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1 Introduction

In this paper we establish some fixed point results in a fuzzy S-metric space
by applications of certain fixed point theorems in S-metric spaces. Also we
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prove some fixed point results in S-metric spaces. Fuzzy metric space was first
introduced by Kramosil and Michalek [13]. Subsequently, George and Veera-
mani had given a modified definition of fuzzy metric spaces [5] . Fixed point
results in such spaces have been established in a large number of works. Some
of these works are noted in [6, 17, 15, 23, 24, 25].

Definition 1.1 [5] A binary operation x : [0,1] x [0,1] — [0,1] is a con-
tinuous t-norm if it satisfies the following conditions:

(1) * is associative and commutative,

(2) * is continuous,

(3) ax1=a for all a € [0, 1],

(4) axb < cxd whenever a < c and b < d, for each a,b,c,d € [0, 1].

Two typical examples of continuous t-norm are a * b = ab and a *x b =
min(a, b).
Here we have considered definition of fuzzy metric space (non-Archimedean).

Definition 1.2 [16] A 3-tuple (X, M, x) is called a fuzzy metric space if X
is an arbitrary (non-empty) set, * is a continuous t—norm and M is a fuzzy
set on X% x (0,00) satisfying the following conditions for each x,y,z € X and
t,s > 0:

(z,y,1)
( )=14f and only if v =y,

(3) M(x,y,t) = M(y,,1),

(4) M(z,z,t) % M(z,y,s) < M(z,y,tVs), where t V s = max{s,t},
( ) : (0,00) — [0,1] is continuous.

All fuzzy metric in this paper are assumed to be non-Archimedean.

In 1976, Jungck [8] introduced the notion of commuting mappings to find
common fixed point results in metric spaces. Later on, in [9] Jungck proposed
the notion of compatible mappings which is a generalization of the concept
of commuting mapping. Some common fixed point theorems for compatible
mappings and their generalizations are addressed in [10, 11, 14, 26]. In this
paper we consider weak compatible mappings.

Definition 1.3 [18] Let A and S be mappings from a metric space X into
itself. Then the mappings are said to be weak compatible if they commute at a
coincidence point, that is, Ax = Sx implies that ASx = SAx.

2 Preliminary Notes

First we recall some notions, lemmas, and examples which will be useful later.
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Definition 2.1 [21] Let X be a nonempty set. A function S : X — [0, 00)
1s said to be an S-metric on X, if for each x,y,z,a € X,

1. S(x,y,2) >0,

2. S(z,y,z) =0 if and only if v =y = z,

3. S(z,y,z) < S(x,z,a) + S(y,y,a) + S(z, z,a).
The pair (X, S) is called an S-metric space.

Example 2.2 [21] We can easily check that the following examples are S-
metric spaces.

1. Let X = R" and || - || a norm on X. Then S(z,y,z) = ||y + z — 2z|| +
lly — z|| is an S-metric on X.

In general, if X is a vector space over R and || -|| a norm on X. Then
it 15 easy to see that

S(z,y,2) = |lay + Bz — Az|| + ||y — =[],
where o+ B = X for every o, 8 > 1, is an S-metric on X.
2. Let X be a nonempty set and dy, dy be two ordinary metrics on X. Then
S(z,y,2) = di(z, 2) + da(y, 2),
1s an S-metric on X.

Lemma 2.3 [19] Let (X, S) be an S-metric space. Then, we have S(x,x,y) =
Sy,y,z), z,y € X.

For more detail of S-metric see the reference [20].
Definition 2.4 [20] Let (X, S) be an S-metric space and A C X.

1. A sequence {z,} in X converges to x if S(xp, x,, x) — 0 as n — oo, that
is for every € > 0 there ezists ng € N such that forn > ng, S(zn, Tp, x) <

€. This case, we denote by lim,,_,, x,, = x and we say that x is the limit
of {x,} in X.

2. A sequence {x,} in X is said to be Cauchy sequence if for each ¢ > 0,
there exists ng € N such that S(zp, x,, xy) < € for each n,m > ng.

3. The S-metric space (X, S) is said to be complete if every Cauchy sequence
18 convergent.

Lemma 2.5 [20] Let (X, S) be an S- metric space. If there exist sequences
{z,} and {y,} such that lim, . x, = x and lim,_, y, =y, then

lim S(zp, zn, yn) = S(x,x,y).

n—oo
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3 Main Results

Next we establish the following result in S-metric spaces.

Theorem 3.1 Let A, B,C and T be self maps on a complete S-metric space
(X, S) satisfying:
(i) A(X) CT(X),B(X) CCX) and T(X) or C(X) is a closed subset of
X;
(ii) there exist positive real numbers a,b,c,e such that a +b+ ¢+ 3e < 1
and for each x,y,z € X,

S(Ax,Ay,Bz) < aS(Cx,Cx,Tz)+ bS(Cx,Cx,Azx)+ cS(Tz2,Tz, Bz)
+ e(S(Cz,Cx,Bz)+ S(T=z,Tz, Ay));

(iii) the pairs (A,C) and (B,T) are weakly compatible.
Then A, B,C" and T have a unique common fixed point in X.

Proof 1 Let xy be an arbitrary point in X. By (i), we can choose a point x;
in X such that yy = Axg = Txy and y; = Bxy = Cxo. In general, there exists a
sequence {y,} such that, ya, = Axe, = Txon11 and Yanr1 = Broy1 = Cropnyo,
forn=0,1,2,---. We claim that the sequence {y,} is a Cauchy sequence.

By (ii), we have,

S(Yans Yon, Yont1) = S(Axan, Aoy, Bonir)

aS(Cxoy, Cxay, T 1) + bS(Cray, Cay, Aay)

+cS(Txopi1, Txons1, Broni)

+e(S(Cxay, Cxop, Broyi1) + S(Txons1, Txons1, ATay))
aS(Yan—1, Yon—1, Y2n) + bS(Y2n—1, Y2n—1, Y2n)

+¢S(Yans Yon, Yont1) + (S (Yan—15 Y2n—1, Yont1) + S (Y2ns Yon, Yon))-

IN

If we put d,y = S(Yn, Yn, Yns1), then by above inequality we have,

don, < ady,_1+ bday_1 + cdon + e(S(Y2n—1, Yon—1,Yons1) + 0)
< adyy—1 + bdan—1 + cday + €(25(Y2n—1, Yon—1, Y2n) + S(Y2n, Yon, Y2nt1))-

Hence,
day, < aday—1 + bdayp—1 + cday, + 2eday,—1 + eday,. (1)

Hence we have,

doyy < ———dop1
e
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where 0 < ¢ = &0t <
Similarly, it follows that

a—+c+ 2e
d2n+1 = mdQn

= tld2n7

where 0 < t' = %<2 < 1. [f we set k = max{t,t'} <1, then for everyn € N
by above inequalities we get d,, < kd,,_1.
Hence,
dp < kdp_y < K2dy_g < -+ < E"dy. (2)
That 1is,
SYny Yns Ynt1) < K" S(Yo, Yo, Y1) (3)

If m > n, then

S(yru Yn, ym) S QS(yna Yn, yn+1> + 25<yn+17 Yn+1, yn+2> +oe 4+ 2S(ym—17m—1 7ym)
< 2K"S(yo, Yo, y1) + 2" S (yo, o, y1) - -+ + 2K™ 1S (yo, Yo, 1)
2k"
< 1_k5(yoayoa?/1)—>0

as n — oo. It follows that, the sequence {y,} is Cauchy sequence and by the
completeness of X, {yn} converges toy € X. Then

lim = lim Axzs, = lim Bz = lim Cx = lim Tx =q. 4
n— o0 Yn n— 00 2n n— 00 2n+1 n—oo 2n+2 n— 00 2n+1 Yy ( )

Let T(X) be a closed subset of X, then there exists v € X such that Tv = y.
We now prove that Bv = y. By (ii), we get
lim S(Axoy, Az, Bv) < nli_{glo[aS(Cme Coy, TV) + bS(Axoy, Aoy, Cxay)
+c¢S(Bv, Bv, Tv) + e(S(Bv, Bv, Ca,) + S(Axay,, Axon, T0))]

and so

S(y,y, Bv) < aS(y,y,Tv) +bS(y,y,y) + cS(Bv, Bv,y) + e(S(Bv, Bv,y) + S(y,y,Tv))
< S(y,y, Bv).

It follows that Bv = y = Tv. Since B and T are two weakly compatible
mappings, we have BTv =T Bv and so By = TYy.
Next, we prove that By = vy. By (ii), we get

lim S(Aza,, Aza,, By) < lim [aS(Cxoy, Cxay, Ty) + bS(Axg,, Axeyn, Cxay)

n—oo n—00

+cS(By, By, Ty) + e(S(By, By, Cxa,) + S(Axay,, Axe,, Ty))].
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Hence,

S(y,y,By) < aS(y,y,Ty) +b5(y,y,y) + cS(By, By, Ty) + e(S(By, By,y) + S(y,y,Ty))
< S(y,y, By)

and so By = y.

Since B(X) C C(X), there exists w € X such that Cw =y. We prove that
Aw =y. By (i) we have
S(Aw, Aw, By) < aS(Cw,Cw,Ty) + bS(Aw, Aw, Cw) + ¢S(By, By, Ty)
+e(S(By, By, Cw) + S(Aw, Aw, Ty))

and it follows that

S(Aw, Aw,y) < aS(y,y,y) + bS(Aw, Aw,y) + cS(y,y, Ty)
+ e(S(y, v, y) + S(Aw, Aw, Ty))
< S(Aw, Aw,y).
This implies that Aw =y and hence Aw = Cw = y. Since A and C are weakly
compatible, then ACw = CAw and so Ay = Cly.
Now, we prove that Ay = y. From (ii), we have

S(Ay, Ay,By) < aS(Cy,Cy,Ty) +bS(Ay, Ay, Cy) + cS(By, By, Ty)
+e(S(By, By, Cy) + S(Ay, Ay, Ty))

it follows that

S(Ay, Ay,y) < aS(Cy,Cy,y) + bS(Ay, Ay, Cy) + Sy, y,y)
+ e(S(y,y. Cy)) + S(Ay, Ay, y))
< S(Ay, Ay, y)
and hence Ay = y and therefore Ay = Cy = By = Ty =vy. That is y is a
common fized point for A, B,C,T.
The proof is similar when C(X) is assumed to be a closed subset of X.
Now to prove the uniqueness. Assume that x is another common fized point

of A,B,C and T. Then

S(x,z,y) = S(Az, Az, By)
< aS(Cx,Cx,Ty) + bS(Ax, Az, Cx) + ¢S(By, By, Ty)
+ e(S(Cx,Cx, By) + S(Ax, Az, Ty))
and so
S(x,z,y) < aS(w,2,y) +bS(x,2,2) + Sy, y,y) +e(S(x,2,y) + Sz, 2,y))
< S(z,z,y).
Thus it follows that x = y.
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Corollary 3.2 Let A and B be self maps on a complete S-metric space
(X, S) satisfying: there exist positive real numbers a,b,c,e such that a + b+
c+ 3e <1 and for each x,y,z € X,

S(Az, Ay, Bz) < aS(x,x, 2)+bS(z, z, Ax)+cS(z, z, Bz)+e(S(x, x, B2)+S(z, z, Ay));

Then A and B have a unique common fixed point in X.
Proof 2 [t is enough set T'= C = I, identity map in Theorem 3.1.

Here we introduce M-fuzzy metric. We describe the space along with some
associated concepts in the following.

Definition 3.3 A 3-tuple (X, M, ) is called a M-fuzzy metric space if X
is an arbitrary (non-empty) set, x is a continuous t—norm and M is a fuzzy
set on X3 x (0,00) satisfying the following conditions for each x,y,z,a € X
and t,s,r > 0:

(1) M(z,y,z,t) >0,

(2) M(x,y,z,t) =1 if and only if v =y = z,

(3) M(x,y,z,V{t,s,r} > M(z,z,a,t) * M(y,y,a,s) * M(z, z,a,r) where
V{t,s,r}) = maz{t,s,r},

(4) M(z,y,z,.):(0,00) — [0,1] is continuous.

Example 3.4 Let axb = ab for all a,b € [0, 1], we define

My, 1) = exp~ 202 )

where S is an S-metric on set X. Then (X, M, %) is a M-fuzzy metric space.

Proof 3 (i) M(x,y,z,t) >0 for all x,y,z € X and t > 0 is trivial.
(1) M(x,y,2,t) =1 <= S(r,y,2)=0
— T=Yy=2=z.
(i7i) Since S(x,y,z) < S(x,z,a)+ S(y,y,a)+ S(z,z,a),
hence,
tVsVr = tVsvVr

S(e,a,0) | S(y.y.a) | S(zza)
t S r

IN




364 Hassanzadeh, Javaheri, Sedghi and Shobe

Thus

S(x,y, 2 S(z,0) | Sww,a) | S(z.2.0)
tVsVr

S Y ) S ) Y —S ) )
= exp (xty Z>.exp* (msx a).exp (ZTZ a))

it follows that,

(i) M(z,y,z,tVsVr) > M(x,z,a,t).M(y,y,a,s).M(z 2 a,r)
= M(z,z,a,t) « M(y,y,a,s) « M(z, z,a,r).

(X, M, %) is a M-fuzzy metric space.

A sequence {x,} in X converges to x if and only if M(x,,x,,z,t) — 1 as
n — oo, for each ¢t > 0. It is called a Cauchy sequence if for each 0 < e < 1
and t > 0, there exits ny € N such that M(z,,z,, x;y,t) > 1 — ¢ for each
n,m > ng. The M-fuzzy metric space (X, M, x*) is said to be complete if
every Cauchy sequence is convergent.

The following properties of M noted in the theorem below are easy conse-
quences of the definition.

Lemma 3.5 Let (X, M, x) be a M-fuzzy metric space. Then

(1) M(z,z,y,t) = M(y,y,x,t).
(2) M(z,x,y,t) is nondecreasing with respect to t for each x,y € X.

Proof 4 (i) For every t € (0,00), we have

M(z,x,y,t) = M(z,z,y,tViVvt) > M(z,z,x,t)*« M(z,x,z,t) * M(y,y, x,t)
- M(y7y7x7t)‘

Similarly, we can show that M(y,y, z,t) > M(z,z,y,t). Thatis M(x,z,y,t) =
M(y7 y?x7 t)’
(11) For every t,s € (0,00), lett > s. Then
M(z,x,y,t) = M(z,xz,y,tVsVs) > M(zx,z,x,t)« M(z,z,z,s) * M(y,y,x,s)
= M(y7y7x78) :M('x?aj?y’S)'

Example 3.6 Let axb = ab for all a,b € [0,1] and M, and My be two fuzzy
set on X x X x (0,+00) defined by

M(x7yaz7t) :Ml(l',Z,t)*MQ(y,Z,t), (6)
for all x,y,z € X. Then (X, M, %) is a M-fuzzy metric space.
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Proof 5 (i) M(x,y,z,t) > 0 for all x,y,z € X and t > 0 is trivial.

(1) M(z,y,2,t) =1 <= M(z,2,t) = Ms(y, z,t) =1
— T=Yy=2=z.

(111) Let t > s > r, it follows that,

M(z,y,z,tVsVr)

(x,y,2,t)

1z, 2,t) * Ma(y, 2, t)

1z, a,t) « Mi(a, z,t) x Ma(y,a,t) « My(a, z,t)

1z, a,t) « My(z,a,t) « Mi(y,a,t) « My(y,a,t) x My(z,a,t) * Ma(z,a,t)
M(z,z,a,t) * M(y,y,a,t) * M(z,z,a,t)

M(z,z,a,t) * M(y,y,a,s) * M(z,2,a,r),

VAV,
SEEX

Vv

(X, M, %) is a M-fuzzy metric space.

Lemma 3.7 Let (X, M,x) be a M-fuzzy metric space. If sequence {x,} in
X converges to x, then x is unique.

Proof 6 Let {x,} converges to x and y, then for each 0 < & < 1 there exist
ni,ny € N such that

Vn>n = M(zp,x,,x,t) >1—¢, (7)

and
vn2n2:>M($naxnayat)>1_5' (8)

If set ng = max{ny,na}, then for every n > ng we have:

Mz, z,y,t) > Mz, x,2,,t) * M(x,2,2,,t) * M(y,y, p, t)
> (I—¢g)x(1—g)x(1—¢)

By taking the limit when € — 0 in above inequality we get M(x,z,y,t) > 1.
Hence M(x,z,y,t) =1 sox =y.

Lemma 3.8 Let (X, M, %) be a M-fuzzy metric space. Then the convergent
sequence {x,} in X is Cauchy.

Proof 7 Since lim,,_,o, x,, = x then for each 0 < € < 1 there exists ni,ny € N
such that
n>ny = M(x,, Tp,x,t) > 1 —¢, 9)
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m > ng = M(xpy, Ty, x,t) > 1—c. (10)

If set ng = max{ny,ns}, then for every n,m > ng we have:

M<xn7xnuxmat) Z M(In7xn7x7t)*M(xTLJxTLJ‘I‘?t)*M(xm7xm7‘/r7t)

> (I—g)x(1—¢g)x(1—¢).

By taking the limit when e — 0 in above inequality we get M(zp, Ty, Ty, t) > 1.
Hence {x,} is a Cauchy sequence.

Lemma 3.9 Let (X, M, %) be a M-fuzzy metric space. If there exist se-
quences {x,} and {y,} such that lim,,_,o z, = x and lim,_,o y, =y, then

lim M(xy,, Tp, Yn, t) = M(x,z,9,1t). (11)

n—oo

Proof 8 Since lim,,_,o x, = x and lim, .o y, = y, then for each 0 < e < 1
there exist ni,no € N such that

and

Vn>n = Mz, z,x,t) >1—¢, (12)

V> ng = MY, yn,y,t) > 1 — €. (13)

If set ng = max{nq,ny}, then for every n > ng we have:

\ARAVARLY,

M(Zy, Ty Y,y t)

M2y, Ty 2, ) % M(Z, Ty 2, 1) % M(Yny Y, T, t)

Mz, T, T, ) % M(20, Ty ) * MYy Yny Yy t) * MYy Yn, Y, t) x M(x, 2,9, 1)
I—e)x(l—e)*x(1—¢e)x(1—¢)x M(x,x,y,t).

By taking the limit when ¢ — 0 in above inequality we get

>
>

>

M(Zy, Ty Yy ) > M(z, 2,9, 1). (14)

On the other hand, we have

Mz, z,y,t)

Mz, z,x,,t) x M(z,2,2,,1) * M(y,y, Tp, t)

Mz, 2,2, 1)« M(z,2,2,,1) * M(Y, Y, Yn, t) * MY, Y, Yn, t) * M(Zp, T, Y, t)
(1—e)x(1—e)*x(1—¢e)x(1—¢)* M(zn,Tn,Yn,t),

as € — 0 we have

M(z,x,y,t) > M(2p, Tn, Yn, t). (15)

Therefore by relations (14) and (15) we have

lim M (2, T, Yy t) = M(Tn, Ty Yns ). (16)

n—o0
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Lemma 3.10 Let (X, M, %) be a M-fuzzy metric space with axb > ab for
alla,b € [0,1].If define S : X® — [0,00) by S(x,y, 2) = [y log,(M(z,y, z,t))dt,
then S is an S-metric on X for 0 < a < 1.

Proof 9 It is clear from the definition that S(x,y, z) is well defined for each
zr,y,z € X. (1) S(x,y,z) >0 for all x,y,z € X is trivial.

(17) S(z,y,2) =0 <= log,(M(z,y,2,t)) =0 for allt >0
— M(z,y,z,t)=1foralt>0<=x=y=2=2.

(z’v)Since /\/l(x,y, Zat) M(ac,x,a,t) * M(ya%avt) * M(Za Z>a7t)

M(z,x,a,t). M(y,y,a,t).M(z,z,a,t)

(VAR

it follows that,
S(z,y,2)
1
= / log, (M(z,y, z,t))dt
0
1
< /loga(./\/l(w,x,a,t)./\/l(y,y,a,t)./\/l(z,z,a,t))dt
0
1 1 1
< [ log,(Mr,xa,0))dt + [ lom,(Myy,a,0))dt + [ log,(M(z, 2,0,0))de
0 0 0
= S(z,z,a) +S(y,y,a) + S(z,2,0)
This proves that S is an S-metric on X.

The following lemma plays an important role to give fixed point results on
a M-fuzzy metric space.

Lemma 3.11 Let (X, M, %) be a M-fuzzy metric space.
(a) {x,} is a Cauchy sequence in (X, M,x*) if and only if it is a Cauchy
sequence in the S-metric space (X, 5).
(b) A M-fuzzy metric space (X, M, x*) is complete if and only if the S-
metric space (X,S) is complete.

Proof 10 First we show that every Cauchy sequence in (X, M, ) is a Cauchy

sequence in (X,S). To this end let {x,} be a Cauchy sequence in (X, M, ).
Then limy, 00 M(Zp, Ty Ty t) = 1. Since

1
S(ns Ts ) = [ 108 (M (@, s s D),
0
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1s an S-metric. Hence, we have

o S( 2, T, 2n)

= lim /loga(./\/l(xn,xn,:vm,t))dt:().

n,m—o00 Jq

We conclude that {x,} is a Cauchy sequence in (X,S). Next we prove that
completeness of (X, S) implies completeness of (X, M, ). Indeed, if {x,} is
a Cauchy sequence in (X, M, %) then it is also a Cauchy sequence in (X,5).
Since the S-metric space (X, S) is complete we deduce that there exists y € X
such that im,, o S(xp, x,,y) = 0. Therefore,

1
/ log,, (lim M(x,,,x,,y,t))dt = lim S(z,,z,,y) = 0.
0 n—oo n—oo

Hence we follow that {x,} is a convergent sequence in (X, M, *).
Now we prove that every Cauchy sequence {z,} in (X,S) is a Cauchy
sequence in (X, M, x). Since {x,} is a Cauchy sequence in (X, S), then

lim S(x,,n,z,) = lim /loga (T, Ty Ty £))dt = 0.

n,m—0o0 n,m—0o0

Hence, limy, ;00 M(Zp, Ty Ty t) = 1.

That is, {x,} is a Cauchy sequence in (X, M, x).

We shall have established the lemma if we prove that (X, S) is complete if
so is (X, M,x). Let {x,} be a Cauchy sequence in (X,S). Then {z,} is a
Cauchy sequence in (X, M, %), and so it is convergent to a point y € X with

lim M(zp, zp,y,t) = 1.

n,m—oo

As a consequence we have

lim S(x,,Tm,y) = lim /loga (T, T, y, t))dt = 0.

7,M—00 n,m—00

Therefore (X, S) is complete.

Lemma 3.12 Let (X, M, x) be a M-fuzzy metric space with axb = min{a, b}
foralla,b € [0,1]. We define S : X> — [0,00) by S(x,y, 2) = [y cot(EM(z,y, z,t))dt,
then S is an S-metric on X.

Proof 11 (i) S(z,y,z) > 0 is trivial.

(1)  S(r,y,2) =0 —= cot(g/\/l(w,y,z,t)) =0 forallt >0

— M(z,y,z,t)=1foralt>0<=x=y=2=2
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('L“) Since M(ZE,y,Z,t) > M(:L‘vx,a,t)*./\/l(y,y,a,t)*M(z,z,a,t)
= min{M(z,z,a,t), M(y,y,a,t), M(z,z,a,t)}.

and also since 0 < SM(z,y,2,t) < T it follows that,

S(x,y,2)
1 T
= / cot(§/\/l(9c, y, 2z, t))dt
0

1
< [ cotlZ Mz, 2,0.0) » M(y,y.0.0). Mz, 2.0, )]t

0

1
= [ cot(G min{M(z,2.0,0). M(y.9.0.8). M(z. 2,0 0) )t

0

1 1

= min{/0 cot(g/\/l(x,a:,a,t))dt,/o co’c(g./\/l(y,y,a,t))dt,/O cot(g/\/l(z,z,a,t))dt}

1 T 1 T 1 T
< — — —
/Ocot(QM(x,x,a,t))dt+/0 Cot(QM(y,y,a,t))dt+/() cot(2/\/l(z,z,a,t))dt
= S(z,z,a) + S(y,y,a) + S(zz2,a),

that is S is an S-metric on X.

Remark 3.13 Let a,b € (0,1], then it is a standard result that

Arccot(minf{a,b}) < Arccot(a) + Arccot(b) — —

Lemma 3.14 Let (X, M, ) be a M-fuzzy metric space with axb = min{a, b}
for all a,b € [ ,1]. We define S : X3 — [0,00) by
S(x,y, ) Jo (2 Arccot(M(z,y, z,t)) — 1)dt, then S is an S-metric on X.

Proof 12 (i) 0 < S(x,y,2) <1 is trivial.

4
(1)  S(z,y,2) =0 <= —Arccot(M(z,y,z,t)) —1=0 forallt >0
77
< Arccot(M(z,y, z,t)) = % for all t > 0.
— M(z,y,z,t)=1foralt>0<= =y ==z
(1ii) Since

M(z,y,z,t) > M(z,z,a,t) « M(y,y,a,t) « M(z, z,a,t)
— min{M(z, 2, a.), M(y.y. a.t), M(z, 2 0.)}.
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it follows that,
Arccot(M(z,y, 2, 1))
< ArccotIM(z,y, z,t) * M(y,y,a,t) * M(z, z,a,t)]
= Arccot(min{M(z,z,a,t), M(y,y,a,t), M(z, z,a,1)})
< Arccot(M(z,z,a,t)) + Arccot(M(y, y, a,t)) + Arccot(M(z, z,a,t)) — g

Hence,

1
S(z,y,z) = /0(iArccot(M(a:,y,z,t))—1)dt

L4 14
< / (=Arccot(M(x,x,a,t)) — 1)dt —i—/ (=Arccot(M(y,y,a,t)) — 1)dt
0 0T

Ll

+ / (=Arccot(M(z, z,a,t)) — 1)dt
0T

= S(xz,z,a) + S(y,y,a) + S(z,z,a),

that is S is an S-metric on X.

We now apply the theorem 3.1 to prove the following fixed point result in
M-fuzzy metric spaces.

Theorem 3.15 Let (X, M, %) be a complete M-fuzzy metric space with
dx f >df foralld, f €10,1]. Let A, B,C and T be self maps on X satisfying:

(i) A(X) CT(X),B(X) CC(X) and T(X) or C(X) is a closed subset of
X;

(ii) there exists positive real numbers a,b,c,e such that a +b+ c+ 3e < 1
and for each x,y,z € X,

M (Cx,Cx,Tz,t) * M*(Cx,Cx, Az, 1)

M(Az, Ay, Bz,t) = *xM(Tz,Tz, Bz, t) «x  [M(Cx,Cx,Bz,t) « M(Tz,Tz, Ay, t)]°’

(iii) the pairs (A,C) and (B,T) are weakly compatible.
Then A, B,C and T have a unique common fixed point in X .

Proof 13 From inequality (i1) above, we get,

/1 logM(A:p,Ay,Bz,t) dt
0

M (Cx,Cx,Tz,t) * M*(Cx,Cx, Az, t)
1 *M(Tz, Tz, Bz, t) x  [M(Cx,Czx,Bz,t) « M(Tz,Tz, Ay, t)|°
< / loga dt



Relation between S-Metric And M-Fuzzy Metric Spaces 371
M(Cx,Cx, Tz, t) M*(Cx,Cx, Az, t)
1 M(Tz, Tz, Bz, t)[M¢(Cx,Cx, Bz, t) M(Tz,Tz, Ay, t)]
< / loga dt

afol logﬁ/l(Cm,Cx,Tz,t) dt + bfol logg/l(Cm,Cr,Am,t) dt
+e fol 1Og£/l(Tz,Tz,Bz,t) dt + 6(fol log;\A(Cx,Cx,Bz,t) dt + fol 10g£/l(Tz,Tz,Ay,t) dt) :

If set S(x,y,2) = [} loggw(x’y’z’t) dt for every x,y,z € X and 0 < a < 1. Then
it follows that,

S(Az, Ay,Bz) < aS(Cx,Cx,Tz)+bS(Cx,Cx, Azx) +cS(T2,Tz, Bz)
+e(S(Cx,Cx,Bz) + S(T2,Tz, Ay)).

Hence by Lemma 3.14 all of conditions Theorem 3.1 hold. Thus A, B,C" and
T have a unique common fixed point in X .

Corollary 3.16 Let (X, M,x*) be a complete M-fuzzy metric space with
dx f >df foralld, f €[0,1]. Let A and B be self maps on X satisfying: there
exists positive real numbers a,b, c,e such that a + b+ ¢+ 3e < 1 and for each
x,y,z € X,

Mz, 2, 2,t) * MO(x, 2, Az, t)

MUAD AP B0 2 0oz, 2, B2, 8) ¢ [M(e,2, B2, t) Mz, 2, Ay, O

Then A and B have a unique common fixed point in X.

Proof 14 [t is enough set T'= C = I, identity map in Theorem 3.15.
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