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Abstract
We consider boundary value problem of the form

1=1

{ 5> Di(ai(z, Du(x))) = f, =€,
u(z) = us(z), x € 0f.

We show that regularity of boundary datum u, forces u to have regu-
larity as well. A similar result is obtained for obstacle problem.
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1 Introduction

Let €2 be a bounded open subset of R, n > 2. We consider the elliptic equation

n

>_ Di(ai(w, Du(x))) = f, (1.1)

i=1
where a;: 2 x R" — R with  — a;(x,2) continuous and satisfying

n 1
(@, 2)] < c(1+ 3 []P) 77, i=1,2,n, (1.2)
j=1
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and

vy |z =z <> (ai(z, 2) (z,2))(z — 2), (1.3)

i=1 i=1

for some positive constant v. For py,- - -, p, € (1,400), let p :% A pii and
P = - —Fr- be the harmonic mean of py,- - -, p, and the Holder conjugate of p;,
respectlvely In this paper we assume p < n and we introduce the Sobolev
exponent p* "Tpﬁ. The anisotropic Sobolev space W1®) () is defined as
usual by

Wwhed(Q) = {v € WHH(Q) : Dy € LPi(Q) for every i = 1,. .. ,n}

and Wy () is denoted to be the closure of C5°(€2) in the norm of W@ ().
We refer to [1,2] for the theory of these spaces The word anisotropic means
that the exponent p; of the derivative D;v = 7” might be different from the
exponent p; of the derivative D;v when ¢ # j. For some recent developments on
anisotropic functionals and anisotropic elliptic equations and systems, see[3-5].
We work in Marcinkiewicz spaces: if ¢ > 1, then the space M™(€2) consists

of measurable functions g on €2 such that

supt|{z € Q: |g(z)| >t} < oo.
t>0

This condition is equivalently stated as

Hlg(@)|llm = sup x)|dz < 0.

ECQ,|E|>0 |E|ﬁ
We recall that L™(2) is a proper subspace of M™(Q2), and if g € M™(Q) for
some m > 1, then g € L"™7¢(Q) for every 0 < e < g — 1.

It is well known that there exists a positive constant ¢, depending only on
), such that

i 1
[vllzr@) < e [T 1Dl e ), V€ [LF, (1.4)
i=1
for any ve W, (2 Z)(Q) In the following the letter ¢ will freely denote a con-
stant, not necessarily the same in any two occurrences, while only the relevant
dependence will be highlighted.
Let T} (u) is the usual truncation of u at level k& >0, that is,

Ty (u) = max{—k, min{k, u}}.

Moreover, let

Gr(u) = u — Ti(u).
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In [6] Agnese Di Castro considered the following problem

{ — 3 D|Du D] = f, z€Q, L5
=0

and gave some results concerning existence and regularity of weak solutions of
(1.5).

In this paper we present some results concerning the case of f belonging
to a Marcinkiewicz space, M™ of (1.1), in the case of m > (p*)’, where py, =

ma“x{pnvl_)*}v Pn = max{pi}-

2 Main Results

These are the main results of the paper.

Theorem 2.1 Let f& M™(Q), m > (5*), u, € WHH(Q) with Diu, € MP™,
i =1,2,---,n, and under previous assumptions (1.2)-(1.3), let u be a weak
solution for the problem (1.1), that is

/Qiai(anU(x))Div(a:)d:c:/vadx, Yo € Wy (). (2.6)

i) If m> =, then u-uyis bounded;
i1) If m= 2, then there exists a constant 5 > 0 such that

/ ePlu—ul < o0;
Q

ii) If (p*) <m < =, then u — u, belongs to M* with

n
P

mp*p—1) _ mn(p-1)

- ™ 7k mk n (27)
mp+p° —mp n — mp

We also consider obstacle problem for the elliptic equation (1.1). Let
Kff;)(ﬂ) = {v c Whe(Q) v >4, ae Q andv —u, € W(]l’(pi)(Q)} :
where for the boundary datum u, and the obstacle function 1, we assume that

Uy, € WH(Q), Diu,, Dip € MP™(Q), for every i = 1,---,n, (2.8)

The next theorem shows that higher integrability of § = max{1, u,} forces

solutions u € ICff, u) (2) to be more integrable.
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Theorem 2.2 Let f€ M™(S2), and under the assumptions (1.2)-(1.3) and

2.8), letu € K2 (Q) be a solution to obstacle problem for the elliptic equation
(IR
(1.1), that is

/Q >~ ai(e, Du(a))-(Div(e)~Dru(a))da > /Q > F ) (o) —u(a)dr, o € KLL(Q).

(2.9)
i) If m> 2, then u-0 is bounded;

p
i) If m= %, then there exists a constant B > 0 such that

/ ePlu—ol - oQ;
Q

iti) If (p*) < m < 3, then u — 0 belongs to M*, with s satisfies (2.7).

3 Proof of the Theorems.

Proof of Theorem 2.1. We take

U— Uy —k, u—u, >k,
v=Grlu—u,) =< 0, lu — u.| < E,
u—u, +k, u—u,<—k

in (2.6) and we have
> [ el D) DGt~ we) = [ FGulu—w.)

This implies

é/Ak ai(z, Du(x))Di(u — u,) = " flu—u, — k sign(u — u,)),
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where Ay = {|u — u.| > k}. Hence by (1.2), (1.3) and Young inequality we
obtain that

n
i=17 A%k

< Z/ (a;i(z, Du) — a;(z, Duy))(Dju — Dju,)
=17 Ak
- / f(u—u*—ksign(u—u*))—Z/ as(x, Du.)(Diu — D)
A i=1 7 Ak
< [ W= wl +3 [ e, Du)l| D~ D
Ay, = Ja,
n N 1
< [ W=l +edS [ (4 S D) (D~ Diu)
A =17 Ak j=1
< [ M-l +e@ Y [ A+ IDwp) X [ 1Du= D
Ak i—1 7 Ak i=1 i1 74k

(3.10)
where we have used the fact

| (u = we =k sign(u — w)| < [flJu— ..

The last term in the right hand side of (3.10) is absorbed by the left hand side,
provided ¢ is small enough. Then

A

k

vse(f lle-wl+ a4 3 [ D). @
k im1 7 Ak

Therefore, by (1.4), with » = p*, Holder inequality and (3.11), we get

L
([ e
A

1

< CH</ |Diu—Diu*|pi>pin
i=1 Ak
< o[ 1wl 1ad+ 3 [, D)
Ay = Ja,
N = R n 5
< cl</ |f@*>)<p> </ |u—u*ﬁ*)f’ +|Ak|+2/ |Diu*|pi]

(3.12)
Since f € M™(Q) and Dyu, € MP™(Q), and m > (p*)’, we have

1—L

pZ§C|Ak‘ m,

ey _e
[T <ela =5 [ D,
Ak Ak:
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Then by applying Young inequality and |Ak|% < [Qm, (3.12) becomes

c(/Ak lu —
1_ﬂ _1 7 ﬁ* % 1_L
(AT ([ = wafP)7 4+ Al + A5
k

ﬁ*)%

IN
pt
S
=

11 o1 1 11 . 1
SR m(/ U — w, [P )7+ A ™ ‘Ak‘m(/ |u — wy|P )7
Ap k A
1 _1
+ [ Ar] ’"/ lu — .l
K 0,
1 -1 L 11 L
< ANFT ([ = PP 4 A FT (- w7
Ay m

_1
@)

)AL

+C|Ak‘_%(/A |u — u,
k

1 1=y
< ofe)| ATy TP +5(/ lu —
Ay

ﬁ*)%.

Hence by applying Holder inequality with exponents p* and (5*)" to [, |Gr(u—
uy)| = [4, |u — u.| and by simplifying, we obtain

1

1 1
[ 1Gelu— )| < clay &7
Q

1 1
it

(3.13)

We define g(k) = [q |Gr(u — u.)| and we recall that g’ (k)=—|A|, for almost
every k (see[7], [8]). We obtain, from (3.13), that
1 ’
g(k)7 < —cg (k),

with v = (ﬁ - )+ 1- 1‘%‘ Therefore

n (3.14)

If we are in case i) of Theorem 1, we note that

1
1——>0.
Y

Therefore, by integrating (3.14) from 0 to k, we get
k< —clg(k)'™7 — g(0)" 7],

1.e.
1

_1 1-=
cg(k)' ™7 < —k +cllu — [ 11 )

Since g(k) is a non-negative and decreasing function, from the latter inequality
we deduce that there exists kg, such that g(k¢)=0, and so u — u, € L*(Q2). In
case ii) of Theorem 2.1, since m = %, v =1, we have

g (x)
g(z)

1< —¢
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By integrating from 0 to k, we have

k | —U*||L1(Q)
— < log|—————|,
c = el g(k) |

and since the function ¢ — €' increases, we obtain

k |u — U*||L1(Q)

g(k)

E
c

e = g(k)e < |2 — sl L1(0)-

So, recalling that
g() = [ 1Gxlu—u)l = [ 1Gu(u = w)| = klAnl,
Q Aag
Hence, if k >1, we have
g(k) = |Aai] = [Azele? < Jlu = -
Hence, if k >2, we get
k
|Aleze < |u — | o).

We prove now that the previous inequality implies that

+00
Z 6]€B|f4k| < o0,
k=0

with 0 < 8 < o-. Indeed, by (3.16),

X u = w10

+oo
STEMPA] < (1 +e)|Q + L)

k=0 k=2

Since

+o0
e Al < oo = / Pl < oo,
k=0 L

ii) is proved. To conclude, we consider case iii). In this case we have

1-—-<0.
v

Therefore,
1./
1< e(g(k) )"
By integration from 0 to k, we obtain

1 1 1

k< clg(k) ™ —g(0) ] < eg(k)' ™,

725

(3.15)

(3.16)
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and so L. .
k) < - k) < :
glk) s =k < =
Therefore, by (3.16), it holds true that
L .
k k—k kT

By recalling the definition of v, we obtain

I mn(p—1) B
v n—-mp
so that v — u, € M*(Q2). This ends the proof of Theorem 2.1.

Proof of Theorem 2.2. Let u € /Cgfu)(Q) be a solution to obstacle
problem for the (1.1). For k € (0,400) we define

v/ =0+ Ty(u—0).

We now show that o' € Kff;)(ﬂ) For the first case u — 6 > k, one has
v'=0+k > 0 > 1), for the second case |[u—6| < k, we obviously have ¢ < u = v';
for the third case u—0 < —k, we have ¢ < u < v’ = #—k. Sinceu € u*+W01’(pi)
and u > 1, a.e. Q, then 0 = max{y, u,} = u, = u on 0L, thus v'=0 on 0.
This implies v = u on 0f2, and therefore v’ € Kff;)(Q) and v’ satisfied (2.9).

Take v'(z) as the test function, the next proof is similar to the proof of
Theorem 2.1 with € in place of wu,.
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