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Abstract

In this paper we deal with the problem

u ∈ Cψ(Ω),

∀ ω ∈ Cψ(Ω),

∫

Ω
f(x,Du)dx ≤

∫

Ω
f(x,Dω)dx,

where Cψ(Ω) = {w ∈ u∗ + W
1,(pi)
0 (Ω) such that x → f(x,Dw) ∈

L1(Ω), w ≥ ψ, a.e. Ω}. We consider a minimizer u : Ω ⊂ Rn → R

among all functions that agree on the boundary ∂Ω with some fixed
boundary value u∗. And we assume that the function θ = max{u∗, ψ}
makes the density f(x,Du) more integrable under the obstacle problem
and we prove that the minimizer u enjoy higher integrability.
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1 Introduction

Throughout this paper Ω will stands for a bounded domain in Rn, n ≥ 2. For
p1, · · · , pn ∈ (1,+∞), we let

p̄ :
1

p̄
=

1

n

n
∑

i=1

1

pi
, p′i =

pi

pi − 1
and pm = max

1≤i≤n
{pi}

be the harmonic mean of p1, · · · , pn, the Hölder conjugate of pi, and the max-
imum value of p1, · · · , pn, respectively. In this paper we assume p̄ < n and
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we introduce the Sobolev exponent p̄∗ = np̄

n−p̄
. The anisotropic Sobolev space

W 1,(pi)(Ω), n ≥ 1 is defined by

W 1,(pi)(Ω) = {v ∈ W 1,1(Ω) : Div ∈ Lpi(Ω) for every i = 1, · · · , n},

andW
1,(pi)
0 (Ω) is denoted to be the closure of C∞

0 (Ω) in the norm ofW 1,(pi)(Ω).
We consider the variational integral

∫

Ω
f(x,Du)dx (1.1)

where the Ω is a open subset of Rn with n ≥ 2, u : Ω → R and f(x, z) :
Ω × Rn → R is measurable with respect x and continuous with respect z.
In[1], Leonetti and Petricca considered isotropic minimizers u ∈ W 1,p(Ω) of the
integral functional (1.1), and assume p growth for below: there exist constants
p ∈ (1, n) and ν1 ∈ (0,+∞), there exists a function g1 : Ω → [0,+∞) such
that

ν1|z|
p − g1(x) ≤ f(x, z) (1.2)

for almost every x ∈ Ω and for all z ∈ Rn. In anisotropic case, u ∈ W 1,(pi)(Ω)
of the integral functional (1.1), there exist constants pi ∈ (1,+∞) for every
i ∈ {1, 2, · · · , n} and ν2 ∈ (0,+∞), there exists a function g2 : Ω → [0,+∞)
such that

ν2

n
∑

i=1

|zi|
pi − g2(x) ≤ f(x, z) (1.3)

for almost every x ∈ Ω and for all z ∈ Rn. The proof is a straightforward
modification of the proof of Theorem 1.1 in [1].

In this paper, we continue to consider the anisotropic integral functionals
(1.1), and the the density f(x, z) satisfy the following growth condition: there
exist constants pi ∈ (1,+∞) for every i ∈ {1, 2, · · · , n} and ν ∈ (0,+∞), there
exists a function g : Ω → [0,+∞) such that

ν
n
∑

i=1





n
∑

j=1

|zj|
pj





pi−2

pi

|zi|
2 − g(x) ≤ f(x, z) (1.4)

for almost evert x ∈ Ω and for all z ∈ Rn. We fix a boundary datum u∗ ∈
W 1,(pi)(Ω) and

x→ f(x,Du∗) ∈ L1(Ω). (1.5)

Let ψ ∈ W 1,(pi)(Ω) be any function in Ω with values in R ∪ {±∞}, such that
θ = max{u∗, ψ} ∈ W 1,(pi)(Ω) and

x→ f(x,Dθ) ∈ L1(Ω). (1.6)
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The set of competing functions for the variational integral (1.1) is

Cψ(Ω) = {w ∈ u∗+W
1,(pi)
0 (Ω) such that x→ f(x,Dw) ∈ L1(Ω), w ≥ ψ, a.e. Ω},

the function ψ is an obstacle.
Consider the following problem:

u ∈ Cψ(Ω), (1.7)

∀ w ∈ Cψ(Ω),
∫

Ω
f(x,Du)dx ≤

∫

Ω
f(x,Dw)dx. (1.8)

In this paper we deal with regularity of minimizers, [5,6]. Now we ask the
following question: if θ = max{u∗, ψ} makes f(x,Dθ) more integrable than
(1.6) requires, does the minimizer u enjoy higher integrability? The answer is
positive and in this paper we prove the following:

Theorem 1.1 Let σ > 1. Assume that g ∈ Lσ(Ω), θ = max{u∗, ψ} such
that x → f(x,Dθ) ∈ Lσ(Ω). If u ∈ Cψ(Ω) minimizers the variational integral
(1.1) under (1.7), then

(i) If σ < n
p̄
, then u− θ ∈ L

np̄σ

n−p̄σ

weak (Ω),

(ii) If σ = n
p̄
, then there exists α > 0 such that eα|u−θ| ∈ L1(Ω),

(iii) If σ > n
p̄
, then u− θ ∈ L∞(Ω).

Note that np̄σ

n−p̄σ
> np̄

n−p̄
.

Remark 1.1 We should compare (1.4) with (1.3). Note that for zi ∈ Rn,
i = 1, 2, · · · , n,

|zi|
2 = (|zi|

pi)
2

pi ≤





n
∑

j=2

|zj |
pj





2

pi

,

thus
n
∑

i=1





n
∑

j=2

|zj |
pj





pi−2

pi

|zi|
2 ≤ n





n
∑

j=2

|zj |
pj



 .

This means, up to a constant n, the left hand side of (1.4) is smaller than or
equals to the left hand side of (1.3). Thus (1.4) is weaker than (1.3).

Consider a special case, when

pi ≥ 2, for all i = 1, 2, · · · , n, (1.9)

we get

|zi|
pi−2 = (|zi|

pi)
p1−2

pi ≤





n
∑

j=1

|zj|
pj





p1−2

pi

.

This means that (1.4) implies (1.3) in case of (1.9) holds true.
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Remark 1.2 The main feature of this paper lies in the case when

1 < pi < 2, for all i = 1, 2, · · · , n. (1.10)

In this case,

|zi|
pi−2 = (|zi|

pi)
pi−2

pi ≥





n
∑

j=1

|zj|
pj





pi−2

pi

,

thus
n
∑

i=1

|zi|
pi ≥

n
∑

i=1





n
∑

j=1

|zj|
pj





pi−2

pi

|zi|
2.

This means in the case of (1.10), the condition in the left hand side of (1.4)
is weaker than the one in the left hand side of (1.3).

2 Proof of the Main Theorem

We will write c to denote positive constants, possibly different depending on
the data ν, n, ε, c(ε), p1, p2, · · · , pn. In order to prove Theorems 1.1, we need a
preliminary lemma. The lemma can be found in [2].

Lemma 2.1 Let ω ∈ W
1,(pi)
0 (Ω), and let M > 0, γ > 0, and k0 ≥ 0. Let

for every k > k0,

∫

{|ω|≥k}

{

n
∑

i=1

|Diω|
pi

}

dx ≤M [meas{|ω| ≥ k}]
γp̄

p̄∗ . (2.1)

Then the following asserting hold:

(i) If γ < 1, then ω ∈ L
p̄∗

1−γ

weak(Ω),
(ii) If γ = 1, then there exists α > 0 such that eα|ω| ∈ L1(Ω),
(iii) If γ > 1, then ω ∈ L∞(Ω).

We want to use Lemma 2.1 with ω = u− θ. Then we get

∫

{|u−θ|≥k}

n
∑

i=1

|Diu−Diθ|
pidx

≤
∫

{|u−θ|≥k}

n
∑

i=1

|Diu+Diθ|
pidx

≤
∫

{|u−θ|≥k}

n
∑

i=1

[2pi(|Diu|
pi + |Diθ|

pi)] dx

≤ 2pm
∫

{|u−θ|≥k}

n
∑

i=1

|Diu|
pidx+ 2pm

∫

{|u−θ|≥k}

n
∑

i=1

|Diθ|
pidx.

(2.2)
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We distinguish between two cases.
Case 1,pi ≥ 2. In this case,

|Diu|
pi = (|Diu|

pi)
pi−2

pi |Diu|
2 ≤





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2. (2.3)

Integrating this inequality with respect to x , we get

∫

{|u−θ|≥k}
|Diu|

pidx ≤
∫

{|u−θ|≥k}





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx. (2.4)

Case 2, 1 < pi < 2. Young inequality yields

∫

{|u−θ|≥k}
|Diu|

pidx

=
∫

{|u−θ|≥k}











n
∑

j=1

|Dju|
pj





pi−2

2

|Diu|
pi





n
∑

j=1

|Dju|
pj





2−pi
2





 dx

≤ c(ε)
∫

{|u−θ|≥k}





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx+ ε

∫

{|u−θ|≥k}

n
∑

j=1

|Dju|
pjdx.

(2.5)
It is no loss of generality to assume nε < 1 and c(ε) ≥ 1. Thus in both cases,
(2.5) holds true. Therefore,

∫

{|u−θ|≥k}

n
∑

i=1

|Diu|
pidx ≤ c(ε)

∫

{|u−θ|≥k}

n
∑

i=1





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx

+nε
∫

{|u−θ|≥k}

n
∑

j=1

|Dju|
pjdx.

(2.6)
Since nε < 1, the last term in the right hand side of (2.6) is absorbed by the
left hand side. Thus we have

∫

{|u−θ|≥k}

n
∑

i=1

|Diu|
pidx ≤ c

∫

{|u−θ|≥k}

n
∑

i=1





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx. (2.7)
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From (2.2) and (2.7), then we apply the pi growth from below in (1.4) and
we have

∫

{|u−θ|≥k}

n
∑

i=1

|Diu−Diθ|
pidx

≤ 2pmc
∫

{|u−θ|≥k}

n
∑

i=1





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx+ 2pm

∫

{|u−θ|≥k}

n
∑

i=1

|Diθ|
pidx

≤ 2pm
c

ν

∫

{|u−θ|≥k}
f(x,Du)dx+ 2pm

c

ν

∫

{|u−θ|≥k}
g(x)dx

+2pm
∫

{|u−θ|≥k}

n
∑

i=1

|Diθ|
pidx.

(2.8)

In order to control
∫

f(x,Du) we need the minimality of u, we define the
test function v,

v = θ + Tk(u− θ) =











θ + k, u− θ ≥ k;
u, |u− θ| < k;
θ − k, u− θ ≤ −k,

(2.9)

where k ∈ (0,+∞).

For u ∈ Cψ(Ω), we have to show that v ∈ Cψ(Ω). In fact, it is obvious

that v ∈ W 1,(pi)(Ω). In order to prove v ∈ u∗ + W
1,(pi)
0 (Ω), we notice that

u = u∗ ≤ ψ a.e. on ∂Ω, thus θ = u∗ = u a.e. on ∂Ω, this implies Tk(u− θ) = 0
on ∂Ω, thus v − u∗ = v − θ = Tk(v − θ) = 0 on ∂Ω. In order to prove
f(x,Dv) ∈ L1(Ω), we notice that Dv = Du on {|u − θ| < k} and Dv = Dθ

on {|u − θ| ≥ k}, thus f(x,Dv) ∈ L1(Ω) is guaranteed by f(x,Du) ∈ L1(Ω)
and (1.6), and to prove v ≥ ψ a.e., we notice that the first case of (2.9),
v = θ + k ≥ θ ≥ ψ, in the second case of (2.9), u ≥ ψ, and in the last case of
(2.9) v = θ − k ≥ u ≥ ψ.

We can use minimality (1.8):

∫

{|u−θ|<k}
f(x,Du)dx+

∫

{|u−θ|≥k}
f(x,Du)dx =

∫

Ω
f(x,Du)dx

≤
∫

Ω
f(x,Dv)dx =

∫

{|u−θ|<k}
f(x,Du)dx+

∫

{|u−θ|≥k}
f(x,Dθ)dx.

(2.10)

Since u and θ have finite energy, all the integral functionals are finite; then
we can drop

∫

{|u−θ|≤k} f(x,Du)dx from both sides and we get

∫

{|u−θ|≥k}
f(x,Du)dx ≤

∫

{|u−θ|≥k}
f(x,Dθ)dx. (2.11)
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This inequality can be used in (2.8), and we obtain

∫

{|u−θ|≥k}

n
∑

i=1

|Diu−Diθ|
pidx

≤ 2pm
c

ν

∫

{|u−θ|≥k}
f(x,Dθ)dx+ 2pm

c

ν

∫

{|u−θ|≥k}
g(x)dx

+2pm
∫

{|u−θ|≥k}

n
∑

i=1

|Diθ|
pidx

=
∫

{|u−θ|≥k}
H(x)dx,

(2.12)

where

H(x) =
2pmc

ν
f(x,Dθ) +

2pmc

ν
g(x) + 2pm

n
∑

i=1

|Diθ|
pi. (2.13)

The assumption on Dθ, g(x), and f guarantee that

H(x) ∈ Lσ(Ω). (2.14)

Then, using Hölder inequality, we can obtain

∫

{|u−θ|≥k}
H(x)dx ≤

(∫

Ω
Hσdx

)
1

σ

|{|u− θ| ≥ k}|
σ−1

σ , (2.15)

we insert this inequality into (2.12) and we get

∫

{|u−θ|≥k}

n
∑

i=1

|Diu−Diθ|
pidx ≤ ‖H‖Lσ(Ω) |{|u− θ| ≥ k}|

σ−1

σ . (2.16)

Now
σ − 1

σ
=

1− 1
σ

1− p̄

n

p̄

p̄∗
(2.17)

and we can apply Lemma 2.1 with γ =
1− 1

σ

1− p̄

n

. We complete the proof of Theorem
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