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Abstract

In this paper we deal with the problem

u € Cy (L),

Vwe Cy(), /Qf(x,Du)d:L" < /Qf(:n,Dw)d:E,

where Cy(Q) = {w € u, + Wol’(pi)(Q) such that x — f(z,Dw) €
LY(Q), w > 1, a.e. Q}. We consider a minimizer u :  C R® — R
among all functions that agree on the boundary 02 with some fixed
boundary value u,. And we assume that the function 0 = max{u,, ¥}
makes the density f(x, Du) more integrable under the obstacle problem
and we prove that the minimizer u enjoy higher integrability.
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1 Introduction

Throughout this paper €2 will stands for a bounded domain in R™, n > 2. For
1, Pn € (1, 400), we let

1 131, p
p:— = — — = and p,, = max{p;
P n;pi, L — Pm = max {pi}
be the harmonic mean of py,- - -, p,, the Holder conjugate of p;, and the max-

imum value of py,---,p,, respectively. In this paper we assume p < n and
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we introduce the Sobolev exponent p* = n"T’;. The anisotropic Sobolev space
WL®)(Q), n > 1 is defined by

Whed(Q) = {v € WhH(Q) : Dw € LP(Q) for everyi=1,---,n},

and W, "®9 () is denoted to be the closure of C5°(€2) in the norm of W@ ().
We consider the variational integral

/Qf(at, Du)dx (1.1)

where the €2 is a open subset of R™ with n > 2, v : @ — R and f(z,2) :
) x R" — R is measurable with respect z and continuous with respect z.
In[1], Leonetti and Petricca considered isotropic minimizers u € W?(2) of the
integral functional (1.1), and assume p growth for below: there exist constants
p € (1,n) and vy € (0,400), there exists a function g; : 2 — [0, 400) such
that

vilzl” = gi(z) < f(z, 2) (1.2)

for almost every z €  and for all z € R". In anisotropic case, u € W@ (Q)
of the integral functional (1.1), there exist constants p; € (1,+o0) for every
i€{1,2,---,n} and v, € (0,+00), there exists a function gs : Q — [0, +00)

such that
n
) Z ‘Zi
i=1

for almost every x € ) and for all z € R™. The proof is a straightforward
modification of the proof of Theorem 1.1 in [1].

In this paper, we continue to consider the anisotropic integral functionals
(1.1), and the the density f(x, z) satisfy the following growth condition: there
exist constants p; € (1, +00) for every ¢ € {1,2,---,n} and v € (0, +00), there
exists a function g : Q — [0, +00) such that

"= galr) < f(a,2) (1.3)

Pi—2

’/Zn: (i |Zj|pj) ’ 2i* = g(x) < f(a,2) (1.4)

i=1 \j=1

for almost evert = € ) and for all z € R". We fix a boundary datum u, €
WL®)(Q) and

r — f(z,Du,) € L'(). (1.5)
Let v € Wh®)(Q) be any function in  with values in R U {£occ}, such that
0 = max{u,,} € WHP)(Q) and

x— f(x,D0) € L' (). (1.6)
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The set of competing functions for the variational integral (1.1) is
Cy(Q) ={w € u*+W01’(pi)(Q) such that x — f(x, Dw) € L'(Q), w > 1), a.e. Q},

the function ¢ is an obstacle.
Consider the following problem:

u € Cd,(Q), (17)

YV w e Cy(Q), /Qf(x,Du)dx < /Qf(x,Dw)d:B. (1.8)

In this paper we deal with regularity of minimizers, [5,6]. Now we ask the
following question: if 8 = max{u.,¥} makes f(z, Df) more integrable than
(1.6) requires, does the minimizer u enjoy higher integrability? The answer is
positive and in this paper we prove the following:

Theorem 1.1 Let 0 > 1. Assume that g € L7(R2), 0 = maz{u., ¥} such
that v — f(x, DO) € L7(Q2). If u € Cy(2) minimizers the variational integral
(1.1) under (1.7), then ]

(i) If o <%, thenu— 0 € Ly (),

(it) If o = %, then there exists o> 0 such that elu=tl ¢ L1((Q)),
(i11) If o > %, then u— 6 e L>(Q).

Note that £ > 12

n—po n—p

Remark 1.1 We should compare (1.4) with (1.3). Note that for z; € R",
i=1,2,-,n,

\Zz'|2 = (|Zi

Py < D ImP)
j=2

thus

pi—2

> (i \Zj\”j) "k <n (éwpﬂ') :

i=1 \j=2

This means, up to a constant n, the left hand side of (1.4) is smaller than or
equals to the left hand side of (1.8). Thus (1.4) is weaker than (1.3).
Consider a special case, when

p; > 2, foralli=1,2,--- n, (1.9)
we get
P1—2
n Pj
5 = () < (Z \zw)
) ) =~ j
i=1

This means that (1.4) implies (1.3) in case of (1.9) holds true.
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Remark 1.2 The main feature of this paper lies in the case when

1<pi <2, foralli=1,2,--- n. (1.10)
In this case,
Pi—2
Tpi
P2 = (|a) o Z |27 ,
thus
pi—2
pPg
Z |2 = Z Z 21" Ell
=1 \j=1

This means in the case of (1.10), the condition in the left hand side of (1.4)
is weaker than the one in the left hand side of (1.3).

2 Proof of the Main Theorem

We will write ¢ to denote positive constants, possibly different depending on
the data v, n, e, (), p1,p2, -+, . In order to prove Theorems 1.1, we need a
preliminary lemma. The lemma can be found in [2].

Lemma 2.1 Let w € Wo'P)(Q), and let M > 0, v > 0, and ko > 0. Let
for every k > ko,

/ {Z D, w} dr < Mlmeas{|w| > k. (2.1)
{lw[>k}
Then the following assertmg hold:
(i) If v < 1, then w € L;e;k(ﬂ),
(ii) If v = 1, then there exists a > 0 such that e*“l € L'(€),
(iii) If v > 1, then w € L>(9).
We want to use Lemma 2.1 with w = u — 6. Then we get
/ S |Dyu — D,6|Pidx
{lu—01>k} ;=4
< | Dyu + D;6|Pdx
< | 27 (| DyulP + |D;6|")] da
ooy 2 2D D8P

pzdx

Pyt 2 [ S |D#

{lu—012k} =4

< 27””/ Z|Du
{Ju—0|>k} =
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We distinguish between two cases.
Case 1,p; > 2. In this case,

pi—2

=2 n Pi
[Dauf = (|Dgul™) 5 | Dul? < (Z |Dju|”j) D’ (2:3)
j=1
Integrating this inequality with respect to x , we get
Pi—2
n Pi
|D;u|Pide < | D ju|Pi | D;u|*dz. (2.4)
/{|u—e>k} {lu—0]2k} Z{ ’
Case 2, 1 < p; < 2. Young inequality yields
/ |D;ulPidz
{lu—0|=k} o 2,
n 2 n 2
= | Dju|P | Dyu|Pi | Dju|Ps dx
/{u—e|zk} (jz::l ’ ; ’
pi—2
n Py n
< d@/ |Dul?s \Dmﬁm+e/ |DulPidz.
{ju=6l>F} (]2 ’ {|u—e>k}j§ !

(2.5)
It is no loss of generality to assume ne < 1 and ¢(¢) > 1. Thus in both cases,
(2.5) holds true. Therefore,

P2
n n n Py
\DyulPidr < q@/ Dl | |Duufdz
/{|u—9zk}i; {\u—e|zk}; =
+n5/ D;ulPidzx.
{u—e|>k}jz::1| &

(2.6)
Since ne < 1, the last term in the right hand side of (2.6) is absorbed by the
left hand side. Thus we have

Pi—2
n

Dul|Pidr < c/ D.ulPi Z Dyul?dz. 97
/{|“_9>k};| | {ju—0]>k} = (;| jul | Diul (2.7)
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From (2.2) and (2.7), then we apply the p; growth from below in (1.4) and
we have

/{ S| D — D d

lu—01>k} ;27
pi—2
n

< 2”’"0/ D ;u|Pi l D;u 2dx+2pm/ D;0Pidx
{u—e|>k}i;<j§1‘ & ) D {|u—e\zk}i§|

< 2”’”2/ f(z, Du)dx+2pm£/ g(x)dx
v Jju-01>k} v J{ju—o/>k}

_|_2pm/ |D29|pzdx
{lu—01>k} ;=4

(2.8)
In order to control [ f(z, Du) we need the minimality of u, we define the

test function v,

v=0+Ti(u—0)=

0+Fk, u—02>k;
u, lu — 0| < k; (2.9)
00—k, uw—0<-—k,

where k € (0, +00).

For u € Cy(Q2), we have to show that v € Cy(Q2). In fact, it is obvious
that v € Wh®)(Q). In order to prove v € u, + Wy P(Q), we notice that
u=u, < ae. ond, thus 0 = u, = u a.e. on 99, this implies Ty(u—6) =0
on 09, thus v —u, = v—0 = Tp(v —0) = 0 on 0. In order to prove
f(x, Dv) € LY(Q), we notice that Dv = Du on {|u — 0| < k} and Dv = D@
on {|u— 6| > k}, thus f(z, Dv) € L'(Q) is guaranteed by f(z, Du) € L*(Q)
and (1.6), and to prove v > v a.e., we notice that the first case of (2.9),
v=0+k>602>1, in the second case of (2.9), u > 1, and in the last case of
(29 v=0—-k>u>1.

We can use minimality (1.8):

/u_6|<k} f(x, Du)dz + oo f(x, Du)dz = /Qf(at, Du)dx

< Dv)dx = Du)d D8)dzx.
< [ flo, Do)z /{|u_9<k}f(:c, w)dz + /ﬂu_eZk}f(:c, )da

(2.10)

Since u and 0 have finite energy, all the integral functionals are finite; then
we can drop [q,_g <k} f (2, Du)dx from both sides and we get

/{H'zk} f(z, Du)dx < /{ . f(z, D6)dzx. (2.11)
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This inequality can be used in (2.8), and we obtain

A S |Diu — Dy d

lu—0|>k} ;4
c
< 2*”’”2/ f(z, DO)dx + 2*”’”—/ g(x)dx
V J{|lu—0|>k} . V J{lu—0|>k} (2.12)
+TM/ D,6|Pdx
{lu—0|=k} ; | |
= H(x)dx,
{lu—0|=k}
where
2Pme 2Pme - ,
H(z) = f(z, DO) + g(z) + 2> | D6, (2.13)
v v i=1
The assumption on D@, g(x), and f guarantee that
H(x) € L7(Q). (2.14)
Then, using Hoélder inequality, we can obtain
1
H d<(/H0d)” e 2.15
S gy H @z < ([ H7dr) T |{u 0] = k)] (2.15)
we insert this inequality into (2.12) and we get
i o1
/ S |Dw — DibfPide < | H| gy [{Ju— 0] > K} . (2.16)
{lu—8|>k} i=1
Now )
o—1 1-1p
= 7 — 2.17
o 1—Zp ( )
and we can apply Lemma 2.1 with v = 1:2 . We complete the proof of Theorem
1.1. !
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