# Relation between S-Metric And $\mathcal{M}$-Fuzzy Metric Spaces 

Zeinab Hassanzadeh<br>Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran Z.hassanzadeh1368@yahoo.com

Atena Javaheri

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran Javaheri.a91@gmail.com

## Shaban Sedghi

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran sedghi_gh@yahoo.com

## Nabi Shobe

Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran nabi_shobe@yahoo.com


#### Abstract

In this work we have considered several common fixed point results in S-metric spaces for weak compatible mappings. By applications of these results we establish some fixed point theorems in fuzzy S-metric spaces.


Mathematics Subject Classification: 54E40; 54E35; 54H25
Keywords: Fuzzy contractive mapping; Complete fuzzy metric space; Common fixed point theorem; $R$-weakly commuting maps.
${ }^{1}$ The corresponding author: sedghi_gh@yahoo.com (Shaban Sedghi Ghadikolaei).

## 1 Introduction

In this paper we establish some fixed point results in a fuzzy S-metric space by applications of certain fixed point theorems in S-metric spaces. Also we
prove some fixed point results in S-metric spaces. Fuzzy metric space was first introduced by Kramosil and Michalek [13]. Subsequently, George and Veeramani had given a modified definition of fuzzy metric spaces [5] . Fixed point results in such spaces have been established in a large number of works. Some of these works are noted in $[6,17,15,23,24,25]$.

Definition $1.1[5]$ A binary operation * : $[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous $t$-norm if it satisfies the following conditions:
(1) $*$ is associative and commutative,
(2) $*$ is continuous,
(3) $a * 1=a$ for all $a \in[0,1]$,
(4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in[0,1]$.

Two typical examples of continuous t-norm are $a * b=a b$ and $a * b=$ $\min (a, b)$.

Here we have considered definition of fuzzy metric space (non-Archimedean).
Definition 1.2 [16] A 3-tuple ( $X, M, *$ ) is called a fuzzy metric space if $X$ is an arbitrary (non-empty) set, * is a continuous $t-$ norm and $M$ is a fuzzy set on $X^{2} \times(0, \infty)$ satisfying the following conditions for each $x, y, z \in X$ and $t, s>0$ :
(1) $M(x, y, t)>0$,
(2) $M(x, y, t)=1$ if and only if $x=y$,
(3) $M(x, y, t)=M(y, x, t)$,
(4) $M(x, z, t) * M(z, y, s) \leq M(x, y, t \vee s)$, where $t \vee s=\max \{s, t\}$,
(5) $M(x, y,):.(0, \infty) \longrightarrow[0,1]$ is continuous.

All fuzzy metric in this paper are assumed to be non-Archimedean.
In 1976, Jungck [8] introduced the notion of commuting mappings to find common fixed point results in metric spaces. Later on, in [9] Jungck proposed the notion of compatible mappings which is a generalization of the concept of commuting mapping. Some common fixed point theorems for compatible mappings and their generalizations are addressed in [10, 11, 14, 26]. In this paper we consider weak compatible mappings.

Definition 1.3 [18] Let $A$ and $S$ be mappings from a metric space $X$ into itself. Then the mappings are said to be weak compatible if they commute at a coincidence point, that is, $A x=S x$ implies that $A S x=S A x$.

## 2 Preliminary Notes

First we recall some notions, lemmas, and examples which will be useful later.

Definition 2.1 [21] Let $X$ be a nonempty set. A function $S: X^{3} \rightarrow[0, \infty)$ is said to be an $S$-metric on $X$, if for each $x, y, z, a \in X$,

1. $S(x, y, z) \geq 0$,
2. $S(x, y, z)=0$ if and only if $x=y=z$,
3. $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$.

The pair $(X, S)$ is called an $S$-metric space.
Example 2.2 [21] We can easily check that the following examples are $S$ metric spaces.

1. Let $X=R^{n}$ and $\|\cdot\|$ a norm on $X$. Then $S(x, y, z)=\|y+z-2 x\|+$ $\|y-z\|$ is an $S$-metric on $X$.
In general, if $X$ is a vector space over $R$ and $\|\cdot\|$ a norm on $X$. Then it is easy to see that

$$
S(x, y, z)=\|\alpha y+\beta z-\lambda x\|+\|y-z\|,
$$

where $\alpha+\beta=\lambda$ for every $\alpha, \beta \geq 1$, is an $S$-metric on $X$.
2. Let $X$ be a nonempty set and $d_{1}, d_{2}$ be two ordinary metrics on $X$. Then

$$
S(x, y, z)=d_{1}(x, z)+d_{2}(y, z),
$$

is an $S$-metric on $X$.
Lemma 2.3 [19] Let $(X, S)$ be an $S$-metric space. Then, we have $S(x, x, y)=$ $S(y, y, x), x, y \in X$.

For more detail of $S$-metric see the reference [20].
Definition 2.4 [20] Let $(X, S)$ be an $S$-metric space and $A \subset X$.

1. A sequence $\left\{x_{n}\right\}$ in $X$ converges to $x$ if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, that is for every $\varepsilon>0$ there exists $n_{0} \in N$ such that for $n \geq n_{0}, S\left(x_{n}, x_{n}, x\right)<$ $\varepsilon$. This case, we denote by $\lim _{n \rightarrow \infty} x_{n}=x$ and we say that $x$ is the limit of $\left\{x_{n}\right\}$ in $X$.
2. A sequence $\left\{x_{n}\right\}$ in $X$ is said to be Cauchy sequence if for each $\varepsilon>0$, there exists $n_{0} \in N$ such that $S\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$ for each $n, m \geq n_{0}$.
3. The $S$-metric space $(X, S)$ is said to be complete if every Cauchy sequence is convergent.
Lemma 2.5 [20] Let $(X, S)$ be an $S$-metric space. If there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then

$$
\lim _{n \rightarrow \infty} S\left(x_{n}, x_{n}, y_{n}\right)=S(x, x, y)
$$

## 3 Main Results

Next we establish the following result in S-metric spaces.
Theorem 3.1 Let $A, B, C$ and $T$ be self maps on a complete $S$-metric space $(X, S)$ satisfying:
(i) $A(X) \subseteq T(X), B(X) \subseteq C(X)$ and $T(X)$ or $C(X)$ is a closed subset of X;
(ii) there exist positive real numbers $a, b, c$, e such that $a+b+c+3 e<1$ and for each $x, y, z \in X$,

$$
\begin{aligned}
S(A x, A y, B z) & \leq a S(C x, C x, T z)+b S(C x, C x, A x)+c S(T z, T z, B z) \\
& +e(S(C x, C x, B z)+S(T z, T z, A y))
\end{aligned}
$$

(iii) the pairs $(A, C)$ and $(B, T)$ are weakly compatible.

Then $A, B, C$ and $T$ have a unique common fixed point in $X$.
Proof 1 Let $x_{0}$ be an arbitrary point in X. By (i), we can choose a point $x_{1}$ in $X$ such that $y_{0}=A x_{0}=T x_{1}$ and $y_{1}=B x_{1}=C x_{2}$. In general, there exists a sequence $\left\{y_{n}\right\}$ such that, $y_{2 n}=A x_{2 n}=T x_{2 n+1}$ and $y_{2 n+1}=B x_{2 n+1}=C x_{2 n+2}$, for $n=0,1,2, \cdots$. We claim that the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence.

By (ii), we have,

$$
\begin{aligned}
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)= & S\left(A x_{2 n}, A x_{2 n}, B x_{2 n+1}\right) \\
\leq & a S\left(C x_{2 n}, C x_{2 n}, T x_{2 n+1}\right)+b S\left(C x_{2 n}, C x_{2 n}, A x_{2 n}\right) \\
& +c S\left(T x_{2 n+1}, T x_{2 n+1}, B x_{2 n+1}\right) \\
& +e\left(S\left(C x_{2 n}, C x_{2 n}, B x_{2 n+1}\right)+S\left(T x_{2 n+1}, T x_{2 n+1}, A x_{2 n}\right)\right) \\
= & a S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right) \\
& +c S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)+e\left(S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n+1}\right)+S\left(y_{2 n}, y_{2 n}, y_{2 n}\right)\right) .
\end{aligned}
$$

If we put $d_{n}=S\left(y_{n}, y_{n}, y_{n+1}\right)$, then by above inequality we have,

$$
\begin{aligned}
d_{2 n} & \leq a d_{2 n-1}+b d_{2 n-1}+c d_{2 n}+e\left(S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n+1}\right)+0\right) \\
& \leq a d_{2 n-1}+b d_{2 n-1}+c d_{2 n}+e\left(2 S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
d_{2 n} \leq a d_{2 n-1}+b d_{2 n-1}+c d_{2 n}+2 e d_{2 n-1}+e d_{2 n} \tag{1}
\end{equation*}
$$

Hence we have,

$$
\begin{aligned}
d_{2 n} & \leq \frac{a+b+2 e}{1-c-e} d_{2 n-1} \\
& =t d_{2 n-1}
\end{aligned}
$$

where $0<t=\frac{a+b+2 e}{1-c-e}<1$.
Similarly, it follows that

$$
\begin{aligned}
d_{2 n+1} & \leq \frac{a+c+2 e}{1-e-b} d_{2 n} \\
& =t^{\prime} d_{2 n},
\end{aligned}
$$

where $0<t^{\prime}=\frac{a+c+2 e}{1-e-b}<1$. If we set $k=\max \left\{t, t^{\prime}\right\}<1$, then for every $n \in \mathbf{N}$ by above inequalities we get $d_{n} \leq k d_{n-1}$.

Hence,

$$
\begin{equation*}
d_{n} \leq k d_{n-1} \leq k^{2} d_{n-2} \leq \cdots \leq k^{n} d_{0} \tag{2}
\end{equation*}
$$

That is,

$$
\begin{equation*}
S\left(y_{n}, y_{n}, y_{n+1}\right) \leq k^{n} S\left(y_{0}, y_{0}, y_{1}\right) \tag{3}
\end{equation*}
$$

If $m \geq n$, then

$$
\begin{aligned}
S\left(y_{n}, y_{n}, y_{m}\right) & \leq 2 S\left(y_{n}, y_{n}, y_{n+1}\right)+2 S\left(y_{n+1}, y_{n+1}, y_{n+2}\right)+\cdots+2 S\left(y_{m-1}, m-1, y_{m}\right) \\
& \leq 2 k^{n} S\left(y_{0}, y_{0}, y_{1}\right)+2 k^{n+1} S\left(y_{0}, y_{0}, y_{1}\right) \cdots+2 k^{m-1} S\left(y_{0}, y_{0}, y_{1}\right) \\
& \leq \frac{2 k^{n}}{1-k} S\left(y_{0}, y_{0}, y_{1}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. It follows that, the sequence $\left\{y_{n}\right\}$ is Cauchy sequence and by the completeness of $X,\left\{y_{n}\right\}$ converges to $y \in X$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} A x_{2 n}=\lim _{n \rightarrow \infty} B x_{2 n+1}=\lim _{n \rightarrow \infty} C x_{2 n+2}=\lim _{n \rightarrow \infty} T x_{2 n+1}=y . \tag{4}
\end{equation*}
$$

Let $T(X)$ be a closed subset of $X$, then there exists $v \in X$ such that $T v=y$. We now prove that $B v=y . B y$ (ii), we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S\left(A x_{2 n}, A x_{2 n}, B v\right) \leq & \lim _{n \rightarrow \infty}\left[a S\left(C x_{2 n}, C x_{2 n}, T v\right)+b S\left(A x_{2 n}, A x_{2 n}, C x_{2 n}\right)\right. \\
& \left.+c S(B v, B v, T v)+e\left(S\left(B v, B v, C x_{2 n}\right)+S\left(A x_{2 n}, A x_{2 n}, T v\right)\right)\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
S(y, y, B v) & \leq a S(y, y, T v)+b S(y, y, y)+c S(B v, B v, y)+e(S(B v, B v, y)+S(y, y, T v)) \\
& <S(y, y, B v)
\end{aligned}
$$

It follows that $B v=y=T v$. Since $B$ and $T$ are two weakly compatible mappings, we have $B T v=T B v$ and so $B y=T y$.

Next, we prove that $B y=y . B y$ (ii), we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S\left(A x_{2 n}, A x_{2 n}, B y\right) \leq & \lim _{n \rightarrow \infty}\left[a S\left(C x_{2 n}, C x_{2 n}, T y\right)+b S\left(A x_{2 n}, A x_{2 n}, C x_{2 n}\right)\right. \\
& \left.+c S(B y, B y, T y)+e\left(S\left(B y, B y, C x_{2 n}\right)+S\left(A x_{2 n}, A x_{2 n}, T y\right)\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S(y, y, B y) & \leq a S(y, y, T y)+b S(y, y, y)+c S(B y, B y, T y)+e(S(B y, B y, y)+S(y, y, T y)) \\
& <S(y, y, B y)
\end{aligned}
$$

and so $B y=y$.
Since $B(X) \subseteq C(X)$, there exists $w \in X$ such that $C w=y$. We prove that $A w=y$. By (ii) we have

$$
\begin{aligned}
S(A w, A w, B y) \leq & a S(C w, C w, T y)+b S(A w, A w, C w)+c S(B y, B y, T y) \\
& +e(S(B y, B y, C w)+S(A w, A w, T y))
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
S(A w, A w, y) & \leq a S(y, y, y)+b S(A w, A w, y)+c S(y, y, T y) \\
& +e(S(y, y, y)+S(A w, A w, T y)) \\
& <S(A w, A w, y)
\end{aligned}
$$

This implies that $A w=y$ and hence $A w=C w=y$. Since $A$ and $C$ are weakly compatible, then $A C w=C A w$ and so $A y=C y$.

Now, we prove that $A y=y$. From (ii), we have

$$
\begin{aligned}
S(A y, A y, B y) \leq & a S(C y, C y, T y)+b S(A y, A y, C y)+c S(B y, B y, T y) \\
& +e(S(B y, B y, C y)+S(A y, A y, T y))
\end{aligned}
$$

it follows that

$$
\begin{aligned}
S(A y, A y, y) & \leq a S(C y, C y, y)+b S(A y, A y, C y)+c S(y, y, y) \\
& +e(S(y, y, C y))+S(A y, A y, y)) \\
& <S(A y, A y, y)
\end{aligned}
$$

and hence $A y=y$ and therefore $A y=C y=B y=T y=y$. That is $y$ is a common fixed point for $A, B, C, T$.

The proof is similar when $C(X)$ is assumed to be a closed subset of $X$.
Now to prove the uniqueness. Assume that $x$ is another common fixed point of $A, B, C$ and $T$. Then

$$
\begin{aligned}
S(x, x, y) & =S(A x, A x, B y) \\
& \leq a S(C x, C x, T y)+b S(A x, A x, C x)+c S(B y, B y, T y) \\
& +e(S(C x, C x, B y)+S(A x, A x, T y))
\end{aligned}
$$

and so

$$
\begin{aligned}
S(x, x, y) & \leq a S(x, x, y)+b S(x, x, x)+c S(y, y, y)+e(S(x, x, y)+S(x, x, y)) \\
& <S(x, x, y) .
\end{aligned}
$$

Thus it follows that $x=y$.

Corollary 3.2 Let $A$ and $B$ be self maps on a complete $S$-metric space $(X, S)$ satisfying: there exist positive real numbers $a, b, c$, e such that $a+b+$ $c+3 e<1$ and for each $x, y, z \in X$,

$$
S(A x, A y, B z) \leq a S(x, x, z)+b S(x, x, A x)+c S(z, z, B z)+e(S(x, x, B z)+S(z, z, A y))
$$

Then $A$ and $B$ have a unique common fixed point in $X$.
Proof 2 It is enough set $T=C=I$, identity map in Theorem 3.1.
Here we introduce $\mathcal{M}$-fuzzy metric. We describe the space along with some associated concepts in the following.

Definition 3.3 A 3-tuple $(X, \mathcal{M}, *)$ is called a $\mathcal{M}$-fuzzy metric space if $X$ is an arbitrary (non-empty) set, * is a continuous $t$-norm and $\mathcal{M}$ is a fuzzy set on $X^{3} \times(0, \infty)$ satisfying the following conditions for each $x, y, z, a \in X$ and $t, s, r>0$ :
(1) $\mathcal{M}(x, y, z, t)>0$,
(2) $\mathcal{M}(x, y, z, t)=1$ if and only if $x=y=z$,
(3) $\mathcal{M}(x, y, z, \vee\{t, s, r\} \geq \mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, s) * \mathcal{M}(z, z, a, r)$ where $\vee\{t, s, r\})=\max \{t, s, r\}$,
(4) $\mathcal{M}(x, y, z,):.(0, \infty) \longrightarrow[0,1]$ is continuous.

Example 3.4 Let $a * b=a b$ for all $a, b \in[0,1]$, we define

$$
\begin{equation*}
\mathcal{M}(x, y, z, t)=\exp ^{-} \frac{S(x, y, z)}{t} \tag{5}
\end{equation*}
$$

where $S$ is an $S$-metric on set $X$. Then $(X, \mathcal{M}, *)$ is a $\mathcal{M}$-fuzzy metric space.
Proof 3 (i) $\mathcal{M}(x, y, z, t)>0$ for all $x, y, z \in X$ and $t>0$ is trivial.

$$
\text { (ii) } \begin{aligned}
\mathcal{M}(x, y, z, t)=1 & \Longleftrightarrow S(x, y, z)=0 \\
& \Longleftrightarrow x=y=z .
\end{aligned}
$$

(iii) Since $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$,
hence,

$$
\begin{aligned}
\frac{S(x, y, z)}{t \vee s \vee r} & \leq \frac{S(x, x, a)+S(y, y, a)+S(z, z, a)}{t \vee s \vee r} \\
& \leq \frac{S(x, x, a)}{t}+\frac{S(y, y, a)}{s}+\frac{S(z, z, a)}{r}
\end{aligned}
$$

Thus
(iii) $\exp ^{-\frac{S(x, y, z)}{t \vee s \vee r} \geq \exp ^{-\left\{\frac{S(x, x, a)}{t}+\frac{S(y, y, a)}{s}+\frac{S(z, z, a)}{r}\right\}}}$

$$
=\exp ^{-} \frac{S(x, y, z)}{t} \cdot \exp ^{-} \frac{S(x, x, a)}{s} \cdot \exp ^{-} \frac{S(z, z, a)}{r}
$$

it follows that,

$$
\begin{aligned}
(i i i) \mathcal{M}(x, y, z, t \vee s \vee r) & \geq \mathcal{M}(x, x, a, t) \cdot \mathcal{M}(y, y, a, s) \cdot \mathcal{M}(z, z, a, r) \\
& =\mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, s) * \mathcal{M}(z, z, a, r) .
\end{aligned}
$$

$(X, \mathcal{M}, *)$ is a $\mathcal{M}$-fuzzy metric space.
A sequence $\left\{x_{n}\right\}$ in $X$ converges to $x$ if and only if $\mathcal{M}\left(x_{n}, x_{n}, x, t\right) \rightarrow 1$ as $n \rightarrow \infty$, for each $t>0$. It is called a Cauchy sequence if for each $0<\varepsilon<1$ and $t>0$, there exits $n_{0} \in N$ such that $\mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right)>1-\varepsilon$ for each $n, m \geq n_{0}$. The $\mathcal{M}$-fuzzy metric space $(X, \mathcal{M}, *)$ is said to be complete if every Cauchy sequence is convergent.

The following properties of $\mathcal{M}$ noted in the theorem below are easy consequences of the definition.

Lemma 3.5 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space. Then
(1) $\mathcal{M}(x, x, y, t)=\mathcal{M}(y, y, x, t)$.
(2) $\mathcal{M}(x, x, y, t)$ is nondecreasing with respect to $t$ for each $x, y \in X$.

Proof 4 (i) For every $t \in(0, \infty)$, we have

$$
\begin{aligned}
\mathcal{M}(x, x, y, t)=\mathcal{M}(x, x, y, t \vee t \vee t) & \geq \mathcal{M}(x, x, x, t) * \mathcal{M}(x, x, x, t) * \mathcal{M}(y, y, x, t) \\
& =\mathcal{M}(y, y, x, t) .
\end{aligned}
$$

Similarly, we can show that $\mathcal{M}(y, y, x, t) \geq \mathcal{M}(x, x, y, t)$. That is $\mathcal{M}(x, x, y, t)=$ $\mathcal{M}(y, y, x, t)$.
(ii) For every $t, s \in(0, \infty)$, let $t \geq s$. Then

$$
\begin{aligned}
\mathcal{M}(x, x, y, t)=\mathcal{M}(x, x, y, t \vee s \vee s) & \geq \mathcal{M}(x, x, x, t) * \mathcal{M}(x, x, x, s) * \mathcal{M}(y, y, x, s) \\
& =\mathcal{M}(y, y, x, s)=\mathcal{M}(x, x, y, s) .
\end{aligned}
$$

Example 3.6 Let $a * b=a b$ for all $a, b \in[0,1]$ and $M_{1}$ and $M_{2}$ be two fuzzy set on $X \times X \times(0,+\infty)$ defined by

$$
\begin{equation*}
\mathcal{M}(x, y, z, t)=M_{1}(x, z, t) * M_{2}(y, z, t), \tag{6}
\end{equation*}
$$

for all $x, y, z \in X$. Then $(X, \mathcal{M}, *)$ is a $\mathcal{M}$-fuzzy metric space.

Proof 5 (i) $\mathcal{M}(x, y, z, t)>0$ for all $x, y, z \in X$ and $t>0$ is trivial.

$$
\text { (ii) } \begin{aligned}
\mathcal{M}(x, y, z, t)=1 & \Longleftrightarrow M_{1}(x, z, t)=M_{2}(y, z, t)=1 \\
& \Longleftrightarrow x=y=z .
\end{aligned}
$$

(iii) Let $t \geq s \geq r$, it follows that,

$$
\begin{aligned}
& \mathcal{M}(x, y, z, t \vee s \vee r) \\
= & \mathcal{M}(x, y, z, t) \\
= & M_{1}(x, z, t) * M_{2}(y, z, t) \\
\geq & M_{1}(x, a, t) * M_{1}(a, z, t) * M_{2}(y, a, t) * M_{2}(a, z, t) \\
\geq & M_{1}(x, a, t) * M_{2}(x, a, t) * M_{1}(y, a, t) * M_{2}(y, a, t) * M_{1}(z, a, t) * M_{2}(z, a, t) \\
= & \mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, t) * \mathcal{M}(z, z, a, t) \\
\geq & \mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, s) * \mathcal{M}(z, z, a, r),
\end{aligned}
$$

$(X, \mathcal{M}, *)$ is a $\mathcal{M}$-fuzzy metric space.
Lemma 3.7 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space. If sequence $\left\{x_{n}\right\}$ in $X$ converges to $x$, then $x$ is unique.

Proof 6 Let $\left\{x_{n}\right\}$ converges to $x$ and $y$, then for each $0<\varepsilon<1$ there exist $n_{1}, n_{2} \in N$ such that

$$
\begin{equation*}
\forall n \geq n_{1} \Longrightarrow \mathcal{M}\left(x_{n}, x_{n}, x, t\right)>1-\varepsilon \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall n \geq n_{2} \Longrightarrow \mathcal{M}\left(x_{n}, x_{n}, y, t\right)>1-\varepsilon . \tag{8}
\end{equation*}
$$

If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n \geq n_{0}$ we have:

$$
\begin{aligned}
\mathcal{M}(x, x, y, t) & \geq \mathcal{M}\left(x, x, x_{n}, t\right) * \mathcal{M}\left(x, x, x_{n}, t\right) * \mathcal{M}\left(y, y, x_{n}, t\right) \\
& >(1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon)
\end{aligned}
$$

By taking the limit when $\varepsilon \rightarrow 0$ in above inequality we get $\mathcal{M}(x, x, y, t) \geq 1$. Hence $\mathcal{M}(x, x, y, t)=1$ so $x=y$.

Lemma 3.8 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space. Then the convergent sequence $\left\{x_{n}\right\}$ in $X$ is Cauchy.

Proof 7 Since $\lim _{n \rightarrow \infty} x_{n}=x$ then for each $0<\varepsilon<1$ there exists $n_{1}, n_{2} \in N$ such that

$$
\begin{equation*}
n \geq n_{1} \Rightarrow \mathcal{M}\left(x_{n}, x_{n}, x, t\right)>1-\varepsilon \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
m \geq n_{2} \Rightarrow \mathcal{M}\left(x_{m}, x_{m}, x, t\right)>1-\varepsilon . \tag{10}
\end{equation*}
$$

If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n, m \geq n_{0}$ we have:

$$
\begin{aligned}
\mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right) & \geq \mathcal{M}\left(x_{n}, x_{n}, x, t\right) * \mathcal{M}\left(x_{n}, x_{n}, x, t\right) * \mathcal{M}\left(x_{m}, x_{m}, x, t\right) \\
& >(1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon) .
\end{aligned}
$$

By taking the limit when $\varepsilon \rightarrow 0$ in above inequality we get $\mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right) \geq 1$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Lemma 3.9 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space. If there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right)=\mathcal{M}(x, x, y, t) . \tag{11}
\end{equation*}
$$

Proof 8 Since $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then for each $0<\varepsilon<1$ there exist $n_{1}, n_{2} \in N$ such that

$$
\begin{equation*}
\forall n \geq n_{1} \Rightarrow \mathcal{M}\left(x_{n}, x_{n}, x, t\right)>1-\varepsilon, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall n \geq n_{2} \Rightarrow \mathcal{M}\left(y_{n}, y_{n}, y, t\right)>1-\varepsilon . \tag{13}
\end{equation*}
$$

If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n \geq n_{0}$ we have:

$$
\begin{aligned}
& \mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right) \\
\geq & \mathcal{M}\left(x_{n}, x_{n}, x, t\right) * \mathcal{M}\left(x_{n}, x_{n}, x, t\right) * \mathcal{M}\left(y_{n}, y_{n}, x, t\right) \\
\geq & \mathcal{M}\left(x_{n}, x_{n}, x, t\right) * \mathcal{M}\left(x_{n}, x_{n}, x, t\right) * \mathcal{M}\left(y_{n}, y_{n}, y, t\right) * \mathcal{M}\left(y_{n}, y_{n}, y, t\right) * \mathcal{M}(x, x, y, t) \\
> & (1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon) * \mathcal{M}(x, x, y, t) .
\end{aligned}
$$

By taking the limit when $\varepsilon \rightarrow 0$ in above inequality we get

$$
\begin{equation*}
\mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right) \geq \mathcal{M}(x, x, y, t) \tag{14}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
& \mathcal{M}(x, x, y, t) \\
\geq & \mathcal{M}\left(x, x, x_{n}, t\right) * \mathcal{M}\left(x, x, x_{n}, t\right) * \mathcal{M}\left(y, y, x_{n}, t\right) \\
\geq & \mathcal{M}\left(x, x, x_{n}, t\right) * \mathcal{M}\left(x, x, x_{n}, t\right) * \mathcal{M}\left(y, y, y_{n}, t\right) * \mathcal{M}\left(y, y, y_{n}, t\right) * \mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right) \\
> & (1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon) *(1-\varepsilon) * \mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right),
\end{aligned}
$$

as $\varepsilon \rightarrow 0$ we have

$$
\begin{equation*}
\mathcal{M}(x, x, y, t)>\mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right) \tag{15}
\end{equation*}
$$

Therefore by relations (14) and (15) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right)=\mathcal{M}\left(x_{n}, x_{n}, y_{n}, t\right) . \tag{16}
\end{equation*}
$$

Lemma 3.10 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space with $a * b \geq a b$ for all $a, b \in[0,1]$.If define $S: X^{3} \longrightarrow[0, \infty)$ by $S(x, y, z)=\int_{0}^{1} \log _{\alpha}(\mathcal{M}(x, y, z, t)) d t$, then $S$ is an $S$-metric on $X$ for $0<\alpha<1$.

Proof 9 It is clear from the definition that $S(x, y, z)$ is well defined for each $x, y, z \in X$. (i) $S(x, y, z) \geq 0$ for all $x, y, z \in X$ is trivial.
(ii) $S(x, y, z)=0 \Longleftrightarrow \log _{\alpha}(\mathcal{M}(x, y, z, t))=0$ for all $t>0$

$$
\Longleftrightarrow \mathcal{M}(x, y, z, t)=1 \text { for all } t>0 \Longleftrightarrow x=y=z .
$$

$$
\begin{aligned}
(i v) \text { Since } \mathcal{M}(x, y, z, t) & \geq M(x, x, a, t) * \mathcal{M}(y, y, a, t) * \mathcal{M}(z, z, a, t) \\
& \geq \mathcal{M}(x, x, a, t) \cdot \mathcal{M}(y, y, a, t) \cdot \mathcal{M}(z, z, a, t)
\end{aligned}
$$

it follows that,

$$
\begin{aligned}
& S(x, y, z) \\
= & \int_{0}^{1} \log _{\alpha}(\mathcal{M}(x, y, z, t)) d t \\
\leq & \int_{0}^{1} \log _{\alpha}(\mathcal{M}(x, x, a, t) \cdot \mathcal{M}(y, y, a, t) \cdot \mathcal{M}(z, z, a, t)) d t \\
\leq & \int_{0}^{1} \log _{\alpha}(\mathcal{M}(x, x, a, t)) d t+\int_{0}^{1} \log _{\alpha}(\mathcal{M}(y, y, a, t)) d t+\int_{0}^{1} \log _{\alpha}(\mathcal{M}(z, z, a, t)) d t \\
= & S(x, x, a)+S(y, y, a)+S(z, z, a)
\end{aligned}
$$

This proves that $S$ is an $S$-metric on $X$.
The following lemma plays an important role to give fixed point results on a $\mathcal{M}$-fuzzy metric space.

Lemma 3.11 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space.
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, \mathcal{M}, *)$ if and only if it is a Cauchy sequence in the $S$-metric space $(X, S)$.
(b) A $\mathcal{M}$-fuzzy metric space $(X, \mathcal{M}, *)$ is complete if and only if the $S$ metric space $(X, S)$ is complete.

Proof 10 First we show that every Cauchy sequence in $(X, \mathcal{M}, *)$ is a Cauchy sequence in $(X, S)$. To this end let $\left\{x_{n}\right\}$ be a Cauchy sequence in $(X, \mathcal{M}, *)$. Then $\lim _{n, m \rightarrow \infty} \mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right)=1$. Since

$$
S\left(x_{n}, x_{n}, x_{m}\right)=\int_{0}^{1} \log _{\alpha}\left(\mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right)\right) d t
$$

is an S-metric. Hence, we have

$$
\begin{aligned}
& \lim _{n, m \rightarrow \infty} S\left(x_{n}, x_{n}, x_{m}\right) \\
= & \lim _{n, m \rightarrow \infty} \int_{0}^{1} \log _{\alpha}\left(\mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right)\right) d t=0 .
\end{aligned}
$$

We conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, S)$. Next we prove that completeness of $(X, S)$ implies completeness of $(X, \mathcal{M}, *)$. Indeed, if $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, \mathcal{M}, *)$ then it is also a Cauchy sequence in $(X, S)$. Since the $S$-metric space $(X, S)$ is complete we deduce that there exists $y \in X$ such that $\lim _{n \rightarrow \infty} S\left(x_{n}, x_{n}, y\right)=0$. Therefore,

$$
\int_{0}^{1} \log _{\alpha}\left(\lim _{n \rightarrow \infty} \mathcal{M}\left(x_{n}, x_{n}, y, t\right)\right) d t=\lim _{n \rightarrow \infty} S\left(x_{n}, x_{n}, y\right)=0
$$

Hence we follow that $\left\{x_{n}\right\}$ is a convergent sequence in $(X, \mathcal{M}, *)$.
Now we prove that every Cauchy sequence $\left\{x_{n}\right\}$ in $(X, S)$ is a Cauchy sequence in $(X, \mathcal{M}, *)$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, S)$, then

$$
\lim _{n, m \rightarrow \infty} S\left(x_{n}, x_{n}, x_{m}\right)=\lim _{n, m \rightarrow \infty} \int_{0}^{1} \log _{\alpha}\left(\mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right)\right) d t=0
$$

Hence, $\lim _{n, m \rightarrow \infty} \mathcal{M}\left(x_{n}, x_{n}, x_{m}, t\right)=1$.
That is, $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, \mathcal{M}, *)$.
We shall have established the lemma if we prove that $(X, S)$ is complete if so is $(X, \mathcal{M}, *)$. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $(X, S)$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X, \mathcal{M}, *)$, and so it is convergent to a point $y \in X$ with

$$
\lim _{n, m \rightarrow \infty} \mathcal{M}\left(x_{n}, x_{m}, y, t\right)=1
$$

As a consequence we have

$$
\lim _{n, m \rightarrow \infty} S\left(x_{n}, x_{m}, y\right)=\lim _{n, m \rightarrow \infty} \int_{0}^{1} \log _{\alpha}\left(\mathcal{M}\left(x_{n}, x_{m}, y, t\right)\right) d t=0 .
$$

Therefore $(X, S)$ is complete.
Lemma 3.12 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space with $a * b=\min \{a, b\}$ for all $a, b \in[0,1]$. We define $S: X^{3} \longrightarrow[0, \infty)$ by $S(x, y, z)=\int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(x, y, z, t)\right) d t$, then $S$ is an $S$-metric on $X$.

Proof 11 (i) $S(x, y, z) \geq 0$ is trivial.
(ii) $\quad S(x, y, z)=0 \Longleftrightarrow \cot \left(\frac{\pi}{2} \mathcal{M}(x, y, z, t)\right)=0$ for all $t>0$

$$
\Longleftrightarrow \mathcal{M}(x, y, z, t)=1 \text { for all } t>0 \Longleftrightarrow x=y=z .
$$

(iii) Since $\mathcal{M}(x, y, z, t) \geq \mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, t) * \mathcal{M}(z, z, a, t)$

$$
=\min \{\mathcal{M}(x, x, a, t), \mathcal{M}(y, y, a, t), \mathcal{M}(z, z, a, t)\} .
$$

and also since $0<\frac{\pi}{2} \mathcal{M}(x, y, z, t) \leq \frac{\pi}{2}$ it follows that,

$$
\begin{aligned}
& S(x, y, z) \\
= & \int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(x, y, z, t)\right) d t \\
\leq & \int_{0}^{1} \cot \left[\frac{\pi}{2}(\mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, t), \mathcal{M}(z, z, a, t))\right] d t \\
= & \int_{0}^{1} \cot \left(\frac{\pi}{2} \min \{\mathcal{M}(x, x, a, t), \mathcal{M}(y, y, a, t), \mathcal{M}(z, z, a, t)\}\right) d t \\
= & \min \left\{\int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(x, x, a, t)\right) d t, \int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(y, y, a, t)\right) d t, \int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(z, z, a, t)\right) d t\right\} \\
\leq & \int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(x, x, a, t)\right) d t+\int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(y, y, a, t)\right) d t+\int_{0}^{1} \cot \left(\frac{\pi}{2} \mathcal{M}(z, z, a, t)\right) d t \\
= & S(x, x, a)+S(y, y, a)+S(z, z, a),
\end{aligned}
$$

that is $S$ is an $S$-metric on $X$.
Remark 3.13 Let $a, b \in(0,1]$, then it is a standard result that

$$
\operatorname{Arccot}(\min \{a, b\}) \leq \operatorname{Arccot}(a)+\operatorname{Arccot}(b)-\frac{\pi}{4}
$$

Lemma 3.14 Let $(X, \mathcal{M}, *)$ be a $\mathcal{M}$-fuzzy metric space with $a * b=\min \{a, b\}$ for all $a, b \in[0,1]$. We define $S: X^{3} \longrightarrow[0, \infty)$ by $S(x, y, z)=\int_{0}^{1}\left(\frac{4}{\pi} \operatorname{Arccot}(\mathcal{M}(x, y, z, t))-1\right) d t$, then $S$ is an $S$-metric on $X$.

Proof 12 (i) $0 \leq S(x, y, z)<1$ is trivial.
(ii) $\quad S(x, y, z)=0 \Longleftrightarrow \frac{4}{\pi} \operatorname{Arccot}(\mathcal{M}(x, y, z, t))-1=0$ for all $t>0$ $\Longleftrightarrow \operatorname{Arccot}(\mathcal{M}(x, y, z, t))=\frac{\pi}{4}$ for all $t>0$.
$\Longleftrightarrow \mathcal{M}(x, y, z, t)=1$ for all $t>0 \Longleftrightarrow x=y=z$.
(iii) Since

$$
\begin{aligned}
\mathcal{M}(x, y, z, t) & \geq \mathcal{M}(x, x, a, t) * \mathcal{M}(y, y, a, t) * \mathcal{M}(z, z, a, t) \\
& =\min \{\mathcal{M}(x, x, a, t), \mathcal{M}(y, y, a, t), \mathcal{M}(z, z, a, t)\}
\end{aligned}
$$

it follows that,

$$
\begin{aligned}
& \operatorname{Arccot}(\mathcal{M}(x, y, z, t)) \\
\leq & \operatorname{Arccot}[\mathcal{M}(x, y, z, t) * \mathcal{M}(y, y, a, t) * \mathcal{M}(z, z, a, t)] \\
= & \operatorname{Arccot}(\min \{\mathcal{M}(x, x, a, t), \mathcal{M}(y, y, a, t), \mathcal{M}(z, z, a, t)\}) \\
\leq & \operatorname{Arccot}(\mathcal{M}(x, x, a, t))+\operatorname{Arccot}(\mathcal{M}(y, y, a, t))+\operatorname{Arccot}(\mathcal{M}(z, z, a, t))-\frac{\pi}{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S(x, y, z) & =\int_{0}^{1}\left(\frac{4}{\pi} \operatorname{Arccot}(\mathcal{M}(x, y, z, t))-1\right) d t \\
& \leq \int_{0}^{1}\left(\frac{4}{\pi} \operatorname{Arccot}(\mathcal{M}(x, x, a, t))-1\right) d t+\int_{0}^{1}\left(\frac{4}{\pi} \operatorname{Arccot}(\mathcal{M}(y, y, a, t))-1\right) d t \\
& +\int_{0}^{1}\left(\frac{4}{\pi} \operatorname{Arccot}(\mathcal{M}(z, z, a, t))-1\right) d t \\
& =S(x, x, a)+S(y, y, a)+S(z, z, a),
\end{aligned}
$$

that is $S$ is an $S$-metric on $X$.
We now apply the theorem 3.1 to prove the following fixed point result in $\mathcal{M}$-fuzzy metric spaces.

Theorem 3.15 Let $(X, \mathcal{M}, *)$ be a complete $\mathcal{M}$-fuzzy metric space with $d * f \geq d f$ for all $d, f \in[0,1]$. Let $A, B, C$ and $T$ be self maps on $X$ satisfying:
(i) $A(X) \subseteq T(X), B(X) \subseteq C(X)$ and $T(X)$ or $C(X)$ is a closed subset of $X$;
(ii) there exists positive real numbers $a, b, c, e$ such that $a+b+c+3 e<1$ and for each $x, y, z \in X$,

$$
\mathcal{M}(A x, A y, B z, t) \geq \begin{aligned}
& \mathcal{M}^{a}(C x, C x, T z, t) * \mathcal{M}^{b}(C x, C x, A x, t) \\
& * \mathcal{M}^{c}(T z, T z, B z, t) *[\mathcal{M}(C x, C x, B z, t) * \mathcal{M}(T z, T z, A y, t)]^{e}
\end{aligned}
$$

(iii) the pairs $(A, C)$ and $(B, T)$ are weakly compatible.

Then $A, B, C$ and $T$ have a unique common fixed point in $X$.
Proof 13 From inequality (ii) above, we get,

$$
\begin{aligned}
& \int_{0}^{1} \log _{\alpha}^{\mathcal{M}(A x, A y, B z, t)} d t \\
\leq & \int_{0}^{1} \log _{\alpha}\binom{\mathcal{M}^{a}(C x, C x, T z, t) * \mathcal{M}^{b}(C x, C x, A x, t)}{* \mathcal{M}^{c}(T z, T z, B z, t) *[\mathcal{M}(C x, C x, B z, t) * \mathcal{M}(T z, T z, A y, t)]^{e}} d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{1} \log _{\alpha}\binom{\mathcal{M}^{a}(C x, C x, T z, t) \mathcal{M}^{b}(C x, C x, A x, t)}{\mathcal{M}^{c}(T z, T z, B z, t)\left[\mathcal{M}^{e}(C x, C x, B z, t) \mathcal{M}^{e}(T z, T z, A y, t)\right]} d t \\
& =\quad a \int_{0}^{1} \log _{\alpha}^{\mathcal{M}(C x, C x, T z, t)} d t+b \int_{0}^{1} \log _{\alpha}^{\mathcal{M}(C x, C x, A x, t)} d t \\
& \quad+c \int_{0}^{1} \log _{\alpha}^{\mathcal{M}(T z, T z, B z, t)} d t+e\left(\int_{0}^{1} \log _{\alpha}^{\mathcal{M}(C x, C x, B z, t)} d t+\int_{0}^{1} \log _{\alpha}^{\mathcal{M}(T z, T z, A y, t)} d t\right) .
\end{aligned}
$$

If set $S(x, y, z)=\int_{0}^{1} \log _{\alpha}^{\mathcal{M}(x, y, z, t)} d t$ for every $x, y, z \in X$ and $0<\alpha<1$. Then it follows that,

$$
\begin{aligned}
S(A x, A y, B z) \leq & a S(C x, C x, T z)+b S(C x, C x, A x)+c S(T z, T z, B z) \\
& +e(S(C x, C x, B z)+S(T z, T z, A y))
\end{aligned}
$$

Hence by Lemma 3.14 all of conditions Theorem 3.1 hold. Thus $A, B, C$ and $T$ have a unique common fixed point in $X$.

Corollary 3.16 Let $(X, \mathcal{M}, *)$ be a complete $\mathcal{M}$-fuzzy metric space with $d * f \geq d f$ for all $d, f \in[0,1]$. Let $A$ and $B$ be self maps on $X$ satisfying: there exists positive real numbers $a, b, c, e$ such that $a+b+c+3 e<1$ and for each $x, y, z \in X$,

$$
\mathcal{M}(A x, A y, B z, t) \geq \begin{aligned}
& \mathcal{M}^{a}(x, x, z, t) * \mathcal{M}^{b}(x, x, A x, t) \\
& * \mathcal{M}^{c}(z, z, B z, t) *[\mathcal{M}(x, x, B z, t) * \mathcal{M}(z, z, A y, t)]^{e}
\end{aligned}
$$

Then $A$ and $B$ have a unique common fixed point in $X$.
Proof 14 It is enough set $T=C=I$, identity map in Theorem 3.15.

## References

[1] R. P. Agarwal, M. A. El-Gebeily, D. O'regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (1)(2008) 109-116.
[2] Lj. Ćrićć, D. Mihet, R. Saadati, Monotone generalized contractions in partiality ordered probabilistic metric spaces, Topology and its Applications (2009) doi: 10. 1016/j. na. 2009. 08. 029.
[3] M. Demmaa, R. Saadati, P. Vetro, Fixed Point Results on b-Metric Space via Picard Sequences and b-Simulation Functions, Iranian Journal of Mathematical Sciences and Informatics Vol. 11, No. 1 (2016), pp 123-136.
[4] Fang JX. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Sys 46(1992), 107-113.
[5] George A, Veeramani P. On some result in fuzzy metric space. Fuzzy Sets Syst 64(1994), 395-399.
[6] Gregori V, Sapena A. On fixed-point theorem in fuzzy metric spaces. Fuzzy Sets and Sys 125(2002), 245-252.
[7] Hadgic O. Common fixed point theorems for families of mapping in complete metric space, Math. Japon. 29 (1984); 127-134.
[8] Jungck G. Commuting mappings and fixed points, Amer Math. Monthly., 83, (1976), 261-263.
[9] Jungck G. Compatible mappings and common fixed points, Internat,J, Math. Math. Sci., 9, (1986), 771-779.
[10] Jungck G. Common fixed points of commuting and compatible maps on compacta, Proc.Amer. Math. Soc., 103(1988), 977-983.
[11] Kang S.M., Cho Y.J. and Jungck G. Common fixed point of compatible mappings, Internet. J. Math. Math. Sci., 13(1990), 61-66.
[12] Jong Kyu Kim, Shaban Sedghi, A. Gholidahneh, M. Mahdi Rezaee, Fixed point theorems in $S$-metric spaces, East Asian Math. J., Vol. 32 (2016), No. 5, pp. 677-684.
[13] Kramosil I, Michalek J. Fuzzy metric and statistical metric spaces. Kybernetica 11(1975), 326-34.
[14] Mishra S.N. Common fixed points of compatible mappings in PM-spaces, Math. Japonica.36(2)(1991); 283-289.
[15] Miheţ D. A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Sys 144(2004), 431-439.
[16] Miheţ D. Fuzzy $\psi$-contractive mappimgs in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems 159(2008)739-744.
[17] Rodríguez López J, Ramaguera S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Sys 147(2004), 273-283.
[18] Rhoades B.E. Common fixed point theorems for nonself QuasiContraction Mappings Varohmihir Journal of Mathematical Sciences Vol. 2 No.I (2002), 11-14
[19] S. Sedghi, I. Altun, N. Shobe, M. A. Salahshour, Some Properties of Smetric Spaces and Fixed Point Results, Kyungpook Math. J. 54(2014), 113-122 http://dx.doi.org/10.5666/KMJ. 2014. 54. 1. 113.
[20] S. Sedghi, NV. Dung: Fixed point theorems on S-metric spaces. Mat. Vensnik 66, 113-124 (2014).
[21] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vanik 64 (2012), 258-266.
[22] Shaban Sedghi, Nabi Shobe and Tatjana Dosenovic, Fixed point results in $S$-metric spaces, Nonlinear Functional Analysis And Applications, Vol. 20, No. 1 (2015), pp. 55-67.
[23] Sedghi S., Choudhury B. S. and Shobe N., Unique common fixed point theorem for four weakly compatible mappings in complete fuzzy metric spaces, J. Fuzzy. Math., (To appear).
[24] Vasuki R. Common fixed points for $R$-weakly commuting maps in fuzzy metric spaces. Indian J Pure Appl Math. 30(1999), 419-423.
[25] Vasuki R, Veeramani P. Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Sys 135(2003), 409-413.
[26] Xieping D. Common fixed point theorem of commuting mappings in PMspaces, Kexue Tongbao 29(1984), 147-150.

Received: November 23, 2017

