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Abstract

We show that reflexive, transitive, symmetric relations can be in-

duced by modal, necessity, sufficiency and co-sufficiency operators. We

give their examples.
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1 Introduction

Pawlak [8] introduced rough set theory to generalize the classical set the-
ory. Rough approximations are defined by a partition of the universe which is
corresponding to the equivalence relation about information. An information
consists of (X,A) where X is a set of objects and A is a set of attributes, a map
a : X → P (Aa) where Aa is the value set of the attribute a. Recently, inten-
sional modal-like logics with the propositional operators induced by relations
are important mathematical tools for data analysis and knowledge processing
[1-9]. In [6], we investigated the properties of modal, necessity, sufficiency and
co-sufficiency operators.

In this paper, we show that reflexive, transitive, symmetric relations can
be induced by modal, necessity, sufficiency and co-sufficiency operators. We
give their examples.

2 Preliminaries

Definition 2.1 [3,6] Let P (X), P (Y ) be the families of subsets on X and
Y , respectively. Then a map F : P (X) → P (Y ) is called

(1) modal operator if F (
⋃

i∈Γ Ai) =
⋃

i∈Γ F (Ai), F (∅) = ∅.
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(2) necessity operator if F (
⋂

i∈Γ Ai) =
⋂

i∈Γ F (Ai), F (X) = Y.

(3) sufficiency operator if F (
⋃

i∈Γ Ai) =
⋂

i∈Γ F (Ai), F (∅) = Y.

(4) co-sufficiency operator if F (
⋂

i∈Γ Ai) =
⋃

i∈Γ F (Ai), F (X) = ∅.
(5) a dual operator F ∂ is defined by F ∂(A) = F (Ac)c. Moreover, its com-

plementary counterpart F c(A) = (F (A))c and F ∗(A) = F (Ac).

Let R ∈ LX×X be a relation. R is called:
(1) reflexive if (x, x) ∈ R for all x ∈ X .
(2) symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X .
(3) transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R for x, y, z ∈ X .

Definition 2.2 [3,7] Let R ⊂ P (X×Y ) be a relation. For each A ∈ P (X),
we define operations (y, x) ∈ R−1 iff (x, y) ∈ R and [R], [[R]], 〈R〉, 〈〈R〉〉, [R]∗, 〈R〉∗ :
P (X) → P (Y ) as follows:

[R](A) = {y ∈ Y | (∀x)((x, y) ∈ R → x ∈ A)},

[[R]](A) = {y ∈ Y | (∀x ∈ X)(x ∈ A → (x, y) ∈ R)}

〈R〉(A) = {y ∈ Y | (∃x ∈ X)((x, y) ∈ R, x ∈ A)}

〈〈R〉〉(A) = {y ∈ Y | (∃x ∈ X)((x, y) ∈ Rc, x ∈ Ac)}.

[R]∗(A) = {y ∈ Y | (∀x ∈ X)((x, y) ∈ R → x ∈ Ac)}

〈R〉∗(A) = {y ∈ Y | (∃x ∈ X)((x, y) ∈ R, x ∈ Ac)}.

Lemma 2.3 [3,6] (1) A map F : P (X) → P (Y ) is a modal operator iff

F ∂ : P (X) → P (Y ) is a necessity operator.

(2) A map F : P (X) → P (Y ) is a sufficiency operator iff F ∂ : P (X) →
P (Y ) is a co-sufficiency operator operator.

(3) A map F : P (X) → P (Y ) is a modal operator iff F c : P (X) → P (Y )
is a sufficient operator.

(4) A map F : P (X) → P (Y ) is a co-sufficiency operator iff F c : P (X) →
P (Y ) is a necessity operator operator.

(5) A map F : P (X) → P (Y ) is a sufficiency operator iff F ∗ : P (X) →
P (Y ) is a necessity operator operator.

(6) A map F : P (X) → P (Y ) is a modal operator iff F ∗ : P (X) → P (Y )
is a co-sufficiency operator.

Theorem 2.4 [3,6] Let R ⊂ P (X × Y ) be a relation.

(1) 〈R〉 is a modal operator and [R] is a necessity operator with 〈R〉(A) =
([R](Ac))c = [R]∂(A), for each A ∈ P (X)

(2) If F : P (X) → P (Y ) is a modal operator on P (X), there exists a

unique relation RF ⊂ P (X × Y ) such that 〈RF 〉 = F and [RF ] = F ∂ where

(x, y) ∈ RF iff y ∈ F ({x}).
(3) R〈R〉 = R.
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Theorem 2.5 [6] Let R ∈ P (X × Y ) be a relation.

(1) [R]∗ is a sufficiency operator and 〈R〉∗ is a co-sufficiency operator with

[R]∗(A) = (〈R〉∗(Ac))c.
(2) If F : P (X) → P (Y ) is a sufficiency operator on P (X), there exists a

unique relation RF ∈ P (X × Y ) such that [RF ]
∗ = F and 〈RF 〉

∗ = F ∂ where

(x, y) ∈ RF iff y ∈ F ({x})c.
(3) R[R]∗ = R.

Theorem 2.6 [6] Let R ⊂ P (X × Y ) be a relation.

(1) If F : P (X) → P (Y ) is a necessity operator on P (X), there exists a

unique relation RF ∈ P (X × Y ) such that [RF ] = F and 〈RF 〉 = F ∂ where

(x, y) ∈ RF iff y ∈ F ({x}c)c.
(2) R[R] = R.

Theorem 2.7 [6] Let R ∈ P (X × Y ) be a relation.

(1) If F : P (X) → P (Y ) is a co-sufficiency operator on P (X), there exists

a unique relation RF ∈ P (X ×Y ) such that 〈RF 〉
∗ = F and [RF ]

∗ = F ∂ where

(x, y) ∈ RF iff y ∈ F ({x}c).
(2) R〈RF 〉∗ = R.

3 Relations and modal operators

Theorem 3.1 Let F : P (X) → P (X) be a modal operator. Define (x, y) ∈
RF iff y ∈ F ({x}). Then we have the following properties:

(1) RF is reflexive iff A ⊂ F (A) for all A ∈ P (X) iff {x} ⊂ F ({x}) for all
x ∈ X.

(2) RF is transitive iff F (F (A)) ⊂ F (A) for all A ∈ P (X) iff F (F ({x})) ⊂
F ({x}) for all x ∈ X.

(3) RF is symmetric iff F (F ∂(A)) ⊂ A for all A ∈ P (X) iff F (F ∂({x}c)) ⊂
{x}c for all x ∈ X.

Proof. (1) First, we will show that A ⊂ F (A) for all A ∈ P (X) iff {x} ⊂
F ({x}) for all x ∈ X . Conversely, since {x} ⊂ F ({x}) and A =

⋃

x∈A{x}, we
have

A =
⋃

x∈A

{x} ⊂
⋃

x∈A

F ({x}) = F (
⋃

x∈A

{x}) = F (A).

Second, RF is reflexive iff A ⊂ F (A) for all A ∈ P (X) iff {x} ⊂ F ({x}) for
all x ∈ X .
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Let RF be reflexive. Since (x, x) ∈ RF , then {x} ⊂ F ({x}). Conversely,
since {x} ⊂ F ({x}). Hence (x, x) ∈ RF .

(2) First, F (F (A)) ⊂ F (A) for all A ∈ P (X) iff F (F ({x})) ⊂ F ({x}) for
all x ∈ X from:

F (F (A)) = F (F (
⋃

x∈A{x})) = F (
⋃

x∈A F ({x})) =
⋃

x∈A F (F ({x})
⊂

⋃

x∈A F ({x}) = F (
⋃

x∈A{x}) = F (A).

Second, we will show that RF is transitive iff F (F ({x})) ⊂ F ({x}) for all
x ∈ X .

Let RF be transitive. Since (∃y ∈ X)((x, y) ∈ RF & (y, z) ∈ RF ) iff
(∃y ∈ X)(y ∈ F ({x}) & z ∈ F ({y})) implies (x, z) ∈ RF iff z ∈ F ({x}),
respectively and F ({x}) =

⋃

y∈F ({x}){y}, we have:

z ∈ F (F ({x})) iff z ∈ F (
⋃

y∈F ({x}){y}) =
⋃

y∈F ({x}) F ({y})
iff (∃y)(y ∈ F ({x}) & z ∈ F ({y}))
implies z ∈ F ({x}).

Conversely, since F (F ({x})) ⊂ F ({x}) and F ({x}) =
⋃

y∈F ({x}){y}, we
have

(∃y)((x, y) ∈ RF & (y, z) ∈ RF ) iff (∃y)(y ∈ F ({x}) & z ∈ F ({y}))
iff z ∈ F (F ({x})) implies z ∈ F ({x}).

Thus, (x, z) ∈ RF .
(3) First, if RF is symmetric, then F (F ∂(A)) ⊂ A for all A ∈ P (X).
Let RF be symmetric. Since A =

⋂

x∈Ac{x}c and F ∂ is a necessity operator,
then F ∂(A) = F ∂(

⋂

x∈Ac{x}c) =
⋂

x∈Ac F ∂({x}c). and x ∈ F ({y}) iff y ∈
F ({x}), we have:

F (F ∂(A)) = F (
⋃

y∈F ∂(A)

{y}) =
⋃

y∈F ∂(A)

F ({y}),

z ∈ F (F ∂(A)) iff (∃y)(y ∈ F ∂(A) & z ∈ F ({y})

iff (∃y)
(

(∀x ∈ X)(x ∈ Ac → y ∈ F ∂({x}c)) & y ∈ F ({z})
)

implies (∃y)((z ∈ Ac → y ∈ F ∂({z}c) & y ∈ F ({z})
implies (∃y)((y ∈ F ∂({z}c)c → z ∈ A) & y ∈ F ({z})
implies (∃y)((y ∈ F ({z}) → z ∈ A) & y ∈ F ({z})
implies z ∈ A.

Second, if F (F ∂(A)) ⊂ A for all A ∈ P (X), put A = {x}c, then F (F ∂({x}c)) ⊂
{x}c for all x ∈ X .

Finally, if F (F ∂({x}c)) ⊂ {x}c for all x ∈ X , then RF is symmetric from
the following statements:
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Since F (F ∂({x}c)) ⊂ {x}c and F ∂({x}c) =
⋃

y∈F ∂({x}c){y}, we have

F (F ∂({x}c)) =
⋃

y∈F ∂({x}c) F ({y}) ⊂ {x}c,

{x} ⊂
(

⋃

y∈F ∂({x}c) F ({y})
)c

=
⋂

y∈F ∂({x}c) F ({y})c,

z ∈ {x} implies (∀y)(y ∈ F ∂({x}c) → z ∈ F ({y})c),
z ∈ {x} implies (∀y)(z ∈ F ({y}) → y ∈ F ∂({x}c)c).

Thus, (x, y) ∈ RF → (y, x) ∈ RF . Similarly, (y, x) ∈ RF → (x, y) ∈ RF .

Example 3.2 Let R be a relation. Since 〈R〉 : P (X) → P (X) is a modal
operator, we define (x, y) ∈ R〈R〉 iff y ∈ 〈R〉({x}). Since R〈R〉 = R and
〈R〉∂ = [R] from Theorem 2.4, we obtain:

(1) R is reflexive iff A ⊂ 〈R〉(A) for all A ∈ P (X) iff {x} ⊂ 〈R〉({x}) for
all x ∈ X .

(2)R is transitive iff 〈R〉(〈R〉(A)) ⊂ 〈R〉(A) for all A ∈ P (X) 〈R〉(〈R〉({x})) ⊂
〈R〉({x}) for all x ∈ X .

(3)R is symmetric iff 〈R〉([R](A)) ⊂ A for all A ∈ P (X) iff 〈R〉([R]({x}c)) ⊂
{x}c for all x ∈ X .

Theorem 3.3 Let F : P (X) → P (X) be a necessity operator. Define

(x, y) ∈ RF iff y ∈ F ({x}c)c. Then we have the following properties:

(1) RF is reflexive iff F (A) ⊂ A for all A ∈ P (X) iff F ({x}c) ⊂ {x}c for

all x ∈ X.

(2) RF is transitive iff F (A) ⊂ F (F (A)) for all A ∈ P (X) iff F ({x}c) ⊂
F (F ({x}c)) for all x ∈ X.

(3) RF is symmetric iff A ⊂ F (F ∂(A)) for all A ∈ P (X) iff {x} ⊂
F (F ∂({x})) for all x ∈ X.

Proof. (1) First, we show that if RF is reflexive, then F (A) ⊂ A for all
A ∈ P (X). Let RF be reflexive. Then {x} ⊂ F ({x}c)c. Since A =

⋂

x∈Ac{x}c

and F ({x}c) ⊂ {x}c,

F (A) = F (
⋂

x∈Ac

{x}c) =
⋂

x∈Ac

F ({x}c) ⊂
⋂

x∈Ac

{x}c = A.

Second, if F (A) ⊂ A for all A ∈ P (X), put A = {x}c, then F ({x}c) ⊂ {x}c

for all x ∈ X .
Finally, since {x} ⊂ F ({x}c)c, then (x, x) ∈ RF .
(2) First, we easily show that F (A) ⊂ F (F (A)) for all A ∈ P (X) iff

F ({x}c) ⊂ F (F ({x}c)) for all x ∈ X from:

F (F (A)) = F (F (
⋂

x∈Ac{x}c))) = F (
⋂

x∈Ac F ({x}c)) =
⋂

x∈Ac F (F ({x}c))
⊃

⋂

x∈Ac F ({x}c) = F (
⋂

x∈Ac{x}c) = F (A).
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Second, we show that RF is transitive iff F ({x}c) ⊂ F (F ({x}c)) for all
x ∈ X . Let RF be transitive. Since (∃y ∈ X)((x, y) ∈ RF & (y, z) ∈ RF ) iff
(∃y ∈ X)(y ∈ F ({x}c)c & z ∈ F ({y}c)c) implies (x, z) ∈ RF iff z ∈ F ({x}c)c,
respectively and F ({x}c) =

⋂

y∈F ({x}c)c{y}
c, we have:

(∃y ∈ X)(y ∈ F ({x}c)c & z ∈ F ({y}c)c) → z ∈ F ({x}c)c.

z ∈ F ({x}c) imlies
(

(∃y ∈ X)(y ∈ F ({x}c)c & z ∈ F ({y}c)c)
)c

iff (∀y ∈ X)(y ∈ F ({x}c)c → z ∈ F ({y}c))

iff z ∈ F
(

(∀y ∈ X)(y ∈ F ({x}c)c → {y}c
)

iff z ∈ F (F ({x}c)).

Conversely, since F ({x}c) ⊂ F (F ({x}c)) and F ({x}c) =
⋂

y∈F ({x}c)c{y}
c,

we have

F ({x}c) ⊂ F (F ({x}c)) = F (
⋂

y∈F ({x}c)

{y}c) =
⋂

y∈F ({x}c)c

F ({y}c).

Then

⊢ (∀z ∈ X)
(

z ∈ F ({x}c) → z ∈
⋂

y∈F ({x}c)c F ({y}c)
)

iff ⊢ (∀z ∈ X)
(

z ∈ F ({x}c) → (y ∈ F ({x}c)c → z ∈ F ({y}c)
)

iff ⊢ (∀z ∈ X)
(

(∃y ∈ X)(y ∈ F ({x}c)c & z ∈ F ({y}c)c) → z ∈ F ({x}c)c
)

.

Thus,

(∃y ∈ X)((x, y) ∈ RF & (y, z) ∈ RF ) → (x, z) ∈ RF .

(3) First, we show that if RF is symmetric, then A ⊂ F (F ∂(A)) for all
A ∈ P (X). Let RF be symmetric. Since A =

⋃

x∈A{x} and F ∂ is a modal
operator, then F ∂(A) = F ∂(

⋃

x∈A{x}) =
⋃

x∈A F ∂({x}) and x ∈ F ({y}c)c iff
y ∈ F ({x}c)c, we have:

F (F ∂(A)) = F (
⋂

y∈F ∂(A)c

{y}c)) =
⋂

y∈F ∂(A)c

F ({y}c).

x ∈ F (F ∂(A)) iff (∃y ∈ X)(y ∈ F ∂(A)c → x ∈ F ({y}c)),
x ∈ F (F ∂(A)) iff (∃y ∈ X)(x ∈ F ({y}c)c → y ∈ F ∂(A)),
x ∈ F (F ∂(A)) iff (∃y ∈ X)(x ∈ F ({y}c)c → (∃x ∈ X)(x ∈ A & y ∈ F ∂({x})).

Since ⊢ x ∈ A →
(

(∃y ∈ X)(x ∈ F ({y}c)c → (∃x ∈ X)(x ∈ A & y ∈

F ∂({x}))
)

iff ⊢ x ∈ A → x ∈ F (F ∂(A)), then A ⊂ F (F ∂(A)).

Second, if A ⊂ F (F ∂(A)) for all A ∈ P (X), put A = {x}, then {x} ⊂
F (F ∂({x})) for all x ∈ X .
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Finally, we show that if {x} ⊂ F (F ∂({x})) for all x ∈ X , then RF

is symmetric from the following statements. Since {x} ⊂ F (F ∂({x})) and
F ∂({x}) =

⋂

y∈F ∂({x})c{y}
c, we have

F (F ∂({x})) = F (
⋂

y∈F ∂({x})c

{y}c) =
⋂

y∈F ∂({x})c

F ({y}c),

⊢ (∀z ∈ X)(z ∈ {x} → z ∈ F (F ∂({x})))
iff ⊢ (∀z ∈ X)(z ∈ {x} → (∃y)(y ∈ F ∂({x})c → z ∈ F ({y}c))
iff ⊢ ((∃y)(y ∈ F ∂({x})c → x ∈ F ({y}c))
iff ⊢ y ∈ F ({x}c) → x ∈ F ({y}c).

Hence (x, y) 6∈ RF implies (y, x) 6∈ RF . Similarly, (y, x) 6∈ RF implies (x, y) 6∈
RF . Thus RF is a symmetric relation.

Example 3.4 Let R be a relation. Since [R] : P (X) → P (X) is a necessity
operator, we define (x, y) ∈ R[R] iff y ∈ [R]({x}c)c. Since R[R] = R and
[R]∂ = 〈R〉 from Theorem 2.6, we obtain:

(1) R is reflexive iff [R](A) ⊂ A for all A ∈ P (X) iff [R]({x}c) ⊂ {x}c for
all x ∈ X .

(2) R is transitive iff [R](A) ⊂ [R]([R](A)) for all A ∈ P (X) iff [R]({x}c) ⊂
[R]([R]({x}c)) for all x ∈ X .

(3) R is symmetric iff A ⊂ [R](〈R〉(A)) for all A ∈ P (X) iff {x} ⊂
[R](〈R〉({x})) for all x ∈ X .

Theorem 3.5 Let F : P (X) → P (X) be a sufficiency operator. Define

(x, y) ∈ RF iff y ∈ F ({x})c. Then we have the following properties:

(1) RF is reflexive iff F (A) ⊂ Ac for all A ∈ P (X) iff F ({x}) ⊂ {x}c for

all x ∈ X.

(2) RF is transitive iff F (A) ⊂ F (F c(A)) for all A ∈ P (X) iff F ({x}) ⊂
F (F c({x})) for all x ∈ X.

(3) RF is symmetric iff A ⊂ F (F (A)) for all A ∈ P (X) iff {x} ⊂
F (F ({x})) for all x ∈ X.

Proof. (1) We easily proved RF is reflexive iff F ({x}) ⊂ {x}c for all x ∈ X .
F (A) ⊂ Ac for all A ∈ P (X) iff F ({x}) ⊂ {x}c for all x ∈ X from the

following statements: For A =
⋃

x∈A{x}, we have

F (A) = F (
⋃

x∈A{x}) =
⋂

x∈A F ({x})
⊂

⋂

x∈A{x}
c = Ac.
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(2) Since F ({x}c) =
⋃

y∈F ({x})c{y} and F c is a modal operator, we have:

F (F c(A)) = F (F c(
⋃

x∈A{x})) = F (
⋃

x∈A F c({x})) =
⋂

x∈A F (F c({x})
⊃

⋂

x∈A F ({x}) = F (
⋃

x∈A{x}) = F (A).

Hence we easily prove that F (A) ⊂ F (F c(A)) for all A ∈ P (X) iff F ({x}) ⊂
F (F c({x})) for all x ∈ X .

Let RF be transitive. Since (∃y ∈ X)((x, y) ∈ RF & (y, z) ∈ RF ) iff
(∃y ∈ X)(y ∈ F ({x})c & z ∈ F ({y})c) implies (x, z) ∈ RF iff z ∈ F ({x})c,
respectively, then

⊢ z ∈ F ({y}) →
(

(∃y ∈ X)(y ∈ F ({x})c & z ∈ F ({y})c)
)c
,

⊢ z ∈ F ({y}) → (∀y ∈ X)(y ∈ F ({x})c → z ∈ F ({y})),

F ({x}) ⊂
⋂

y∈F ({x})c

F ({y}) = F (
⋃

y∈F ({x})c

{y}) = F (F ({x})c).

Conversely, let F (F c({x})) ⊃ F ({x}) and F c({x}) =
⋃

y∈F c({x}){y}, we
have

F (F c({x})) = F (
⋃

y∈F c({x}){y}) =
⋂

y∈F c({x}) F ({y}),
z ∈ F (F c({x})) iff (∀y ∈ X)(y ∈ F c({x}) → z ∈ F ({y})).

Since F (F c({x})) ⊃ F ({x}), we have

F (F c({x}))c ⊂ F ({x})c

iff
(

⋂

y∈X(y ∈ F c({x}) → z ∈ F ({y}))
)c

implies z ∈ F ({x})c

iff (∃y)(y ∈ F c({x}) & z ∈ F c({y})) implies z ∈ F ({x})c.

Thus, (x, y) ∈ RF & (y, z) ∈ RF implies (x, z) ∈ RF .
(3) First, we show that if RF is symmetric, then A ⊂ F (F (A)) for all

A ∈ P (X).
Let RF be symmetric. Since F (A) =

⋃

x∈F (A){x} and z ∈ F ({x})c iff
x ∈ F ({z})c, then

F (F (A)) = F (
⋃

x∈F (A){x}) =
⋂

x∈F (A) F ({x}),
z ∈ F (F (A)) iff (∀x)(x ∈ F (A) → z ∈ F ({x})),
z ∈ F (F (A)) iff (∀x)((∀y)(y ∈ A → x ∈ F ({y})) → z ∈ F ({x})).

Since ⊢ (∀x)((z ∈ A → x ∈ F ({z})) → z ∈ F ({x})) → (∀x)((∀y)(y ∈ A →
x ∈ F ({y})) → z ∈ F ({x})) and z ∈ F ({x}) iff (z, x) 6∈ RF iff (x, z) 6∈ RF iff
x ∈ F ({z}), then

⊢ (∀x)(z ∈ A & (z ∈ A → x ∈ F ({z})) → x ∈ F ({z})),
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⊢ (∀x)((z ∈ A → x ∈ F ({z})) → z ∈ F ({x})) → z ∈ F (F (A)).

By Modus Ponens, ⊢ (∀x)(z ∈ A → z ∈ F (F (A))). Hence A ⊂ F (F (A)).
Second, if A ⊂ F (F (A)) for all A ∈ P (X), put A = {x}, then {x} ⊂

F (F ({x})) for all x ∈ X .
Finally, we show that if {x} ⊂ F (F ({x})) for all x ∈ X , then RF is sym-

metric from the following statements. Since F (F ({x})) ⊃ {x} and F ({x}) =
⋃

y∈F ({x}){y}, we have

F (F ({x})) = F (
⋃

y∈F ({x}){y}) =
⋃

y∈F ({x}) F ({y}),

⊢ (∀z ∈ X)
(

z ∈ {x} → (∃y)(y ∈ F ({x}) → z ∈ F ({y})),

⊢ (∀z ∈ X)
(

(z ∈ {x} & y ∈ F ({x})) → z ∈ F ({y})).

Hence y ∈ F ({x}) → x ∈ F ({y}) iff x ∈ F ({y})c → y ∈ F ({x})c iff (y, x) ∈
RF → (x, y) ∈ RF .

Example 3.6 Let R be a relation. Since [R]∗ : P (X) → P (X) is a suffi-
ciency operator, we define (x, y) ∈ R[R]∗ iff y ∈ [R]∗({x})c. Since R[R]∗ = R

and ([R]∗)∂ = 〈R〉∗ from Theorem 2.5, we obtain:
(1) R is reflexive iff [R]∗(A) ⊂ Ac for all A ∈ P (X) iff [R]∗({x}) ⊂ {x}c for

all x ∈ X .
(2) R is transitive iff [R]∗(A) ⊂ [R]∗(([R]∗)c(A)) for all A ∈ P (X) iff

[R]∗({x}) ⊂ [R]∗(([R]∗)c({x})) for all x ∈ X .
(3) R is symmetric iff A ⊂ [R]∗([R]∗(A)) for all A ∈ P (X) iff {x} ⊂

[R]∗([R]∗({x})) for all x ∈ X .

Theorem 3.7 Let F : P (X) → P (X) be a co-sufficiency operator. Define

(x, y) ∈ RF iff y ∈ F ({x}c). Then we have the following properties:

(1) RF is reflexive iff Ac ⊂ F (A) for all A ∈ P (X) iff {x} ⊂ F ({x}c) for

all x ∈ X.

(2) RF is transitive iff F (F c(A)) ⊂ F (A) for all A ∈ P (X) iff F (F c({x}c)) ⊂
F ({x}c) for all x ∈ X.

(3) RF is symmetric iff F (F (A)) ⊂ A for all A ∈ P (X) iff F (F ({x}c)) ⊂
{x}c for all x ∈ X.

Proof. (1) Let RF be reflexive. Since A =
⋂

x∈Ac{x}c and {x} ⊂ F ({x}c),
F (A) = F (

⋂

x∈Ac{x}c) =
⋃

x∈Ac F ({x}c) ⊃
⋃

x∈Ac{x} = Ac.

Put A = {x}c. Then {x} ⊂ F ({x}c). Let {x} ⊂ F ({x}c). Then (x, x) ∈
RF .
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(2) First, we show that F (F c(A)) ⊂ F (A) for all A ∈ P (X) iff F (F c({x}c)) ⊂
F ({x}c) for all x ∈ X . Since F c is a necessity operator, we have:

F (F c(A)) = F (F c(
⋂

x∈Ac{x}c))) = F (
⋂

x∈Ac F c({x}c)) =
⋃

x∈Ac F (F c({x}c))
⊂

⋃

x∈Ac F ({x}c) = F (
⋂

x∈Ac{x}c) = F (A).

Conversely, put A = {x}c. It is trivial.
Second, RF is transitive iff F (F c({x}c)) ⊂ F ({x}c) for all x ∈ X . Let

RF be transitive. Since (∃y ∈ X)((x, y) ∈ RF & (y, z) ∈ RF ) iff (∃y ∈
X)(y ∈ F ({x}c) & z ∈ F ({y}c)) implies (x, z) ∈ RF iff z ∈ F ({x}c) and
F c({x}c) =

⋂

y∈F ({x}c){y}
c, we have:

F ((F c({x}c)) = F (
⋂

y∈F ({x}c){y}
c) =

⋃

y∈F ({x}c) F ({y}c)
z ∈ F ((F c({x}c)) iff (∃y)(y ∈ F ({x}c) & z ∈ F ({y}c)

implies z ∈ F ({x}c).

Hence F ((F c({x}c)) ⊂ F ({x}c).
Conversely, since F (F c({x}c)) ⊂ F ({x}c) and F c({x}c) =

⋂

y∈F ({x}c){y}
c,

we have
F ({x}c) ⊃ F (F c({x}c)) = F (

⋂

y∈F ({x}c){y}
c)

=
⋃

y∈F ({x}c) F ({y}c).

Thus z ∈
⋃

y∈F ({x}c) F ({y}c) implies z ∈ F ({x}c). Hence (x, y) ∈ RF & (y, z) ∈
RF → (x, z) ∈ RF .

(3) First, we will show that if RF is symmetric, then F (F (A)) ⊂ A for
all A ∈ P (X). Let RF be symmetric. Since A =

⋂

x∈Ac{x}c and F c is a
necessity operator, then F c(A) =

⋂

x∈Ac F c({x}c), F (A) =
⋂

x∈F (A)c{x}
c and

x ∈ F ({y}c) iff y ∈ F ({x}c), we have:

F (F (A)) = F (
⋂

y∈F c(A)

{y}c) =
⋃

y∈F c(A)

F ({y}c)

x ∈ F (F (A)) iff x ∈
⋃

y∈F c(A) F ({y}c)
iff (∃y)(y ∈ F c(A) & x ∈ F ({y}c)
iff (∃y)((∀x ∈ X)(x ∈ Ac → y ∈ F c({x}c))) & y ∈ F ({x}c))
iff (∃y)(((∀x ∈ X)(y ∈ F ({x}c) → x ∈ A)) & y ∈ F ({x}c))
implies x ∈ A.

Second, if F (F (A)) ⊂ A for all A ∈ P (X), put A = {x}c, then F (F ({x}c)) ⊂
{x}c for all x ∈ X .

Finally, we will show if F (F ({x}c)) ⊂ {x}c for all x ∈ X , then RF is
symmetric. Since F (F ({x}c)) ⊂ {x}c and F ({x}c) =

⋂

y∈F c({x})c{y}
c, we have

F (F ({x}c)) = F (
⋂

y∈F c({x})c{y}
c) =

⋃

y∈F c({x})c F ({y}c) ⊂ {x}c.

Thus z ∈ {x} → (∀y ∈ X)(y ∈ F c({x}c) → z ∈ F c({y})c). Put x = z, then
⊢ x ∈ F ({y}c) → y ∈ F ({x}c). Similarly, ⊢ y ∈ F ({x}c) → x ∈ F ({y}c).
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Example 3.8 Let R be a relation. Since 〈R〉∗ : P (X) → P (X) is a suffi-
ciency operator, we define (x, y) ∈ R〈R〉∗ iff y ∈ 〈R〉∗({x})c. Since R〈R〉∗ = R

and (〈R〉∗)∂ = [R]∗ from Theorem 2.7, we obtain:
(1) R is reflexive iff Ac ⊂ 〈R〉∗(A) for all A ∈ P (X) iff {x} ⊂ 〈R〉∗({x}c)

for all x ∈ X .
(2)R is transitive iff 〈R〉∗(〈R〉(A)) ⊂ 〈R〉∗(A) for all A ∈ P (X) iff 〈R〉∗(〈R〉({x}c)) ⊂

〈R〉∗({x}c) for all x ∈ X .
(3)R is symmetric iff 〈R〉∗(〈R〉∗(A)) ⊂ A for all A ∈ P (X) iff 〈R〉∗(〈R〉∗({x}c)) ⊂

{x}c for all x ∈ X .

Example 3.9 Let X = {a, b, c, d} be a set. Define F,G : P (X) → P (X)
as

F ({a}) = {a, b}, F ({b}) = {b}, F ({c}) = {a, c}, F ({d}) = {a, d}

G({a}) = {c, d}, G({b}) = {c, d}, G({c}) = {a, b}, G({d}) = {a, b}

H({b, c, d}) = {b, c}, H({a, c, d}) = {c, d}, H({a, b, d}) = {a, d}, H({a, b, c}) = {a, b}

(1) If F is a modal operator, then, by Theorem 3.1,

RF = {(a, a), (a, b), (b, b), (c, a), (c, c), (d, a), (d, d)}

Since RF is reflexive, then A ⊂ F (A). Since (c, a) ∈ RF and (a, b) ∈ RF but
(c, b) 6∈ RF , then RF is not transitive. Thus, {a, b, c} = F (F ({c})) 6⊂ F ({c}) =
{a, c}. Since RF is not symmetric,

{a, b, c} = F (F ∂({d}c)) 6⊂ {d}c = {b, c}.

(2) If G is a sufficiency operator, then, by Theorem 3.5,

RG = {(a, a), (a, b), (b, a), (b, b), (c, b), (c, c), (d, c), (d, d)}.

Since RG is reflexive, transitive and symmetric, then G(A) ⊂ Ac, G(A) ⊂
G(Gc(A)) and A ⊂ G(G(A)).

(3) If H is a necessity operator, then, by Theorem 3.3,

RH = {(a, a), (a, d), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)}.

Since RH is reflexive, then H(A) ⊂ A. Since (b, a) ∈ RH and (a, d) ∈ RH

but (b, d) 6∈ RH , then RH is not transitive. Thus, {a, d} = H({a, b, d}) 6⊂
H(H({a, b, d})) = {d}. Since RH is not symmetric,

{c} 6⊂ H(H∂({c})) = H({b, c}) = H({a, b, c}) ∩H({b, c, d}) = {b}.
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(4) If H is a co-sufficiency operator, then by Theorem 3.7,

RH = {(a, b), (a, c), (b, c), (b, d), (c, a), (c, b), (d, a), (d, b)}.

Since RH is not reflexive, we have {a}c 6⊂ H({a}c). Since RH is not transitive,

{a, c, d} = H(Hc({a}c)) 6⊂ H({a}c) = {b, c}.

Since RH is not symmetric, H(H({a}c)) = H(H({b, c, d})) = H({b, c}) =
H({a, b, c} ∩ {b, cd} = H({a, b, c}) ∪H({b, cd}) = {a, b, c}. Thus

{a, b, c} = H(H({a}c)) 6⊂ {a}c = {b, c, d}.
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