^c)) = \bigcap_{x \in A^c} F(\{x\}^c) = F(\bigcap_{x \in A^c} \{x\}^c) = F(A).$$

Second, we show that R_F is transitive iff $F(\{x\}^c) \subset F(F(\{x\}^c))$ for all $x \in X$. Let R_F be transitive. Since $(\exists y \in X)((x, y) \in R_F \& (y, z) \in R_F)$ iff $(\exists y \in X)(y \in F(\{x\}^c)^c \& z \in F(\{y\}^c)^c)$ implies $(x, z) \in R_F$ iff $z \in F(\{x\}^c)^c$, respectively and $F(\{x\}^c) = \bigcap_{y \in F(\{x\}^c)^c} \{y\}^c$, we have:

$$(\exists y \in X)(y \in F(\{x\}^c)^c \& z \in F(\{y\}^c)^c) \to z \in F(\{x\}^c)^c.$$

$$z \in F(\{x\}^c) \quad \text{imlies} \left((\exists y \in X) (y \in F(\{x\}^c)^c \& z \in F(\{y\}^c)^c) \right)^c \\ \quad \text{iff} \ (\forall y \in X) (y \in F(\{x\}^c)^c \to z \in F(\{y\}^c)) \\ \quad \text{iff} \ z \in F\left((\forall y \in X) (y \in F(\{x\}^c)^c \to \{y\}^c) \\ \quad \text{iff} \ z \in F(F(\{x\}^c)). \end{cases}$$

Conversely, since $F(\{x\}^c)\subset F(F(\{x\}^c))$ and $F(\{x\}^c)=\bigcap_{y\in F(\{x\}^c)^c}\{y\}^c,$ we have

$$F(\{x\}^c) \subset F(F(\{x\}^c)) = F(\bigcap_{y \in F(\{x\}^c)} \{y\}^c) = \bigcap_{y \in F(\{x\}^c)^c} F(\{y\}^c).$$

Then

$$\begin{split} & \vdash (\forall z \in X) \Big(z \in F(\{x\}^c) \to z \in \bigcap_{y \in F(\{x\}^c)^c} F(\{y\}^c) \Big) \\ & \text{iff } \vdash (\forall z \in X) \Big(z \in F(\{x\}^c) \to (y \in F(\{x\}^c)^c \to z \in F(\{y\}^c) \Big) \\ & \text{iff } \vdash (\forall z \in X) \Big((\exists y \in X) (y \in F(\{x\}^c)^c \& z \in F(\{y\}^c)^c) \to z \in F(\{x\}^c)^c \Big). \end{split}$$

Thus,

$$(\exists y \in X)((x,y) \in R_F \& (y,z) \in R_F) \to (x,z) \in R_F.$$

(3) First, we show that if R_F is symmetric, then $A \subset F(F^{\partial}(A))$ for all $A \in P(X)$. Let R_F be symmetric. Since $A = \bigcup_{x \in A} \{x\}$ and F^{∂} is a modal operator, then $F^{\partial}(A) = F^{\partial}(\bigcup_{x \in A} \{x\}) = \bigcup_{x \in A} F^{\partial}(\{x\})$ and $x \in F(\{y\}^c)^c$ iff $y \in F(\{x\}^c)^c$, we have:

$$F(F^{\partial}(A)) = F(\bigcap_{y \in F^{\partial}(A)^c} \{y\}^c)) = \bigcap_{y \in F^{\partial}(A)^c} F(\{y\}^c).$$

$$\begin{aligned} x &\in F(F^{\partial}(A)) & \text{iff } (\exists y \in X)(y \in F^{\partial}(A)^c \to x \in F(\{y\}^c)), \\ x &\in F(F^{\partial}(A)) & \text{iff } (\exists y \in X)(x \in F(\{y\}^c)^c \to y \in F^{\partial}(A)), \\ x &\in F(F^{\partial}(A)) & \text{iff } (\exists y \in X)(x \in F(\{y\}^c)^c \to (\exists x \in X)(x \in A \& y \in F^{\partial}(\{x\})). \end{aligned}$$

Since $\vdash x \in A \rightarrow ((\exists y \in X)(x \in F(\{y\}^c)^c \rightarrow (\exists x \in X)(x \in A \& y \in F^{\partial}(\{x\})))$ iff $\vdash x \in A \rightarrow x \in F(F^{\partial}(A))$, then $A \subset F(F^{\partial}(A))$.

Second, if $A \subset F(F^{\partial}(A))$ for all $A \in P(X)$, put $A = \{x\}$, then $\{x\} \subset F(F^{\partial}(\{x\}))$ for all $x \in X$.

Finally, we show that if $\{x\} \subset F(F^{\partial}(\{x\}))$ for all $x \in X$, then R_F is symmetric from the following statements. Since $\{x\} \subset F(F^{\partial}(\{x\}))$ and $F^{\partial}(\{x\}) = \bigcap_{y \in F^{\partial}(\{x\})^c} \{y\}^c$, we have

$$F(F^{\partial}(\{x\})) = F(\bigcap_{y \in F^{\partial}(\{x\})^c} \{y\}^c) = \bigcap_{y \in F^{\partial}(\{x\})^c} F(\{y\}^c),$$

$$\begin{split} & \vdash (\forall z \in X)(z \in \{x\} \rightarrow z \in F(F^{\partial}(\{x\}))) \\ & \text{iff } \vdash (\forall z \in X)(z \in \{x\} \rightarrow (\exists y)(y \in F^{\partial}(\{x\})^c \rightarrow z \in F(\{y\}^c)) \\ & \text{iff } \vdash ((\exists y)(y \in F^{\partial}(\{x\})^c \rightarrow x \in F(\{y\}^c)) \\ & \text{iff } \vdash y \in F(\{x\}^c) \rightarrow x \in F(\{y\}^c). \end{split}$$

Hence $(x, y) \notin R_F$ implies $(y, x) \notin R_F$. Similarly, $(y, x) \notin R_F$ implies $(x, y) \notin R_F$. Thus R_F is a symmetric relation.

Example 3.4 Let R be a relation. Since $[R] : P(X) \to P(X)$ is a necessity operator, we define $(x, y) \in R_{[R]}$ iff $y \in [R](\{x\}^c)^c$. Since $R_{[R]} = R$ and $[R]^{\partial} = \langle R \rangle$ from Theorem 2.6, we obtain:

(1) R is reflexive iff $[R](A) \subset A$ for all $A \in P(X)$ iff $[R](\{x\}^c) \subset \{x\}^c$ for all $x \in X$.

(2) R is transitive iff $[R](A) \subset [R]([R](A))$ for all $A \in P(X)$ iff $[R](\{x\}^c) \subset [R]([R](\{x\}^c))$ for all $x \in X$.

(3) R is symmetric iff $A \subset [R](\langle R \rangle(A))$ for all $A \in P(X)$ iff $\{x\} \subset [R](\langle R \rangle(\{x\}))$ for all $x \in X$.

Theorem 3.5 Let $F : P(X) \to P(X)$ be a sufficiency operator. Define $(x, y) \in R_F$ iff $y \in F(\{x\})^c$. Then we have the following properties:

(1) R_F is reflexive iff $F(A) \subset A^c$ for all $A \in P(X)$ iff $F(\{x\}) \subset \{x\}^c$ for all $x \in X$.

(2) R_F is transitive iff $F(A) \subset F(F^c(A))$ for all $A \in P(X)$ iff $F(\{x\}) \subset F(F^c(\{x\}))$ for all $x \in X$.

(3) R_F is symmetric iff $A \subset F(F(A))$ for all $A \in P(X)$ iff $\{x\} \subset F(F(\{x\}))$ for all $x \in X$.

Proof. (1) We easily proved R_F is reflexive iff $F(\{x\}) \subset \{x\}^c$ for all $x \in X$. $F(A) \subset A^c$ for all $A \in P(X)$ iff $F(\{x\}) \subset \{x\}^c$ for all $x \in X$ from the following statements: For $A = \bigcup_{x \in A} \{x\}$, we have

$$F(A) = F(\bigcup_{x \in A} \{x\}) = \bigcap_{x \in A} F(\{x\})$$

$$\subset \bigcap_{x \in A} \{x\}^c = A^c.$$

(2) Since $F({x}^c) = \bigcup_{y \in F({x})^c} {y}$ and F^c is a modal operator, we have:

$$F(F^{c}(A)) = F(F^{c}(\bigcup_{x \in A} \{x\})) = F(\bigcup_{x \in A} F^{c}(\{x\})) = \bigcap_{x \in A} F(F^{c}(\{x\})) = \bigcap_{x \in A} F(\{x\}) = F(\bigcup_{x \in A} \{x\}) = F(A).$$

Hence we easily prove that $F(A) \subset F(F^c(A))$ for all $A \in P(X)$ iff $F(\{x\}) \subset F(F^c(\{x\}))$ for all $x \in X$.

Let R_F be transitive. Since $(\exists y \in X)((x, y) \in R_F \& (y, z) \in R_F)$ iff $(\exists y \in X)(y \in F(\{x\})^c \& z \in F(\{y\})^c)$ implies $(x, z) \in R_F$ iff $z \in F(\{x\})^c$, respectively, then

$$\vdash z \in F(\{y\}) \to \left((\exists y \in X) (y \in F(\{x\})^c \& z \in F(\{y\})^c) \right)^c,$$

$$\vdash z \in F(\{y\}) \to (\forall y \in X) (y \in F(\{x\})^c \to z \in F(\{y\})),$$

$$F(\{x\}) \subset \bigcap_{y \in F(\{x\})^c} F(\{y\}) = F(\bigcup_{y \in F(\{x\})^c} \{y\}) = F(F(\{x\})^c).$$

Conversely, let $F(F^c(\{x\})) \supset F(\{x\})$ and $F^c(\{x\}) = \bigcup_{y \in F^c(\{x\})} \{y\}$, we have

$$\begin{split} F(F^c(\{x\})) &= F(\bigcup_{y \in F^c(\{x\})} \{y\}) = \bigcap_{y \in F^c(\{x\})} F(\{y\}), \\ z \in F(F^c(\{x\})) \text{ iff } (\forall y \in X) (y \in F^c(\{x\}) \to z \in F(\{y\})). \end{split}$$

Since $F(F^c({x})) \supset F({x})$, we have

$$F(F^{c}(\{x\}))^{c} \subset F(\{x\})^{c}$$

iff $\left(\bigcap_{y \in X} (y \in F^{c}(\{x\}) \to z \in F(\{y\}))\right)^{c}$ implies $z \in F(\{x\})^{c}$
iff $(\exists y)(y \in F^{c}(\{x\}) \& z \in F^{c}(\{y\}))$ implies $z \in F(\{x\})^{c}$.

Thus, $(x, y) \in R_F \& (y, z) \in R_F$ implies $(x, z) \in R_F$.

(3) First, we show that if R_F is symmetric, then $A \subset F(F(A))$ for all $A \in P(X)$.

Let R_F be symmetric. Since $F(A) = \bigcup_{x \in F(A)} \{x\}$ and $z \in F(\{x\})^c$ iff $x \in F(\{z\})^c$, then

$$F(F(A)) = F(\bigcup_{x \in F(A)} \{x\}) = \bigcap_{x \in F(A)} F(\{x\}),$$

$$z \in F(F(A)) \quad \text{iff } (\forall x)(x \in F(A) \to z \in F(\{x\})),$$

$$z \in F(F(A)) \quad \text{iff } (\forall x)((\forall y)(y \in A \to x \in F(\{y\})) \to z \in F(\{x\})).$$

Since $\vdash (\forall x)((z \in A \to x \in F(\{z\})) \to z \in F(\{x\})) \to (\forall x)((\forall y)(y \in A \to x \in F(\{y\})) \to z \in F(\{x\}))$ and $z \in F(\{x\})$ iff $(z, x) \notin R_F$ iff $(x, z) \notin R_F$ iff $x \in F(\{z\})$, then

$$\vdash (\forall x)(z \in A \& (z \in A \to x \in F(\{z\})) \to x \in F(\{z\})),$$

Relations and modal operators

$$\vdash (\forall x)((z \in A \to x \in F(\{z\})) \to z \in F(\{x\})) \to z \in F(F(A)).$$

By Modus Ponens, $\vdash (\forall x)(z \in A \rightarrow z \in F(F(A)))$. Hence $A \subset F(F(A))$.

Second, if $A \subset F(F(A))$ for all $A \in P(X)$, put $A = \{x\}$, then $\{x\} \subset F(F(\{x\}))$ for all $x \in X$.

Finally, we show that if $\{x\} \subset F(F(\{x\}))$ for all $x \in X$, then R_F is symmetric from the following statements. Since $F(F(\{x\})) \supset \{x\}$ and $F(\{x\}) = \bigcup_{y \in F(\{x\})} \{y\}$, we have

$$\begin{split} F(F(\{x\})) &= F(\bigcup_{y \in F(\{x\})} \{y\}) = \bigcup_{y \in F(\{x\})} F(\{y\}), \\ \vdash (\forall z \in X) \Big(z \in \{x\} \to (\exists y)(y \in F(\{x\}) \to z \in F(\{y\})), \\ \vdash (\forall z \in X) \Big((z \in \{x\} \& y \in F(\{x\})) \to z \in F(\{y\})). \end{split}$$

Hence $y \in F(\{x\}) \to x \in F(\{y\})$ iff $x \in F(\{y\})^c \to y \in F(\{x\})^c$ iff $(y, x) \in R_F \to (x, y) \in R_F$.

Example 3.6 Let R be a relation. Since $[R]^* : P(X) \to P(X)$ is a sufficiency operator, we define $(x, y) \in R_{[R]^*}$ iff $y \in [R]^*(\{x\})^c$. Since $R_{[R]^*} = R$ and $([R]^*)^{\partial} = \langle R \rangle^*$ from Theorem 2.5, we obtain:

(1) R is reflexive iff $[R]^*(A) \subset A^c$ for all $A \in P(X)$ iff $[R]^*(\{x\}) \subset \{x\}^c$ for all $x \in X$.

(2) *R* is transitive iff $[R]^*(A) \subset [R]^*(([R]^*)^c(A))$ for all $A \in P(X)$ iff $[R]^*(\{x\}) \subset [R]^*(([R]^*)^c(\{x\}))$ for all $x \in X$.

(3) R is symmetric iff $A \subset [R]^*([R]^*(A))$ for all $A \in P(X)$ iff $\{x\} \subset [R]^*([R]^*(\{x\}))$ for all $x \in X$.

Theorem 3.7 Let $F : P(X) \to P(X)$ be a co-sufficiency operator. Define $(x, y) \in R_F$ iff $y \in F(\{x\}^c)$. Then we have the following properties:

(1) R_F is reflexive iff $A^c \subset F(A)$ for all $A \in P(X)$ iff $\{x\} \subset F(\{x\}^c)$ for all $x \in X$.

(2) R_F is transitive iff $F(F^c(A)) \subset F(A)$ for all $A \in P(X)$ iff $F(F^c(\{x\}^c)) \subset F(\{x\}^c)$ for all $x \in X$.

(3) R_F is symmetric iff $F(F(A)) \subset A$ for all $A \in P(X)$ iff $F(F(\{x\}^c)) \subset \{x\}^c$ for all $x \in X$.

Proof. (1) Let R_F be reflexive. Since $A = \bigcap_{x \in A^c} \{x\}^c$ and $\{x\} \subset F(\{x\}^c)$, $F(A) = F(\bigcap_{x \in A^c} \{x\}^c) = \bigcup_{x \in A^c} F(\{x\}^c) \supset \bigcup_{x \in A^c} \{x\} = A^c$. Put $A = \{x\}^c$. Then $\{x\} \subset F(\{x\}^c)$. Let $\{x\} \subset F(\{x\}^c)$. Then $(x, x) \in [x]$. (2) First, we show that $F(F^c(A)) \subset F(A)$ for all $A \in P(X)$ iff $F(F^c(\{x\}^c)) \subset F(\{x\}^c)$ for all $x \in X$. Since F^c is a necessity operator, we have:

$$F(F^{c}(A)) = F(F^{c}(\bigcap_{x \in A^{c}} \{x\}^{c}))) = F(\bigcap_{x \in A^{c}} F^{c}(\{x\}^{c})) = \bigcup_{x \in A^{c}} F(F^{c}(\{x\}^{c}))$$

$$\subset \bigcup_{x \in A^{c}} F(\{x\}^{c}) = F(\bigcap_{x \in A^{c}} \{x\}^{c}) = F(A).$$

Conversely, put $A = \{x\}^c$. It is trivial.

Second, R_F is transitive iff $F(F^c(\{x\}^c)) \subset F(\{x\}^c)$ for all $x \in X$. Let R_F be transitive. Since $(\exists y \in X)((x,y) \in R_F \& (y,z) \in R_F)$ iff $(\exists y \in X)(y \in F(\{x\}^c) \& z \in F(\{y\}^c))$ implies $(x,z) \in R_F$ iff $z \in F(\{x\}^c)$ and $F^c(\{x\}^c) = \bigcap_{y \in F(\{x\}^c)} \{y\}^c$, we have:

$$\begin{array}{ll} F((F^{c}(\{x\}^{c})) &= F(\bigcap_{y \in F(\{x\}^{c})} \{y\}^{c}) = \bigcup_{y \in F(\{x\}^{c})} F(\{y\}^{c}) \\ z \in F((F^{c}(\{x\}^{c})) & \text{iff } (\exists y)(y \in F(\{x\}^{c}) \& \ z \in F(\{y\}^{c}) \\ & \text{implies } z \in F(\{x\}^{c}). \end{array}$$

Hence $F((F^c(\{x\}^c)) \subset F(\{x\}^c))$.

Conversely, since $F(F^{c}(\{x\}^{c})) \subset F(\{x\}^{c})$ and $F^{c}(\{x\}^{c}) = \bigcap_{y \in F(\{x\}^{c})} \{y\}^{c}$, we have $F(\{x\}^{c}) \supset F(F^{c}(\{x\}^{c})) = F(\bigcap_{x \in F(\{x\}^{c})} \{y\}^{c})$

Thus $z \in \bigcup_{y \in F(\{x\}^c)} F(\{y\}^c)$ implies $z \in F(\{x\}^c)$. Hence $(x, y) \in R_F \& (y, z) \in R_F \to (x, z) \in R_F$.

(3) First, we will show that if R_F is symmetric, then $F(F(A)) \subset A$ for all $A \in P(X)$. Let R_F be symmetric. Since $A = \bigcap_{x \in A^c} \{x\}^c$ and F^c is a necessity operator, then $F^c(A) = \bigcap_{x \in A^c} F^c(\{x\}^c)$, $F(A) = \bigcap_{x \in F(A)^c} \{x\}^c$ and $x \in F(\{y\}^c)$ iff $y \in F(\{x\}^c)$, we have:

$$F(F(A)) = F(\bigcap_{y \in F^{c}(A)} \{y\}^{c}) = \bigcup_{y \in F^{c}(A)} F(\{y\}^{c})$$

$$\begin{array}{ll} x \in F(F(A)) & \text{iff } x \in \bigcup_{y \in F^{c}(A)} F(\{y\}^{c}) \\ & \text{iff } (\exists y)(y \in F^{c}(A) \& x \in F(\{y\}^{c}) \\ & \text{iff } (\exists y)((\forall x \in X)(x \in A^{c} \to y \in F^{c}(\{x\}^{c}))) \& y \in F(\{x\}^{c})) \\ & \text{iff } (\exists y)(((\forall x \in X)(y \in F(\{x\}^{c}) \to x \in A)) \& y \in F(\{x\}^{c})) \\ & \text{implies } x \in A. \end{array}$$

Second, if $F(F(A)) \subset A$ for all $A \in P(X)$, put $A = \{x\}^c$, then $F(F(\{x\}^c)) \subset \{x\}^c$ for all $x \in X$.

Finally, we will show if $F(F(\{x\}^c)) \subset \{x\}^c$ for all $x \in X$, then R_F is symmetric. Since $F(F(\{x\}^c)) \subset \{x\}^c$ and $F(\{x\}^c) = \bigcap_{y \in F^c(\{x\})^c} \{y\}^c$, we have

$$F(F(\{x\}^c)) = F(\bigcap_{y \in F^c(\{x\})^c} \{y\}^c) = \bigcup_{y \in F^c(\{x\})^c} F(\{y\}^c) \subset \{x\}^c.$$

Thus $z \in \{x\} \to (\forall y \in X)(y \in F^c(\{x\}^c) \to z \in F^c(\{y\})^c)$. Put x = z, then $\vdash x \in F(\{y\}^c) \to y \in F(\{x\}^c)$. Similarly, $\vdash y \in F(\{x\}^c) \to x \in F(\{y\}^c)$.

Example 3.8 Let R be a relation. Since $\langle R \rangle^* : P(X) \to P(X)$ is a sufficiency operator, we define $(x, y) \in R_{\langle R \rangle^*}$ iff $y \in \langle R \rangle^* (\{x\})^c$. Since $R_{\langle R \rangle^*} = R$ and $(\langle R \rangle^*)^{\partial} = [R]^*$ from Theorem 2.7, we obtain:

(1) R is reflexive iff $A^c \subset \langle R \rangle^*(A)$ for all $A \in P(X)$ iff $\{x\} \subset \langle R \rangle^*(\{x\}^c)$ for all $x \in X$.

(2) R is transitive iff $\langle R \rangle^* (\langle R \rangle (A)) \subset \langle R \rangle^* (A)$ for all $A \in P(X)$ iff $\langle R \rangle^* (\langle R \rangle (\{x\}^c)) \subset \langle R \rangle^* (\{x\}^c)$ for all $x \in X$.

(3) *R* is symmetric iff $\langle R \rangle^* (\langle R \rangle^* (A)) \subset A$ for all $A \in P(X)$ iff $\langle R \rangle^* (\langle R \rangle^* (\{x\}^c)) \subset \{x\}^c$ for all $x \in X$.

Example 3.9 Let $X = \{a, b, c, d\}$ be a set. Define $F, G : P(X) \to P(X)$ as

$$F(\{a\}) = \{a, b\}, F(\{b\}) = \{b\}, F(\{c\}) = \{a, c\}, F(\{d\}) = \{a, d\}$$
$$G(\{a\}) = \{c, d\}, G(\{b\}) = \{c, d\}, G(\{c\}) = \{a, b\}, G(\{d\}) = \{a, b\}$$

 $H(\{b,c,d\})=\{b,c\}, H(\{a,c,d\})=\{c,d\}, H(\{a,b,d\})=\{a,d\}, H(\{a,b,c\})=\{a,b\}$

(1) If F is a modal operator, then, by Theorem 3.1,

$$R_F = \{(a, a), (a, b), (b, b), (c, a), (c, c), (d, a), (d, d)\}$$

Since R_F is reflexive, then $A \subset F(A)$. Since $(c, a) \in R_F$ and $(a, b) \in R_F$ but $(c, b) \notin R_F$, then R_F is not transitive. Thus, $\{a, b, c\} = F(F(\{c\})) \notin F(\{c\}) = \{a, c\}$. Since R_F is not symmetric,

$$\{a, b, c\} = F(F^{\partial}(\{d\}^c)) \not\subset \{d\}^c = \{b, c\}.$$

(2) If G is a sufficiency operator, then, by Theorem 3.5,

$$R_G = \{(a, a), (a, b), (b, a), (b, b), (c, b), (c, c), (d, c), (d, d)\}.$$

Since R_G is reflexive, transitive and symmetric, then $G(A) \subset A^c$, $G(A) \subset G(G^c(A))$ and $A \subset G(G(A))$.

(3) If H is a necessity operator, then, by Theorem 3.3,

$$R_H = \{(a, a), (a, d), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}.$$

Since R_H is reflexive, then $H(A) \subset A$. Since $(b,a) \in R_H$ and $(a,d) \in R_H$ but $(b,d) \notin R_H$, then R_H is not transitive. Thus, $\{a,d\} = H(\{a,b,d\}) \notin H(H(\{a,b,d\})) = \{d\}$. Since R_H is not symmetric,

$$\{c\} \not\subset H(H^{\partial}(\{c\})) = H(\{b,c\}) = H(\{a,b,c\}) \cap H(\{b,c,d\}) = \{b\}.$$

(4) If H is a co-sufficiency operator, then by Theorem 3.7,

$$R_H = \{(a, b), (a, c), (b, c), (b, d), (c, a), (c, b), (d, a), (d, b)\}.$$

Since R_H is not reflexive, we have $\{a\}^c \not\subset H(\{a\}^c)$. Since R_H is not transitive,

$$\{a, c, d\} = H(H^{c}(\{a\}^{c})) \not\subset H(\{a\}^{c}) = \{b, c\}.$$

Since R_H is not symmetric, $H(H(\{a\}^c)) = H(H(\{b, c, d\})) = H(\{b, c\}) = H(\{a, b, c\} \cap \{b, cd\} = H(\{a, b, c\}) \cup H(\{b, cd\}) = \{a, b, c\}$. Thus

$$\{a, b, c\} = H(H(\{a\}^c)) \not\subset \{a\}^c = \{b, c, d\}.$$

References

- R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation 10 (6) (2000) 823-845.
- [2] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log. 41 (2002) 83-90.
- [3] Ivo. Düntsch, Ewa Orlowska, Boolean algebras arising from information systems, Annals of Pure and Applied Logic 127 (2004) 77-98.
- [4] J. Järvinen, M. Kondo, J. Kortelainen, Logics from Galois connections, Int. J. Approx. Reasoning 49 (2008) 595-606.
- [5] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).
- [6] Y.C. Kim, Modal, necesserty, sufficiency and co-sufficiency operators, J. Korean (to appear).
- [7] Ewa Orlowska, I. Rewitzky Algebras for Galois-style connections and their discrete duality, Fuzzy Sets and Systems 161 (2010) 1325-1342.
- [8] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11(1982) 341-356.
- Y.Y. Yao, Two Views of the Theory of Rough Swts in Finite Universes, Int. J. Approx. Reasoning 15 (1996) 291-317.

Received: July, 2012

508