
Relation between S-Metric And M-Fuzzy Metric Spaces

Zeinab Hassanzadeh

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Z.hassanzadeh1368@yahoo.com

Atena Javaheri

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Javaheri.a91@gmail.com

Shaban Sedghi

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
sedghi gh@yahoo.com

Nabi Shobe

Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran
nabi shobe@yahoo.com

Abstract
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these results we establish some fixed point theorems in fuzzy S-metric
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1 Introduction

In this paper we establish some fixed point results in a fuzzy S-metric space
by applications of certain fixed point theorems in S-metric spaces. Also we
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prove some fixed point results in S-metric spaces. Fuzzy metric space was first
introduced by Kramosil and Michalek [13]. Subsequently, George and Veera-
mani had given a modified definition of fuzzy metric spaces [5] . Fixed point
results in such spaces have been established in a large number of works. Some
of these works are noted in [6, 17, 15, 23, 24, 25].

Definition 1.1 [5] A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a con-
tinuous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b =
min(a, b).

Here we have considered definition of fuzzy metric space (non-Archimedean).

Definition 1.2 [16] A 3-tuple (X,M, ∗) is called a fuzzy metric space if X
is an arbitrary (non-empty) set, ∗ is a continuous t−norm and M is a fuzzy
set on X2× (0,∞) satisfying the following conditions for each x, y, z ∈ X and
t, s > 0:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, z, t) ∗M(z, y, s) ≤M(x, y, t ∨ s), where t ∨ s = max{s, t},
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

All fuzzy metric in this paper are assumed to be non-Archimedean.
In 1976, Jungck [8] introduced the notion of commuting mappings to find

common fixed point results in metric spaces. Later on, in [9] Jungck proposed
the notion of compatible mappings which is a generalization of the concept
of commuting mapping. Some common fixed point theorems for compatible
mappings and their generalizations are addressed in [10, 11, 14, 26]. In this
paper we consider weak compatible mappings.

Definition 1.3 [18] Let A and S be mappings from a metric space X into
itself. Then the mappings are said to be weak compatible if they commute at a
coincidence point, that is, Ax = Sx implies that ASx = SAx.

2 Preliminary Notes

First we recall some notions, lemmas, and examples which will be useful later.
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Definition 2.1 [21] Let X be a nonempty set. A function S : X3 → [0,∞)
is said to be an S-metric on X, if for each x, y, z, a ∈ X,

1. S(x, y, z) ≥ 0,

2. S(x, y, z) = 0 if and only if x = y = z,

3. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Example 2.2 [21] We can easily check that the following examples are S-
metric spaces.

1. Let X = Rn and || · || a norm on X. Then S(x, y, z) = ||y + z − 2x|| +
||y − z|| is an S-metric on X.

In general, if X is a vector space over R and || · || a norm on X. Then
it is easy to see that

S(x, y, z) = ||αy + βz − λx||+ ||y − z||,

where α + β = λ for every α, β ≥ 1, is an S-metric on X.

2. Let X be a nonempty set and d1, d2 be two ordinary metrics on X. Then

S(x, y, z) = d1(x, z) + d2(y, z),

is an S-metric on X.

Lemma 2.3 [19] Let (X,S) be an S-metric space. Then, we have S(x, x, y) =
S(y, y, x), x, y ∈ X.

For more detail of S-metric see the reference [20].

Definition 2.4 [20] Let (X,S) be an S-metric space and A ⊂ X.

1. A sequence {xn} in X converges to x if S(xn, xn, x)→ 0 as n→∞, that
is for every ε > 0 there exists n0 ∈ N such that for n ≥ n0, S(xn, xn, x) <
ε. This case, we denote by limn→∞ xn = x and we say that x is the limit
of {xn} in X.

2. A sequence {xn} in X is said to be Cauchy sequence if for each ε > 0,
there exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

3. The S-metric space (X,S) is said to be complete if every Cauchy sequence
is convergent.

Lemma 2.5 [20] Let (X,S) be an S- metric space. If there exist sequences
{xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).
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3 Main Results

Next we establish the following result in S-metric spaces.

Theorem 3.1 Let A,B,C and T be self maps on a complete S-metric space
(X,S) satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ C(X) and T (X) or C(X) is a closed subset of
X;

(ii) there exist positive real numbers a, b, c, e such that a + b + c + 3e < 1
and for each x, y, z ∈ X,

S(Ax,Ay,Bz) ≤ aS(Cx,Cx, Tz) + bS(Cx,Cx,Ax) + cS(Tz, Tz,Bz)

+ e(S(Cx,Cx,Bz) + S(Tz, Tz, Ay));

(iii) the pairs (A,C) and (B, T ) are weakly compatible.
Then A,B,C and T have a unique common fixed point in X.

Proof 1 Let x0 be an arbitrary point in X. By (i), we can choose a point x1
in X such that y0 = Ax0 = Tx1 and y1 = Bx1 = Cx2. In general, there exists a
sequence {yn} such that, y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Cx2n+2,
for n = 0, 1, 2, · · ·. We claim that the sequence {yn} is a Cauchy sequence.

By (ii), we have,

S(y2n, y2n, y2n+1) = S(Ax2n, Ax2n, Bx2n+1)

≤ aS(Cx2n, Cx2n, Tx2n+1) + bS(Cx2n, Cx2n, Ax2n)

+cS(Tx2n+1, Tx2n+1, Bx2n+1)

+e(S(Cx2n, Cx2n, Bx2n+1) + S(Tx2n+1, Tx2n+1, Ax2n))

= aS(y2n−1, y2n−1, y2n) + bS(y2n−1, y2n−1, y2n)

+cS(y2n, y2n, y2n+1) + e(S(y2n−1, y2n−1, y2n+1) + S(y2n, y2n, y2n)).

If we put dn = S(yn, yn, yn+1), then by above inequality we have,

d2n ≤ ad2n−1 + bd2n−1 + cd2n + e(S(y2n−1, y2n−1, y2n+1) + 0)

≤ ad2n−1 + bd2n−1 + cd2n + e(2S(y2n−1, y2n−1, y2n) + S(y2n, y2n, y2n+1)).

Hence,
d2n ≤ ad2n−1 + bd2n−1 + cd2n + 2ed2n−1 + ed2n. (1)

Hence we have,

d2n ≤
a+ b+ 2e

1− c− e
d2n−1

= td2n−1,

360 Hassanzadeh, Javaheri, Sedghi and Shobe



where 0 < t = a+b+2e
1−c−e < 1.

Similarly, it follows that

d2n+1 ≤
a+ c+ 2e

1− e− b
d2n

= t′d2n,

where 0 < t′ = a+c+2e
1−e−b < 1. If we set k = max{t, t′} < 1, then for every n ∈ N

by above inequalities we get dn ≤ kdn−1.
Hence,

dn ≤ kdn−1 ≤ k2dn−2 ≤ · · · ≤ knd0. (2)

That is,
S(yn, yn, yn+1) ≤ knS(y0, y0, y1) (3)

If m ≥ n, then

S(yn, yn, ym) ≤ 2S(yn, yn, yn+1) + 2S(yn+1, yn+1, yn+2) + · · ·+ 2S(ym−1,m−1 , ym)

≤ 2knS(y0, y0, y1) + 2kn+1S(y0, y0, y1) · · ·+ 2km−1S(y0, y0, y1)

≤ 2kn

1− k
S(y0, y0, y1)→ 0

as n → ∞. It follows that, the sequence {yn} is Cauchy sequence and by the
completeness of X, {yn} converges to y ∈ X. Then

lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→∞

Cx2n+2 = lim
n→∞

Tx2n+1 = y. (4)

Let T (X) be a closed subset of X, then there exists v ∈ X such that Tv = y.
We now prove that Bv = y. By (ii), we get

lim
n→∞

S(Ax2n, Ax2n, Bv) ≤ lim
n→∞

[aS(Cx2n, Cx2n, T v) + bS(Ax2n, Ax2n, Cx2n)

+cS(Bv,Bv, Tv) + e(S(Bv,Bv, Cx2n) + S(Ax2n, Ax2n, T v))]

and so

S(y, y, Bv) ≤ aS(y, y, Tv) + bS(y, y, y) + cS(Bv,Bv, y) + e(S(Bv,Bv, y) + S(y, y, Tv))

< S(y, y, Bv).

It follows that Bv = y = Tv. Since B and T are two weakly compatible
mappings, we have BTv = TBv and so By = Ty.

Next, we prove that By = y. By (ii), we get

lim
n→∞

S(Ax2n, Ax2n, By) ≤ lim
n→∞

[aS(Cx2n, Cx2n, T y) + bS(Ax2n, Ax2n, Cx2n)

+cS(By,By, Ty) + e(S(By,By, Cx2n) + S(Ax2n, Ax2n, T y))].
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Hence,

S(y, y, By) ≤ aS(y, y, Ty) + bS(y, y, y) + cS(By,By, Ty) + e(S(By,By, y) + S(y, y, Ty))

< S(y, y, By)

and so By = y.
Since B(X) ⊆ C(X), there exists w ∈ X such that Cw = y. We prove that

Aw = y. By (ii) we have

S(Aw,Aw,By) ≤ aS(Cw,Cw, Ty) + bS(Aw,Aw,Cw) + cS(By,By, Ty)

+e(S(By,By, Cw) + S(Aw,Aw, Ty))

and it follows that

S(Aw,Aw, y) ≤ aS(y, y, y) + bS(Aw,Aw, y) + cS(y, y, Ty)

+ e(S(y, y, y) + S(Aw,Aw, Ty))

< S(Aw,Aw, y).

This implies that Aw = y and hence Aw = Cw = y. Since A and C are weakly
compatible, then ACw = CAw and so Ay = Cy.

Now, we prove that Ay = y. From (ii), we have

S(Ay,Ay,By) ≤ aS(Cy,Cy, Ty) + bS(Ay,Ay, Cy) + cS(By,By, Ty)

+e(S(By,By, Cy) + S(Ay,Ay, Ty))

it follows that

S(Ay,Ay, y) ≤ aS(Cy,Cy, y) + bS(Ay,Ay, Cy) + cS(y, y, y)

+ e(S(y, y, Cy)) + S(Ay,Ay, y))

< S(Ay,Ay, y)

and hence Ay = y and therefore Ay = Cy = By = Ty = y. That is y is a
common fixed point for A,B,C, T .

The proof is similar when C(X) is assumed to be a closed subset of X.
Now to prove the uniqueness. Assume that x is another common fixed point

of A,B,C and T . Then

S(x, x, y) = S(Ax,Ax,By)

≤ aS(Cx,Cx, Ty) + bS(Ax,Ax,Cx) + cS(By,By, Ty)

+ e(S(Cx,Cx,By) + S(Ax,Ax, Ty))

and so

S(x, x, y) ≤ aS(x, x, y) + bS(x, x, x) + cS(y, y, y) + e(S(x, x, y) + S(x, x, y))

< S(x, x, y).

Thus it follows that x = y.
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Corollary 3.2 Let A and B be self maps on a complete S-metric space
(X,S) satisfying: there exist positive real numbers a, b, c, e such that a + b +
c+ 3e < 1 and for each x, y, z ∈ X,

S(Ax,Ay,Bz) ≤ aS(x, x, z)+bS(x, x,Ax)+cS(z, z, Bz)+e(S(x, x,Bz)+S(z, z, Ay));

Then A and B have a unique common fixed point in X.

Proof 2 It is enough set T = C = I, identity map in Theorem 3.1.

Here we introduceM-fuzzy metric. We describe the space along with some
associated concepts in the following.

Definition 3.3 A 3-tuple (X,M, ∗) is called a M-fuzzy metric space if X
is an arbitrary (non-empty) set, ∗ is a continuous t−norm and M is a fuzzy
set on X3 × (0,∞) satisfying the following conditions for each x, y, z, a ∈ X
and t, s, r > 0:

(1) M(x, y, z, t) > 0,
(2) M(x, y, z, t) = 1 if and only if x = y = z,
(3) M(x, y, z,∨{t, s, r} ≥ M(x, x, a, t) ∗M(y, y, a, s) ∗M(z, z, a, r) where

∨{t, s, r}) = max{t, s, r},
(4) M(x, y, z, .) : (0,∞) −→ [0, 1] is continuous.

Example 3.4 Let a ∗ b = ab for all a, b ∈ [0, 1], we define

M(x, y, z, t) = exp−
S(x, y, z)

t
, (5)

where S is an S-metric on set X. Then (X,M, ∗) is a M-fuzzy metric space.

Proof 3 (i) M(x, y, z, t) > 0 for all x, y, z ∈ X and t > 0 is trivial.

(ii) M(x, y, z, t) = 1 ⇐⇒ S(x, y, z) = 0

⇐⇒ x = y = z.

(iii) Since S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a),

hence,

S(x, y, z)

t ∨ s ∨ r
≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

t ∨ s ∨ r

≤ S(x, x, a)

t
+
S(y, y, a)

s
+
S(z, z, a)

r
.
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Thus

(iii) exp−
S(x, y, z)

t ∨ s ∨ r
≥ exp−{

S(x,x,a)
t

+
S(y,y,a)

s
+

S(z,z,a)
r
}

= exp−
S(x, y, z)

t
.exp−

S(x, x, a)

s
.exp−

S(z, z, a)

r
,

it follows that,

(iii)M(x, y, z, t ∨ s ∨ r) ≥ M(x, x, a, t).M(y, y, a, s).M(z, z, a, r)

= M(x, x, a, t) ∗M(y, y, a, s) ∗M(z, z, a, r).

(X,M, ∗) is a M-fuzzy metric space.

A sequence {xn} in X converges to x if and only if M(xn, xn, x, t)→ 1 as
n → ∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1
and t > 0, there exits n0 ∈ N such that M(xn, xn, xm, t) > 1 − ε for each
n,m ≥ n0. The M-fuzzy metric space (X,M, ∗) is said to be complete if
every Cauchy sequence is convergent.

The following properties ofM noted in the theorem below are easy conse-
quences of the definition.

Lemma 3.5 Let (X,M, ∗) be a M-fuzzy metric space. Then

(1) M(x, x, y, t) =M(y, y, x, t).
(2) M(x, x, y, t) is nondecreasing with respect to t for each x, y ∈ X.

Proof 4 (i) For every t ∈ (0,∞), we have

M(x, x, y, t) =M(x, x, y, t ∨ t ∨ t) ≥ M(x, x, x, t) ∗M(x, x, x, t) ∗M(y, y, x, t)

= M(y, y, x, t).

Similarly, we can show thatM(y, y, x, t) ≥M(x, x, y, t). That isM(x, x, y, t) =
M(y, y, x, t).

(ii) For every t, s ∈ (0,∞), let t ≥ s. Then

M(x, x, y, t) =M(x, x, y, t ∨ s ∨ s) ≥ M(x, x, x, t) ∗M(x, x, x, s) ∗M(y, y, x, s)

= M(y, y, x, s) =M(x, x, y, s).

Example 3.6 Let a∗b = ab for all a, b ∈ [0, 1] and M1 and M2 be two fuzzy
set on X ×X × (0,+∞) defined by

M(x, y, z, t) = M1(x, z, t) ∗M2(y, z, t), (6)

for all x, y, z ∈ X. Then (X,M, ∗) is a M-fuzzy metric space.
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Proof 5 (i) M(x, y, z, t) > 0 for all x, y, z ∈ X and t > 0 is trivial.

(ii) M(x, y, z, t) = 1 ⇐⇒ M1(x, z, t) = M2(y, z, t) = 1

⇐⇒ x = y = z.

(iii) Let t ≥ s ≥ r, it follows that,

M(x, y, z, t ∨ s ∨ r)
= M(x, y, z, t)

= M1(x, z, t) ∗M2(y, z, t)

≥ M1(x, a, t) ∗M1(a, z, t) ∗M2(y, a, t) ∗M2(a, z, t)

≥ M1(x, a, t) ∗M2(x, a, t) ∗M1(y, a, t) ∗M2(y, a, t) ∗M1(z, a, t) ∗M2(z, a, t)

= M(x, x, a, t) ∗M(y, y, a, t) ∗M(z, z, a, t)

≥ M(x, x, a, t) ∗M(y, y, a, s) ∗M(z, z, a, r),

(X,M, ∗) is a M-fuzzy metric space.

Lemma 3.7 Let (X,M, ∗) be aM-fuzzy metric space. If sequence {xn} in
X converges to x, then x is unique.

Proof 6 Let {xn} converges to x and y, then for each 0 < ε < 1 there exist
n1, n2 ∈ N such that

∀ n ≥ n1 =⇒M(xn, xn, x, t) > 1− ε, (7)

and
∀ n ≥ n2 =⇒M(xn, xn, y, t) > 1− ε. (8)

If set n0 = max{n1, n2}, then for every n ≥ n0 we have:

M(x, x, y, t) ≥ M(x, x, xn, t) ∗M(x, x, xn, t) ∗M(y, y, xn, t)

> (1− ε) ∗ (1− ε) ∗ (1− ε)

By taking the limit when ε → 0 in above inequality we get M(x, x, y, t) ≥ 1.
Hence M(x, x, y, t) = 1 so x = y.

Lemma 3.8 Let (X,M, ∗) be aM-fuzzy metric space. Then the convergent
sequence {xn} in X is Cauchy.

Proof 7 Since limn→∞ xn = x then for each 0 < ε < 1 there exists n1, n2 ∈ N
such that

n ≥ n1 ⇒M(xn, xn, x, t) > 1− ε, (9)
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and
m ≥ n2 ⇒M(xm, xm, x, t) > 1− ε. (10)

If set n0 = max{n1, n2}, then for every n,m ≥ n0 we have:

M(xn, xn, xm, t) ≥ M(xn, xn, x, t) ∗M(xn, xn, x, t) ∗M(xm, xm, x, t)

> (1− ε) ∗ (1− ε) ∗ (1− ε).

By taking the limit when ε→ 0 in above inequality we getM(xn, xn, xm, t) ≥ 1.
Hence {xn} is a Cauchy sequence.

Lemma 3.9 Let (X,M, ∗) be a M-fuzzy metric space. If there exist se-
quences {xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

M(xn, xn, yn, t) =M(x, x, y, t). (11)

Proof 8 Since limn→∞ xn = x and limn→∞ yn = y, then for each 0 < ε < 1
there exist n1, n2 ∈ N such that

∀ n ≥ n1 ⇒M(xn, xn, x, t) > 1− ε, (12)

and
∀ n ≥ n2 ⇒M(yn, yn, y, t) > 1− ε. (13)

If set n0 = max{n1, n2}, then for every n ≥ n0 we have:

M(xn, xn, yn, t)

≥ M(xn, xn, x, t) ∗M(xn, xn, x, t) ∗M(yn, yn, x, t)

≥ M(xn, xn, x, t) ∗M(xn, xn, x, t) ∗M(yn, yn, y, t) ∗M(yn, yn, y, t) ∗M(x, x, y, t)

> (1− ε) ∗ (1− ε) ∗ (1− ε) ∗ (1− ε) ∗M(x, x, y, t).

By taking the limit when ε→ 0 in above inequality we get

M(xn, xn, yn, t) ≥M(x, x, y, t). (14)

On the other hand, we have

M(x, x, y, t)

≥ M(x, x, xn, t) ∗M(x, x, xn, t) ∗M(y, y, xn, t)

≥ M(x, x, xn, t) ∗M(x, x, xn, t) ∗M(y, y, yn, t) ∗M(y, y, yn, t) ∗M(xn, xn, yn, t)

> (1− ε) ∗ (1− ε) ∗ (1− ε) ∗ (1− ε) ∗M(xn, xn, yn, t),

as ε→ 0 we have
M(x, x, y, t) >M(xn, xn, yn, t). (15)

Therefore by relations (14) and (15) we have

lim
n→∞

M(xn, xn, yn, t) =M(xn, xn, yn, t). (16)
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Lemma 3.10 Let (X,M, ∗) be a M-fuzzy metric space with a ∗ b ≥ ab for
all a, b ∈ [0, 1].If define S : X3 −→ [0,∞) by S(x, y, z) =

∫ 1
0 logα(M(x, y, z, t))dt,

then S is an S-metric on X for 0 < α < 1.

Proof 9 It is clear from the definition that S(x, y, z) is well defined for each
x, y, z ∈ X. (i) S(x, y, z) ≥ 0 for all x, y, z ∈ X is trivial.

(ii) S(x, y, z) = 0 ⇐⇒ logα(M(x, y, z, t)) = 0 for all t > 0

⇐⇒ M(x, y, z, t) = 1 for all t > 0⇐⇒ x = y = z.

(iv)SinceM(x, y, z, t) ≥ M(x, x, a, t) ∗M(y, y, a, t) ∗M(z, z, a, t)

≥ M(x, x, a, t).M(y, y, a, t).M(z, z, a, t)

it follows that,

S(x, y, z)

=
∫ 1

0
logα(M(x, y, z, t))dt

≤
∫ 1

0
logα(M(x, x, a, t).M(y, y, a, t).M(z, z, a, t))dt

≤
∫ 1

0
logα(M(x, x, a, t))dt+

∫ 1

0
logα(M(y, y, a, t))dt+

∫ 1

0
logα(M(z, z, a, t))dt

= S(x, x, a) + S(y, y, a) + S(z, z, a)

This proves that S is an S-metric on X.

The following lemma plays an important role to give fixed point results on
a M-fuzzy metric space.

Lemma 3.11 Let (X,M, ∗) be a M-fuzzy metric space.
(a) {xn} is a Cauchy sequence in (X,M, ∗) if and only if it is a Cauchy

sequence in the S-metric space (X,S).
(b) A M-fuzzy metric space (X,M, ∗) is complete if and only if the S-

metric space (X,S) is complete.

Proof 10 First we show that every Cauchy sequence in (X,M, ∗) is a Cauchy
sequence in (X,S). To this end let {xn} be a Cauchy sequence in (X,M, ∗).
Then limn,m→∞M(xn, xn, xm, t) = 1. Since

S(xn, xn, xm) =
∫ 1

0
logα(M(xn, xn, xm, t))dt,
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is an S-metric. Hence, we have

lim
n,m→∞

S(xn, xn, xm)

= lim
n,m→∞

∫ 1

0
logα(M(xn, xn, xm, t))dt = 0.

We conclude that {xn} is a Cauchy sequence in (X,S). Next we prove that
completeness of (X,S) implies completeness of (X,M, ∗). Indeed, if {xn} is
a Cauchy sequence in (X,M, ∗) then it is also a Cauchy sequence in (X,S).
Since the S-metric space (X,S) is complete we deduce that there exists y ∈ X
such that limn→∞ S(xn, xn, y) = 0. Therefore,∫ 1

0
logα( lim

n→∞
M(xn, xn, y, t))dt = lim

n→∞
S(xn, xn, y) = 0.

Hence we follow that {xn} is a convergent sequence in (X,M, ∗).
Now we prove that every Cauchy sequence {xn} in (X,S) is a Cauchy

sequence in (X,M, ∗). Since {xn} is a Cauchy sequence in (X,S), then

lim
n,m→∞

S(xn, xn, xm) = lim
n,m→∞

∫ 1

0
logα(M(xn, xn, xm, t))dt = 0.

Hence, limn,m→∞M(xn, xn, xm, t) = 1.
That is, {xn} is a Cauchy sequence in (X,M, ∗).
We shall have established the lemma if we prove that (X,S) is complete if

so is (X,M, ∗). Let {xn} be a Cauchy sequence in (X,S). Then {xn} is a
Cauchy sequence in (X,M, ∗), and so it is convergent to a point y ∈ X with

lim
n,m→∞

M(xn, xm, y, t) = 1.

As a consequence we have

lim
n,m→∞

S(xn, xm, y) = lim
n,m→∞

∫ 1

0
logα(M(xn, xm, y, t))dt = 0.

Therefore (X,S) is complete.

Lemma 3.12 Let (X,M, ∗) be aM-fuzzy metric space with a∗b = min{a, b}
for all a, b ∈ [0, 1]. We define S : X3 −→ [0,∞) by S(x, y, z) =

∫ 1
0 cot(π

2
M(x, y, z, t))dt,

then S is an S-metric on X.

Proof 11 (i) S(x, y, z) ≥ 0 is trivial.

(ii) S(x, y, z) = 0 ⇐⇒ cot(
π

2
M(x, y, z, t)) = 0 for all t > 0

⇐⇒ M(x, y, z, t) = 1 for all t > 0⇐⇒ x = y = z.
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(iii) Since M(x, y, z, t) ≥ M(x, x, a, t) ∗M(y, y, a, t) ∗M(z, z, a, t)

= min{M(x, x, a, t),M(y, y, a, t),M(z, z, a, t)}.

and also since 0 < π
2
M(x, y, z, t) ≤ π

2
it follows that,

S(x, y, z)

=
∫ 1

0
cot(

π

2
M(x, y, z, t))dt

≤
∫ 1

0
cot[

π

2
(M(x, x, a, t) ∗M(y, y, a, t),M(z, z, a, t))]dt

=
∫ 1

0
cot(

π

2
min{M(x, x, a, t),M(y, y, a, t),M(z, z, a, t)})dt

= min{
∫ 1

0
cot(

π

2
M(x, x, a, t))dt,

∫ 1

0
cot(

π

2
M(y, y, a, t))dt,

∫ 1

0
cot(

π

2
M(z, z, a, t))dt}

≤
∫ 1

0
cot(

π

2
M(x, x, a, t))dt+

∫ 1

0
cot(

π

2
M(y, y, a, t))dt+

∫ 1

0
cot(

π

2
M(z, z, a, t))dt

= S(x, x, a) + S(y, y, a) + S(z, z, a),

that is S is an S-metric on X.

Remark 3.13 Let a, b ∈ (0, 1], then it is a standard result that

Arccot(min{a, b}) ≤ Arccot(a) + Arccot(b)− π

4

Lemma 3.14 Let (X,M, ∗) be aM-fuzzy metric space with a∗b = min{a, b}
for all a, b ∈ [0, 1]. We define S : X3 −→ [0,∞) by
S(x, y, z) =

∫ 1
0 ( 4

π
Arccot(M(x, y, z, t))− 1)dt, then S is an S-metric on X.

Proof 12 (i) 0 ≤ S(x, y, z) < 1 is trivial.

(ii) S(x, y, z) = 0 ⇐⇒ 4

π
Arccot(M(x, y, z, t))− 1 = 0 for all t > 0

⇐⇒ Arccot(M(x, y, z, t)) =
π

4
for all t > 0.

⇐⇒ M(x, y, z, t) = 1 for all t > 0⇐⇒ x = y = z.

(iii) Since

M(x, y, z, t) ≥ M(x, x, a, t) ∗M(y, y, a, t) ∗M(z, z, a, t)

= min{M(x, x, a, t),M(y, y, a, t),M(z, z, a, t)},
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it follows that,

Arccot(M(x, y, z, t))

≤ Arccot[M(x, y, z, t) ∗M(y, y, a, t) ∗M(z, z, a, t)]

= Arccot(min{M(x, x, a, t),M(y, y, a, t),M(z, z, a, t)})
≤ Arccot(M(x, x, a, t)) + Arccot(M(y, y, a, t)) + Arccot(M(z, z, a, t))− π

2

Hence,

S(x, y, z) =
∫ 1

0
(
4

π
Arccot(M(x, y, z, t))− 1)dt

≤
∫ 1

0
(
4

π
Arccot(M(x, x, a, t))− 1)dt+

∫ 1

0
(
4

π
Arccot(M(y, y, a, t))− 1)dt

+
∫ 1

0
(
4

π
Arccot(M(z, z, a, t))− 1)dt

= S(x, x, a) + S(y, y, a) + S(z, z, a),

that is S is an S-metric on X.

We now apply the theorem 3.1 to prove the following fixed point result in
M-fuzzy metric spaces.

Theorem 3.15 Let (X,M, ∗) be a complete M-fuzzy metric space with
d ∗ f ≥ df for all d, f ∈ [0, 1]. Let A,B,C and T be self maps on X satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ C(X) and T (X) or C(X) is a closed subset of
X;

(ii) there exists positive real numbers a, b, c, e such that a + b + c + 3e < 1
and for each x, y, z ∈ X,

M(Ax,Ay,Bz, t) ≥ M
a(Cx,Cx, Tz, t) ∗Mb(Cx,Cx,Ax, t)

∗Mc(Tz, Tz,Bz, t) ∗ [M(Cx,Cx,Bz, t) ∗M(Tz, Tz, Ay, t)]e
;

(iii) the pairs (A,C) and (B, T ) are weakly compatible.
Then A,B,C and T have a unique common fixed point in X.

Proof 13 From inequality (ii) above, we get,∫ 1

0
logM(Ax,Ay,Bz,t)

α dt

≤
∫ 1

0
log

(
Ma(Cx,Cx, Tz, t) ∗Mb(Cx,Cx,Ax, t)
∗Mc(Tz, Tz,Bz, t) ∗ [M(Cx,Cx,Bz, t) ∗M(Tz, Tz, Ay, t)]e

)
α dt
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≤
∫ 1

0
log

(
Ma(Cx,Cx, Tz, t)Mb(Cx,Cx,Ax, t)
Mc(Tz, Tz,Bz, t)[Me(Cx,Cx,Bz, t)Me(Tz, Tz, Ay, t)]

)
α dt

=
a
∫ 1
0 logM(Cx,Cx,Tz,t)

α dt+ b
∫ 1
0 logM(Cx,Cx,Ax,t)

α dt

+c
∫ 1
0 logM(Tz,Tz,Bz,t)

α dt+ e(
∫ 1
0 logM(Cx,Cx,Bz,t)

α dt+
∫ 1
0 logM(Tz,Tz,Ay,t)

α dt)
.

If set S(x, y, z) =
∫ 1
0 logM(x,y,z,t)

α dt for every x, y, z ∈ X and 0 < α < 1. Then
it follows that,

S(Ax,Ay,Bz) ≤ aS(Cx,Cx, Tz) + bS(Cx,Cx,Ax) + cS(Tz, Tz,Bz)

+e(S(Cx,Cx,Bz) + S(Tz, Tz, Ay)).

Hence by Lemma 3.14 all of conditions Theorem 3.1 hold. Thus A,B,C and
T have a unique common fixed point in X.

Corollary 3.16 Let (X,M, ∗) be a complete M-fuzzy metric space with
d∗f ≥ df for all d, f ∈ [0, 1]. Let A and B be self maps on X satisfying: there
exists positive real numbers a, b, c, e such that a + b + c + 3e < 1 and for each
x, y, z ∈ X,

M(Ax,Ay,Bz, t) ≥ M
a(x, x, z, t) ∗Mb(x, x,Ax, t)

∗Mc(z, z, Bz, t) ∗ [M(x, x,Bz, t) ∗M(z, z, Ay, t)]e
,

Then A and B have a unique common fixed point in X.

Proof 14 It is enough set T = C = I, identity map in Theorem 3.15.
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