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Abstract

This paper deals with anisotropic integral functionals of the type

I(u) =
∫

Ω
f(x,Du(x))dx,

where the Carathéodory function f(x, z) : Ω × Rn → R satisfies the
growth condition

µ

n
∑

i=1

|zi|
pi − g(x) ≤ f(x, z)

for almost every x ∈ Ω and all z ∈ Rn. We consider a minimizer u : Ω ∈
Rn → R among all functions that agree on the boundary ∂Ω with some
fixed boundary value u∗ and with gradient constraints. We assume that
the boundary datum u∗ make the density f(x,Du∗(x)) more integrable
and we prove that the minimizer u enjoys higher integrability.
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1 Introduction and statementa of result.

Let Ω be a bounded open subset in Rn, n ≥ 2. For p1, · · · , pn ∈ (1,+∞), we
set

p̄ =

(

1

n

n
∑

i=1

1

pi

)−1

, p′i =
pi

pi − 1
, pmax = max

1≤i≤n
pi
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be the harmonic mean of p1, · · · , pn, the Hölder conjugate of pi, and the max-
imum value of p1, · · · , pn, respectively. In this paper we assume p̄ < n and we
denote p̄∗ to be the Sobolev conjugate of p̄, that is, p̄∗ = np̄

n−p̄
.

Let Tk : R → R be the truncation function of level k > 0,

Tk(s) =

{

s, if |s| ≤ k;
k · sign(s), if |s| > k.

We work in weak Lebesgue spaces Lσ
weak(Ω), known also as Marcinkiewicz

spaces or Lorentz spaces Lσ,∞(Ω): If σ > 1, then the space Lσ
weak(Ω) consists

of all measurable functions h(x) on Ω such that

sup
t>0

t|{x ∈ Ω : |h(x)| > t}|
1

σ < ∞.

This condition is equivalently stated as

|||h|||σ = sup
E⊂Ω,|E|>0

1

|E|
1

σ′

∫

E
|h(x)|dx < ∞. (1.1)

We let ϕ : Ω → R be a nonnegative function and u∗ ∈ W 1,(pi)(Ω) be such
that |Du∗(x)| ≤ ϕ(x), for a.e. x ∈ Ω. We define

Cu∗,ϕ = {v ∈ u∗ +W
1,(pi)
0 (Ω) : |Dv(x)| ≤ ϕ(x), a.e. x ∈ Ω}.

It is obvious that Du∗(x) ∈ Cu∗,ϕ, thus Cu∗,ϕ 6= ∅. It is easy to see that the set
Cu∗,ϕ is convex and closed in W 1,(pi)(Ω).

We consider anisotropic integral functionals of the type

I(u) =
∫

Ω
f(x,Du(x))dx, (1.2)

where u : Ω ⊂ Rn → R and f : Ω × Rn → R is a Carathéodory function,
that is, f(x, z) is measurable with respect to x ∈ Ω and continuous with resect
to z ∈ Rn. We assume that there exists a constant µ > 0 and a function
g(x) : Ω → [0,+∞) such that

µ
n
∑

i=1

|zi|
pi − g(x) ≤ f(x, z), (1.3)

for almost every x ∈ Ω and for all z ∈ Rn.
We consider the following problem:

u ∈ Cu∗,ϕ, (1.4)

∀v ∈ Cu∗,ϕ,

∫

Ω
f(x,Du(x))dx ≤

∫

Ω
f(x,Dv(x))dx. (1.5)

The main result of this paper is the following theorem.
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Theorem 1.1 Assume that g(x), f(x,Du∗(x)) ∈ Lσ
weak(Ω), σ > 1. If u

satisfies (1.4), (1.5) under (1.3), then

(i) σ < n
p̄
⇒ u− u∗ ∈ L

np̄σ

n−p̄σ

weak (Ω);

(ii) σ = n
p̄
⇒ ∃α > 0 : eα|u−u∗| ∈ L1(Ω);

(iii) σ > n
p̄
⇒ u− u∗ ∈ L∞(Ω).

For some related regularity results of minimizers of integral functionals
with nonstandard growth as well as nonlinear elliptic equations and systems,
we refer the reader to [1-7].

Note that the condition on g(x) and f(x,Du∗(x)) in Theorem 1 is slightly
weaker than that of [1]. Note also that np̄σ

n−p̄σ
> np̄

n−p̄
.

2 Proof of Theorem 1.1.

In order to prove Theorem 1.1, we need a preliminary lemma, which can be
found in [6, Proposition 2.2].

Lemma 2.1 Let υ ∈ W
1,(pi)
0 (Ω), and let M > 0, γ > 0, and k0 ≥ 0. Let for

every k > k0,
∫

{|υ|>k}

n
∑

i=1

|Diυ|
pidx ≤ M |{|υ| > k}|

γp̄

p̄∗

Then the following assertions hold:

(i) γ < 1 ⇒ υ ∈ L
p̄∗

1−γ (Ω);
(ii) γ = 1 ⇒ ∃α > 0 : eα|υ| ∈ L1(Ω);
(iii) γ > 1 ⇒ υ ∈ L∞(Ω).

Proof. For u ∈ Cu∗,ϕ and k > 0 we let

v = u∗ + Tk(u− u∗) =











u∗ + k, u− u∗ > k;
u, |u− u∗| ≤ k;
u∗ − k, u− u∗ < −k.

It is obvious that
v ∈ u∗ +W

1,(pi)
0 (Ω) (2.1)

and

Dv(x) =

{

Du∗(x), |u− u∗| > k;
Du(x), |u− u∗| ≤ k.

(2.2)

It follows from u, u∗ ∈ Cu∗,ϕ that |Dv(x)| ≤ ϕ(x) for a.e. x ∈ Ω, which together
with (2.1) implies v ∈ Cu∗,ϕ. So we can use (1.5) with v as a test function that
implies

∫

{|u−u∗|≤k}
f(x,Du)dx+

∫

{|u−u∗|>k}
f(x,Du)dx =

∫

Ω
f(x,Du)dx

≤
∫

Ω
f(x,Dv)dx =

∫

{|u−u∗|≤k}
f(x,Du)dx+

∫

{|u−u∗|>k}
f(x,Du∗)dx.

(2.3)
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Since u and u∗ have finite energy, all the integrals above are finite, then we
can drop

∫

{|u−u∗|≤k} f(x,Du)dx from both sides of (2.3) and we get

∫

{|u−u∗|>k}
f(x,Du)dx ≤

∫

{|u−u∗|>k}
f(x,Du∗)dx. (2.4)

(1.3) together with (2.4) implies

∫

{|u−u∗|>k}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ 2pmax−1

[

∫

{|u−u∗|>k}

n
∑

i=1

|Diu|
pidx+

∫

{|u−u∗|>k}

n
∑

i=1

|Diu∗|
pidx

]

≤
2pmax−1

µ

[

∫

{|u−u∗|>k}
f(x,Du)dx+

∫

{|u−u∗|>k}
g(x)dx

]

+2pmax−1
∫

{|u−u∗|>k}

n
∑

i=1

|Diu∗|
pidx.

≤
2pmax

µ

[

∫

{|u−u∗|>k}
f(x,Du∗)dx+

∫

{|u−u∗|>k}
g(x)dx

]

=
∫

{|u−u∗|>k}
hdx,

(2.5)

where

h(x) =
2pmax

µ
[f(x,Du∗(x)) + g(x)] ∈ Lσ

weak(Ω).

(1.1) implies
∫

{|u−u∗|>k}
hdx ≤ |||h|||Lσ(Ω)|{|u− u∗| > k}|

1

σ′ (2.6)

Combining (2.5) with (2.6) we obtain

∫

{|u−u∗|>k}

n
∑

i=1

|Diu−Diu∗|
pidx ≤ |||h|||Lσ(Ω)|{|u− u∗| > k}|

1

σ′ .

Theorem 1.1 follows from Lemma 2.1.
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