# Reduction of Higher Order Linear Ordinary Differential Equations into the Second Order and Integral Evaluation of Exact Solutions 

Gunawan Nugroho*<br>Department of Engineering Physics, Institut Teknologi Sepuluh Nopember Jl Arief Rahman Hakim, Surabaya, Indonesia (60111)<br>Ahmad Zaini<br>Department of Engineering Physics, Institut Teknologi Sepuluh Nopember Jl Arief Rahman Hakim, Surabaya, Indonesia (60111)<br>Purwadi A. Darwito<br>Department of Engineering Physics, Institut Teknologi Sepuluh Nopember Jl Arief Rahman Hakim, Surabaya, Indonesia (60111)


#### Abstract

Higher order linear differential equations with arbitrary order and variable coefficients are reduced in this work. The method is based on the decomposition of their coefficients and the approach reduces the order until second order equation is produced. The method to find closedform solutions to the second order equation is then developed. The solution for the second order ODE is produced by rearranging its coefficients. Exact integral evaluation is also conducted to complete the solutions.


Keywords: Higher order linear ordinary differential equations, exact integral evaluation, reduction of order, decomposition of variable coefficients.

MSC number (2010): 34A05, 34A25, 34A30.

## 1. Introduction

It is well-known that the well-posed problem for the linear differential equations has been settled and completed by means of functional analysis [1]. However, the concepts will not be very useful until the explicit solutions are produced. They are capable to describe the detail features of the systems [2,3]. They may also help to extend the existence, uniqueness and regularity properties of the solutions which are obtained from qualitative analysis [4].

[^0]Therefore, methods for solving linear differential equations with variable coefficients are important from both physical and mathematical point of views [5]. Especially for the second order ordinary differential equations, with nonhomogenous physical properties, such as in waves propagation in non-uniform media and vibration waves with anisotropic physical properties. Since that specific problem attracts many mathematicians and physicists, the methods to obtain exact and approximate solutions for second order equation are tackled systematically and some interesting results are produced [6]. One case is the method of differential transfer matrix to handle some physical problems which is computationally milder than the previous analytic methods and the method is also applied to the higher order ODEs [7]. Also some approximate methods can be extended to handle nonlinear equations [8,9]. Despite the concentrated research and reports on the problem, the closed-form solutions for the higher order and second order ODEs with variable coefficients remain one of the important area of differential equations [10]. Even it is recently claimed that the problem is not solvable in general case [11].

In this work, the method for obtaining exact solutions to the second order equations is conducted by rearranging the coefficients. The solution of the second order equation will be implemented as a basis for tackling the higher order equations. The coefficients of the equations are decomposed in order to reduce their order. The reduction is continued until the second order equation is produced and solved. The explicit expression then can be determined by the proposed exact integral evaluation in order to complete solutions. Finally, we give ilustrations of integral evaluation by examples.

## 2. Solutions for Second Order Differential Equations

Since the second order differential equation can be transformed into the Riccati class, we begin from the following statement,

Theorem 1: Consider the second order linear ODE with variable coefficients,

$$
y_{x x}+a_{1} y_{x}+a_{2} y=0
$$

The coefficients $a_{1}$ and $a_{2}$ can be split into new functions, $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ and $\alpha$. By determining the new functions $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ and $\alpha$, the closed-form solution is obtained as,

$$
y=\frac{1}{f_{3} f_{6}}\left(\int_{x} a_{2} d x\right)^{-1}\left[C_{6} \int_{x} f_{3}^{2} f_{6}^{2}\left(\int_{x} a_{2} d x\right)^{2} e^{-\int_{x} a_{1} d x} d x+C_{7}\right]
$$

where

$$
f_{3}=\left[C_{1} \int_{x}\left(\int_{x} a_{2} d x\right)^{2} e^{-\int_{x} a_{1} d x} d x+C_{2}\right]^{-1}
$$

and
$f_{6}=\left\{C_{4} \int_{x}\left[C_{1} \int_{x}\left(\int_{x} a_{2} d x\right)^{2} e^{-\int_{x} a_{1} d x} d x+C_{2}\right]^{-2} d x+C_{5}\right\}^{-1}$.

Proof: The above equation can be rewritten as,
$\frac{1}{\alpha}\left(\alpha y_{x}\right)_{x}+\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right) y_{x}+a_{2} y=0$
Suppose that, $\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)_{x}=a_{2}$ to produce, $\alpha=C_{1} e^{\int_{x}\left(a_{1}-\int_{x} a_{2} d x\right) d x}$. The above equation can be rearranged as,

$$
\begin{equation*}
\chi_{x x}+a_{3} \chi_{x}+a_{4} \chi=0 \tag{1b}
\end{equation*}
$$

with, $\quad\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right) y=\chi, \quad a_{3}=\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)\left\{\frac{1}{\alpha}\left[\alpha\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)^{-1}\right]_{x}+\left[\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)^{-1}\right]_{x}+1\right\} \quad$ and $a_{4}=\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)\left\{\alpha\left[\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)^{-1}\right]_{x}\right\}_{x}$. Equation (1b) can be rearranged as, $\left(f_{1} \chi_{x}\right)_{x}+\left(a_{3} f_{1}-f_{1 x}\right) \chi_{x}+a_{4} f_{1} \chi=0$
Set, $a_{4} f_{1}=f_{2}+\left(a_{3} f_{1}-f_{1 x}\right) \frac{f_{3 x}}{f_{3}}$ to get,
$\left(f_{1} \chi_{x}\right)_{x}+\frac{\left(a_{3} f_{1}-f_{1 x}\right)}{f_{3}}\left(f_{3} \chi\right)_{x}+f_{2} \chi=0$
Let, $f_{3} \chi=\varphi$, equation (1e) will become,
$\left[\frac{f_{1}}{f_{3}} \varphi_{x}+f_{1}\left(\frac{1}{f_{3}}\right)_{x} \varphi\right]_{x}+\frac{\left(a_{3} f_{1}-f_{1 x}\right)}{f_{3}} \varphi_{x}+\frac{f_{2}}{f_{3}} \varphi=0$ or $\varphi_{x x}+a_{5} \varphi_{x}+a_{6} \varphi=0$
with, $a_{5}=2 f_{3}\left(\frac{1}{f_{3}}\right)_{x}+a_{3}$ and $a_{6}=\frac{f_{1 x}}{f_{1}} f_{3}\left(\frac{1}{f_{3}}\right)_{x}+f_{3}\left(\frac{1}{f_{3}}\right)_{x x}+\frac{f_{2}}{f_{1}}$. Repeat the procedure (1c -d ) to produce,

$$
\begin{equation*}
\left[\frac{f_{4}}{f_{6}} \vartheta_{x}+f_{4}\left(\frac{1}{f_{6}}\right)_{x} \vartheta\right]_{x}+\frac{\left(a_{5} f_{4}-f_{4 x}\right)}{f_{6}} \vartheta_{x}+\frac{f_{5}}{f_{6}} \vartheta=0 \text { or } \vartheta_{x x}+a_{7} \vartheta_{x}+a_{8} \vartheta=0 \tag{2b}
\end{equation*}
$$

where the relations, $a_{6} f_{4}=f_{5}+\left(a_{5} f_{4}-f_{4 x}\right) \frac{f_{6 x}}{f_{6}}, \quad a_{7}=2 f_{6}\left(\frac{1}{f_{6}}\right)_{x}+a_{5}$, $a_{8}=\frac{f_{4 x}}{f_{4}} f_{6}\left(\frac{1}{f_{6}}\right)_{x}+f_{6}\left(\frac{1}{f_{6}}\right)_{x x}+\frac{f_{5}}{f_{4}} \quad$ and $f_{6} \varphi=\vartheta \quad$ are hold. Let, $a_{8}=\frac{f_{4 x}}{f_{4}} f_{6}\left(\frac{1}{f_{6}}\right)_{x}+f_{6}\left(\frac{1}{f_{6}}\right)_{x x}+\frac{f_{5}}{f_{4}}=0$, the solution for $f_{4}$ is,
$f_{4}=-\left(\frac{1}{f_{6}}\right)_{x}^{-1}\left(\int_{x} \frac{f_{5}}{f_{6}} d x+C\right)$
Substituting the above equation into, $a_{6} f_{4}=f_{5}+\left(a_{5} f_{4}-f_{4 x}\right) \frac{f_{6 x}}{f_{6}}$, to get,
$-a_{6}\left(\frac{1}{f_{6}}\right)_{x}^{-1}\left(\int_{x} \frac{f_{5}}{f_{6}} d x+C\right)=f_{5}-a_{5} \frac{f_{6 x}}{f_{6}}\left(\frac{1}{f_{6}}\right)_{x}^{-1}\left(\int_{x} \frac{f_{5}}{f_{6}} d x+C\right)+\left(\frac{1}{f_{6}}\right)_{x}^{-1} \frac{f_{5}}{f_{6}} \frac{f_{6 x}}{f_{6}}-\quad$ or
$\left(\frac{1}{f_{6}}\right)_{x x}\left(\frac{1}{f_{6}}\right)_{x}^{-2} \frac{f_{6 x}}{f_{6}}\left(\int_{x} \frac{f_{5}}{f_{6}} d x+C\right)$
Take, $a_{6}=\frac{f_{5}}{f_{1}}$, the solution for $f_{5}$ can be obtained as,

$$
\begin{equation*}
f_{5}=\left[a_{5} \frac{f_{6 x}}{f_{6}}+\left(\frac{1}{f_{6}}\right)_{x x}\left(\frac{1}{f_{6}}\right)_{x}^{-1} \frac{f_{6 x}}{f_{6}}\right] f_{1} \tag{2d}
\end{equation*}
$$

Recall the definition of $a_{5}$ and $a_{6}$, substitute $a_{4} f_{1}=f_{2}+\left(a_{3} f_{1}-f_{1 x}\right) \frac{f_{3 x}}{f_{3}}$ and equating with (2d) to form,

$$
\begin{align*}
& a_{6}=\frac{f_{1 x}}{f_{1}} f_{3}\left(\frac{1}{f_{3}}\right)_{x}+f_{3}\left(\frac{1}{f_{3}}\right)_{x x}+\frac{f_{2}}{f_{1}}=a_{5} \frac{f_{6 x}}{f_{6}}+\left(\frac{1}{f_{6}}\right)_{x x}\left(\frac{1}{f_{6}}\right)_{x}^{-1} \frac{f_{6 x}}{f_{6}} \text { or } \\
& f_{3}\left(\frac{1}{f_{3}}\right)_{x x}+a_{4}-a_{3} \frac{f_{3 x}}{f_{3}}=\frac{1}{f_{1}}\left[\left(a_{3}-2 \frac{f_{3 x}}{f_{3}}\right) \frac{f_{6 x}}{f_{6}}-f_{6}\left(\frac{1}{f_{6}}\right)_{x x}\right] \tag{3a}
\end{align*}
$$

Let, $a_{4}=\frac{1}{f_{1}} a_{3} \frac{f_{6 x}}{f_{6}}$, the above equation can be written as,

$$
\begin{equation*}
f_{3}\left(\frac{1}{f_{3}}\right)_{x x}-a_{3} \frac{f_{3 x}}{f_{3}}=\frac{1}{f_{1}}\left[-2 \frac{f_{3 x}}{f_{3}} \frac{f_{6 x}}{f_{6}}-f_{6}\left(\frac{1}{f_{6}}\right)_{x x}\right] \tag{3b}
\end{equation*}
$$

Suppose that, $f_{3}\left(\frac{1}{f_{3}}\right)_{x x}-a_{3} \frac{f_{3 x}}{f_{3}}=0$, the solution for $f_{3}$ and $f_{6}$ are then,
$f_{3}=\left(C_{1} \int_{x} e^{-\int_{x} a_{3} d x} d x+C_{2}\right)^{-1}$ and $f_{6}=\left[C_{4} \int_{x}\left(C_{1} \int_{x} e^{-\int_{x} a_{3} d x} d x+C_{2}\right)^{-2} d x+C_{5}\right]^{-1}$
Note that, $f_{2}=\left(f_{1 x}-a_{3} f_{1}\right) \frac{f_{3 x}}{f_{3}}+a_{4} f_{1}$, with $f_{1}=\frac{a_{3}}{a_{4}} \frac{f_{6 x}}{f_{6}}$ and $f_{3}$ is expressed by (3c).

Therefore, equation (2b) becomes,
$\vartheta_{x x}+a_{7} \vartheta_{x}=0$ or $\vartheta_{x x}+\left(a_{5}-2 \frac{f_{6 x}}{f_{6}}\right) \vartheta_{x}=0$
The solution for (4a) is then,
$\vartheta=C_{6} \int_{x} e^{\int_{x}\left(2\left(\frac{f_{6 x}}{f_{6}}-a_{5}\right) d x\right.} d x+C_{7}$ or $\vartheta=C_{6} \int_{x} f_{3}^{2} f_{6}^{2} e^{-\int_{x} a_{3} d x} d x+C_{7}$
The solution for $y$ is defined as,
$y=\frac{1}{f_{3} f_{6}}\left(a_{1}-\frac{\alpha_{x}}{\alpha}\right)^{-1}\left(C_{6} \int_{x} f_{3}^{2} f_{6}^{2} e^{-\int_{x} a_{3} d x} d x+C_{7}\right)=$
$\frac{1}{f_{3} f_{6}}\left(\int_{x} a_{2} d x\right)^{-1}\left[C_{6} \int_{x} f_{3}^{2} f_{6}^{2}\left(\int_{x} a_{2} d x\right)^{2} e^{-\int_{x} a_{1} d x} d x+C_{7}\right]$
where

$$
f_{3}=\left[C_{1} \int_{x}\left(\int_{x} a_{2} d x\right)^{2} e^{-\int_{x_{1}} a_{1} d x} d x+C_{2}\right]^{-1}
$$ $f_{6}=\left\{C_{4} \int_{x}\left[C_{1} \int_{x}\left(\int_{x} a_{2} d x\right)^{2} e^{-\int_{x} a_{1} d x} d x+C_{2}\right]^{-2} d x+C_{5}\right\}^{-1}$. This proves theorem 1.

## 3. Cases of Order Reduction

Consider a non homogenous third order linear differential equation with variable coefficients below,

$$
\begin{equation*}
y_{x x x}+a_{1} y_{x x}+a_{2} y_{x}+a_{3} y=a_{4} \tag{5a}
\end{equation*}
$$

Lemma 1: Equation (5a) is reducible into second order equation and has closedform exact solutions.

Proof: Let,

$$
\begin{equation*}
a_{1}=b_{1}+\frac{a_{5 x}}{a_{5}} \tag{5b}
\end{equation*}
$$

Then, the equation can be rewritten in the following form,

$$
\frac{1}{a_{5}}\left(a_{5} y_{x x}\right)_{x}+b_{1} y_{x x}+a_{2} y_{x}+a_{3} y=a_{4}
$$

Set,

$$
\begin{equation*}
a_{2}=b_{2}+b_{1} \frac{a_{6 x}}{a_{6}} \tag{5c}
\end{equation*}
$$

Thus, the following relation is obtained,
$\frac{1}{a_{5}}\left(a_{5} y_{x x}\right)_{x}+\frac{b_{1}}{a_{6}}\left(a_{6} y_{x}\right)_{x}+b_{2} y_{x}+a_{3} y=a_{4}$

Multiply by an arbitrary function $\alpha$ to generate [8],

$$
\begin{equation*}
\frac{\alpha}{a_{5}}\left(a_{5} y_{x x}\right)_{x}+\frac{\alpha b_{1}}{a_{6}}\left(a_{6} y_{x}\right)_{x}+\alpha b_{2} y_{x}+\alpha a_{3} y=\alpha a_{4} \tag{5d}
\end{equation*}
$$

Suppose that the following expression is satisfied,
$\alpha_{x} b_{2}=\alpha a_{3}$ then, $\alpha=C_{1} e^{\int_{e} \frac{a_{3}}{b_{2}} d x}$

Let $C_{1}=1$, equation ( 5 d ) is rewritten as,
$\frac{\alpha}{a_{5}}\left(a_{5} y_{x x}\right)_{x}+\frac{\alpha b_{1}}{a_{6}}\left(a_{6} y_{x}\right)_{x}+b_{2}\left(e^{\int_{x} \frac{a_{3}}{b_{2}} d x} y\right)_{x}=\alpha a_{4}$
Suppose that,
$e^{\int_{x} \frac{a_{3}}{b_{2}} d x} y=u$, and $y=u e^{-\int_{x} \frac{a_{3}}{b_{2}} d x}$
Therefore equation ( 5 d ) can be expanded as,
$\frac{\alpha}{a_{5}}\left\{a_{5}\left[u_{x x} e^{-\int_{x} \frac{a_{3}}{b_{2}} d x}+2 u_{x}\left(-\frac{a_{3}}{b_{2}}\right) e^{-\iint_{x} \frac{a_{3}}{b_{2}} d x}+u\left(-\frac{a_{3}}{b_{2}}\right)^{2} e^{-\int_{x} \frac{a_{3}}{b_{2}} d x}\right]\right\}_{x}+\frac{\alpha b_{1}}{a_{6}}\left\{a_{6}\left[u_{x} e^{-\int_{x} \frac{a_{3}}{b_{2}} d x}+u\left(-\frac{a_{3}}{b_{2}}\right) e^{-\int_{x} \frac{a_{3}}{b_{2}} d x}\right]\right\}_{x}$ $+b_{2} u_{x}=\alpha a_{4}$

Differentiate the above equation once again and set the following relation,
$\frac{\alpha}{a_{5}}\left[a_{5}\left(-\frac{a_{3}}{b_{2}}\right)^{2} e^{-\int_{x} \frac{a_{3}}{b_{2}} d x}\right]_{x}+\frac{\alpha b_{1}}{a_{6}}\left[a_{6}\left(-\frac{a_{3}}{b_{2}}\right) e^{-\int_{x} \frac{a_{3}}{b_{2}}}\right]_{x}=0$
Now assume that $b_{2}$ is given, then $\frac{a_{6 x}}{a_{6}}$ can be determined from (6a) as,
$\frac{a_{6 x}}{a_{6}}=\frac{f_{6} \frac{a_{5 x}}{a_{5}}+b_{1} f_{7}+f_{8}}{b_{1} f_{9}}$
Substituting into (5c) to give the expression of $b_{1}$ as a function of $\frac{a_{5 x}}{a_{5}}$. Performing the resulting expression into (5b) to generate $a_{5}$. Therefore equation (5a) is reduced into,
$u_{x x x}+a_{7} u_{x x}+a_{8} u_{x}=a_{9}$
Let, $u_{x}=v$, thus the above equation be transformed to the second order ODE,
$v_{x x}+a_{7} v_{x}+a_{8} v=a_{9}$

Then, by the application of theorem 1, equation (6c) is solvable in closed-form. The non homogenous part is covered by taking homogenous solution of (6c) as a particular solution in the following form,
$u_{x}=\phi \psi$
where $\phi$ is a particular solution from equation (6c). The solution for $\psi$ is stated as,

$$
\begin{equation*}
\psi=\phi \int_{x}\left(\frac{1}{\phi^{2}} e^{-\int_{x} a_{y} d x} \int_{x} e^{\int_{x} a_{y} d x} \phi a_{9} d x\right) d x \tag{6e}
\end{equation*}
$$

The combination of (6e) with (6f) and (6d) will produce the final solution. This proves lemma 1.

Lemma 2: The fourth order linear differential equation,

$$
y_{x x x x}+a_{1} y_{x x x}+a_{2} y_{x x}+a_{3} y_{x}+a_{4} y=a_{5}
$$

is reducible to third and second order equations and has closed-form solutions.
Proof: Suppose that,
$a_{1}=b_{1}+\frac{a_{5 x}}{a_{5}}, a_{2}=b_{2}+b_{1} \frac{a_{6 x}}{a_{6}}$ and $a_{3}=b_{3}+b_{2} \frac{a_{7 x}}{a_{7}}$
Therefore the equation become,
$\frac{1}{a_{5}}\left(a_{5} y_{x x x}\right)_{x}+\frac{b_{1}}{a_{6}}\left(a_{6} y_{x x}\right)_{x}+\frac{b_{2}}{a_{7}}\left(a_{7} y_{x}\right)_{x}+b_{3} y_{x}+a_{4} y=a_{5}$
Multiplying by an arbitrary function $\alpha$ to give,
$\frac{\alpha}{a_{5}}\left(a_{5} y_{x x x}\right)_{x}+\frac{\alpha b_{1}}{a_{6}}\left(a_{6} y_{x x}\right)_{x}+\frac{\alpha b_{2}}{a_{7}}\left(a_{7} y_{x}\right)_{x}+\alpha b_{3} y_{x}+\alpha a_{4} y=a_{5}$
Let,
$\alpha_{x} b_{3}=\alpha a_{4}$ then, $\alpha=C_{1} e^{\int_{x} \frac{a_{4}}{b_{3}} d x}$
Equation (7c) is transformed as,
$\frac{\alpha}{a_{5}}\left(a_{5} y_{x x x}\right)_{x}+\frac{\alpha b_{1}}{a_{6}}\left(a_{6} y_{x x}\right)_{x}+\frac{\alpha b_{2}}{a_{7}}\left(a_{7} y_{x}\right)_{x}+b_{3}\left(e^{\int_{x} \frac{a_{4}}{b_{3}} d x} y\right)_{x}=\alpha a_{5}$
Let us assume that,
$e^{\int_{\frac{a_{4}}{x}}^{b_{3}}} y=u$, and $y=u e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}$

Expanding equation (7b) as,
$\frac{\alpha}{a_{5}}\left\{a_{5}\left[u_{x x x} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}+3 u_{x x}\left(-\frac{a_{4}}{b_{3}}\right) e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}+3 u_{x}\left(-\frac{a_{4}}{b_{3}}\right)^{2} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}+u\left(-\frac{a_{4}}{b_{3}}\right)^{3} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}\right]\right\}_{x}+$
$\frac{\alpha b_{1}}{a_{6}}\left\{a_{6}\left[u_{x x} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}+2 u_{x}\left(-\frac{a_{4}}{b_{3}}\right) e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}+u\left(-\frac{a_{4}}{b_{3}}\right)^{2} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}\right]\right\}_{x}+\frac{\alpha b_{2}}{a_{7}}\left\{a_{7}\left[u_{x} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}+u\left(-\frac{a_{4}}{b_{3}}\right) e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}\right]\right\}$
$+b_{3} u_{x}=\alpha a_{5}$
Performing the following relation,
$\frac{\alpha}{a_{5}}\left[a_{5}\left(-\frac{a_{4}}{b_{3}}\right)^{3} e^{-\iint_{x} \frac{a_{4}}{b_{3}}}\right]_{x}+\frac{\alpha b_{1}}{a_{6}}\left[a_{6}\left(-\frac{a_{4}}{b_{3}}\right)^{2} e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}\right]_{x}+\frac{\alpha b_{2}}{a_{7}}\left[a_{7}\left(-\frac{a_{4}}{b_{3}}\right) e^{-\int_{x} \frac{a_{4}}{b_{3}} d x}\right]_{x}=0$
Suppose that $b_{3}$ and $a_{7}$ are given, then $\frac{a_{6 x}}{a_{6}}$ can be determined form (8a) as,
$\frac{a_{6 x}}{a_{6}}=\frac{f_{10} \frac{a_{5 x}}{a_{5}}+b_{1} f_{11}+f_{12}}{b_{1} f_{13}}$
Substituting (8b) into the second relation of (7a) to give $b_{1}$ as a function of $\frac{a_{5 x}}{a_{5}}$. The next step is implementing into the first relation of (7a) to produce $a_{5}$. Therefore, the fourth order equation is reduced into,

$$
u_{x x x x}+a_{8} u_{x x x}+a_{9} u_{x x}+a_{10} u_{x x}=a_{11}
$$

Let, $u_{x}=v$, thus the above equation can be transformed to the third order equation,

$$
\begin{equation*}
v_{x x x}+a_{8} v_{x x}+a_{9} v_{x}+a_{10} v=a_{11} \tag{8c}
\end{equation*}
$$

Then, by the application of theorem 1 and lemma 1, equation (8c) will have closed-form solutions. This proves lemma 2.

It is interesting to note that, by induction, the procedure can be applied to any order higher than two and the considered equations are transformed into the second order equations.

Theorem 2: Higher order linear differential equation is reducible into the second order equation and has closed-form solutions.

## 4. Remarks on Integral Evaluation

It is important to note that the integrals which appear in the exact solutions are usually approximated in series form [12]. The solutions consequently are no longer exact. In order to resolve the problem, now the following integral is considered,
$B=\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi$
By setting,
$B=\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi=(R+Q) \eta e^{\int_{\xi} g d \xi}$
Equation (9b) can be differentiated once to give,
$\lambda e^{\int_{\xi} f d \xi}=\left(R_{\xi}+Q_{\xi}\right) \eta e^{\int_{\xi} g d \xi}+(R+Q) \eta_{\xi} e^{\int_{\xi} g d \xi}+(R+Q) \eta g e^{\int_{\xi} g d \xi}$
Rearranging the above equation as,
$R_{\xi}+\left(\frac{\eta_{\xi}}{\eta}+g\right) R=\frac{\lambda}{\eta} e^{\int_{\xi} f-g d \xi}-\left\{Q_{\xi}+\left(\frac{\eta_{\xi}}{\eta}+g\right) Q\right\}$
The solution of $R$ is then expressed by,
$R=\frac{1}{\eta} e^{-\int_{\xi} g d \xi}\left\{\int_{\xi} \eta e^{\int_{\zeta} g d \xi}\left[\frac{\lambda}{\eta} e^{\int_{\xi} f-g d \xi}-\left\{Q_{\xi}+\left(\frac{\eta_{\xi}}{\eta}+g\right) Q\right\}\right] d \xi+C_{1}\right\}$
Let,
$\frac{\lambda}{\eta} e^{\int_{\xi} f-g d \xi}-\left\{Q_{\xi}+\left(\frac{\eta_{\xi}}{\eta}+g\right) Q\right\}=f_{14}$
Then, $R$ is evaluated in the following,
$R=\frac{1}{\eta} e^{-\int_{\xi} g d \xi}\left[\left(\int_{\xi} f_{14} \eta d \xi\right) e^{\int_{\xi} g d \xi}-\int_{\xi}\left(\int_{\xi} f_{14} \eta d \xi\right) g e^{\int_{\xi} g d \xi} d \xi+C_{1}\right]$
Suppose that from equation (9e),
$\lambda e^{\int_{\xi} f-g d \xi}=C_{2}$
where $C_{2}$ is also a constant.
The expression for $e^{\int_{\xi} g d \xi}$ is written as,
$\frac{\lambda}{C_{2} \eta} e^{\int_{\xi} f d \xi}=e^{\int_{\xi} g d \xi}$
Thus, equation (9f) will become,
$R=\frac{1}{C_{2} \eta} e^{-\int_{\xi} d d \xi}\left[\left(\int_{\xi} f_{14} \eta d \xi\right) \frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}-\int_{\xi}\left(\int_{\xi} f_{14} \eta d \xi\right)\left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)_{\xi} d \xi+C_{1}\right]$
Without loss of generality, set $\int_{\xi} f_{14} \eta d \xi=\ln \left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)$, and the expression of $f_{14}$ is obtained as,

$$
\begin{equation*}
f_{14}=\frac{1}{\eta}\left\{\ln \left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)\right\}_{\xi} \tag{10c}
\end{equation*}
$$

The solution for $Q$ is consequently obtained from (9e) as in the following relation,

$$
Q=\frac{1}{\eta} e^{-\int_{\xi} g d \xi} \int_{\xi}\left(C_{2}-f_{14}\right) \eta e^{\int_{\xi} d \xi} d \xi
$$

Substituting (10a) to get,

$$
\begin{equation*}
Q=\frac{1}{C_{2} \eta} e^{-\int_{\xi} g d \xi} \int_{\xi}\left(C_{2}-f_{14}\right) \lambda e^{\int_{\xi} f d \xi} d \xi \tag{10d}
\end{equation*}
$$

Equations (9b), (10b) and (10d) will give the evaluation as,

$$
\begin{equation*}
\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi=(R+Q) \eta e^{\int_{\xi} g d \xi}=\frac{1}{C_{2}} \frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}+\frac{1}{C_{2}} \int_{\xi}\left(C_{2}-f_{14}\right) \lambda e^{\int_{\xi} f d \xi} d \xi+C_{1} \tag{10e}
\end{equation*}
$$

where $f_{14}$ is determined by (10c).
Equation (10e) can be differentiated once and rearranged to be,

$$
\begin{equation*}
\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi=\int_{\xi} \frac{1}{f_{14}}\left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)_{\xi} d \xi \tag{11a}
\end{equation*}
$$

Now suppose that $\frac{\lambda}{\eta} e^{\int_{\xi}^{f d \xi}}=L$ and $f_{14}=\frac{1}{\eta}\left\{\ln \left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)\right\}_{\xi}=L^{n}$, with $n$ is an arbitrary constant. The relation of $\eta$ is then given by,

$$
\begin{equation*}
\lambda^{n} e^{n \int_{\xi} f d \xi} \eta^{1-n}=-\frac{\eta_{\xi}}{\eta}+\left(\frac{\lambda_{\xi}}{\lambda}+f\right) \tag{11b}
\end{equation*}
$$

Let $\eta=\chi^{\frac{1}{1-n}}$, equation (11b) will then produce,

$$
\begin{equation*}
\chi_{\xi}=(n-1) \lambda^{n} e^{n \int_{\xi} f d \xi} \chi^{2}+(1-n)\left(\frac{\lambda_{\xi}}{\lambda}+f\right) \chi \tag{11c}
\end{equation*}
$$

Let $\chi=-\frac{1}{(n-1) \lambda^{n} e^{n \int_{\xi} f d \xi}} \frac{\gamma_{\xi}}{\gamma}$, the above equation will then become,

$$
\begin{equation*}
-\left(\frac{1}{(n-1) \lambda^{n} e^{n \int_{\xi} f d \xi}}\right)_{\xi} \frac{\gamma_{\xi}}{\gamma}-\left(\frac{1}{(n-1) \lambda^{n} e^{n \int_{\xi} f d \xi}}\right) \frac{\gamma_{\xi \xi}}{\gamma}=\left(\frac{\frac{\lambda_{\xi}}{\lambda}+f}{\lambda^{n} e^{n \int_{\xi} f d \xi}}\right) \frac{\gamma_{\xi}}{\gamma} \tag{11d}
\end{equation*}
$$

Equation (11d) can be rearranged as,
$\gamma_{\xi \xi}=\left[\frac{\left(\lambda^{n} e^{n \int_{\xi} f d \xi}\right)_{\xi}}{\left.\lambda^{n} e^{n \int_{\xi} f d \xi}+(1-n)\left(\frac{\lambda_{\xi}}{\lambda}+f\right)\right] \gamma_{\xi}}\right.$
The solution for $\gamma$ is

$$
\begin{equation*}
\gamma=\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi \tag{11e}
\end{equation*}
$$

The solution for $\eta$ is

$$
\begin{equation*}
\eta=\chi^{\frac{1}{1-n}}=\left(-\frac{1}{(n-1) \lambda^{n} e^{n \int_{\xi} f t \xi}} \frac{\gamma_{\xi}}{\gamma}\right)^{\frac{1}{1-n}} \tag{11f}
\end{equation*}
$$

The step is now perfoming the integration of (11a) to give,

$$
\begin{equation*}
\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi=\frac{1}{1-n} L^{1-n}=\frac{1}{1-n}\left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)^{1-n}=\frac{1}{1-n}\left[\frac{1}{\eta}\left\{\ln \left(\frac{\lambda}{\eta} e^{\int_{\xi} f d \xi}\right)\right\}_{\xi}\right]^{\frac{1-n}{n}}=\frac{1}{1-n}\left[\frac{1}{\eta}\left(f+\frac{\lambda_{\xi}}{\lambda}-\frac{\eta_{\xi}}{\eta}\right)\right]^{\frac{1-n}{n}} \tag{12a}
\end{equation*}
$$

Rearranging (12a) and substituting (11f),

$$
\begin{align*}
& (1-n)^{\frac{n}{1-n}}\left(\frac{1}{\left.(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi} \frac{\gamma_{\xi}}{\gamma}\right)^{\frac{2}{1-n}}\left(\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi\right)^{\frac{n}{1-n}}=} \begin{array}{l}
\left(f+\frac{\lambda_{\xi}}{\lambda}\right)\left(\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}} \frac{\gamma_{\xi}}{\gamma}\right)^{\frac{1}{1-n}}-\left[\left(\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}} \frac{\gamma_{\xi}}{\gamma}\right)^{\frac{1}{1-n}}\right]
\end{array}\right]
\end{align*}
$$

The polynomial equation for $\gamma=\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi$ is then,
 $\left[\left(\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}} \frac{\gamma_{\xi}}{\gamma}\right)^{\frac{n}{1-n}}\left(-\left(\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}}\right)_{\xi} \frac{\gamma_{\xi}}{\gamma}\right)-\left(\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}} \frac{\gamma_{\xi \xi}}{\gamma}\right)+\left(\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}}\left(\frac{\gamma_{\xi}}{\gamma}\right)^{2}\right)\right]$
or

$$
\begin{equation*}
(1-n)^{\frac{1}{1-n}} K_{1}^{2} \gamma_{\xi}^{2} \gamma^{n}=(1-n)\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{1-n} K_{1} \gamma_{\xi} \gamma+K_{1}^{n} \gamma_{\xi}^{n}\left[-\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right) \gamma+K_{1} \gamma_{\xi}^{2}\right]^{1-n} \tag{12c}
\end{equation*}
$$

with $K_{1}=\frac{1}{(1-n) \lambda^{n} e^{n \int_{\xi} f d \xi}}$. Without loss of generality let $n=2$ to get,

$$
\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right] \gamma^{3}+\left[K_{1}^{3} \gamma_{\xi}^{4}+\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1} \gamma_{\xi}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right] \gamma^{2}+
$$

$$
\begin{equation*}
\left[\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1}^{2} \gamma_{\xi}^{3}\right] \gamma+K_{1}^{2} \gamma_{\xi}^{2}=0 \tag{12d}
\end{equation*}
$$

By using the cubic formula,

$$
\begin{align*}
& M=\frac{1}{3} \frac{\left[\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1}^{2} \gamma_{\xi}^{3}\right]}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}-\frac{1}{9}\left\{\frac{\left[K_{1}^{3} \gamma_{\xi}^{4}+\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1} \gamma_{\xi}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}\right]^{2},  \tag{12e}\\
& N=\frac{1}{6}\left\{\frac{\left[\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1}^{2} \gamma_{\xi}^{3}\right]\left[K_{1}^{3} \gamma_{\xi}^{4}+\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1} \gamma_{\xi}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]^{2}}-\frac{3 K_{1}^{2} \gamma_{\xi}^{2}}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}\right\} \\
& -\frac{1}{27}\left\{\frac{\left[K_{1}^{3} \gamma_{\xi}^{4}+\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1} \gamma_{\xi}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}\right\}
\end{align*}
$$

With the relations $s_{1}=\left[N+\left(M^{3}+N^{2}\right)^{\frac{1}{2}}\right]^{\frac{1}{3}}$ and $s_{2}=\left[N-\left(M^{3}+N^{2}\right)^{\frac{1}{2}}\right]^{\frac{1}{3}}$, the root of (12d) is written as,
$\gamma=\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi=\left(s_{1}+s_{2}\right)-\frac{1}{3} \frac{\left[K_{1}^{3} \gamma_{\xi}^{4}+\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1} \gamma_{\xi}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}$
This will solve the integral in (9a). Therefore, the following theorem is just proved,

Theorem 3: Consider the following integral equation,

$$
B=\int_{\xi} \lambda(\xi) e^{\int_{\xi} f(\xi) d \xi} d \xi
$$

There exists a functional $\gamma$ and $\chi$ which are defined by,

$$
\gamma=\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi \text { and } \chi=-\frac{1}{(n-1) \lambda^{n} e^{n \int_{\xi} f d \xi} \frac{\gamma_{\xi}}{\gamma}}
$$

such that the integral B can be evaluated as,

$$
\int_{\xi} \lambda e^{\int_{\xi} f d \xi} d \xi=\left[N+\left(M^{3}+N^{2}\right)^{\frac{1}{2}}\right]^{\frac{1}{3}}+\left[N-\left(M^{3}+N^{2}\right)^{\frac{1}{2}}\right]^{\frac{1}{3}}-\frac{1}{3} \frac{\left[K_{1}^{3} \gamma_{\xi}^{4}+\left(f+\frac{\lambda_{\xi}}{\lambda}\right)^{-1} K_{1} \gamma_{\xi}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}{\left[K_{1}^{2} \gamma_{\xi}^{2}\left(K_{1 \xi} \gamma_{\xi}+K_{1} \gamma_{\xi \xi}\right)\right]}
$$

where $K_{1}=-\frac{1}{\lambda^{2} e^{2 \int_{\xi} f d \xi}}, M$ and $N$ are defined by (12e) and (12f).
Examples;

Now, the examples of the proposed integral evaluation taken from the integral table are given [13]. Consider the integral,
$y=\int_{x} x^{2} e^{a x} d x=\frac{a^{2} x^{2}-2 a x+2}{a^{3}} e^{a x}$
where according to theorem 3 the functions $\lambda$ and $f$ are $x^{2}$ and $a$ respectively. The comparison are shown as in the following,


Figure 1. The comparion of the known integral formula againts the proposed integral evaluation

Figure 1 shows that the computations of the proposed integral evaluation for the spesific integral equation are very close to the known result, even coincide for certain constant coefficient.

## 5. Conclusions

The method of reduction of the higher order linear ordinary differential equations is proposed in this article. The main strategy is to decompose the coefficients and the process thus continued until second order equation is obtained and solved. The procedure for solving second order equation and exact integral evaluation are also conducted and developed to complete the solutions. The paper have ilustrated the new idea of coefficient decompositition to solve the general ODEs with variable coefficients. It is shown that the method can obtain the solutions of arbitrary coefficients and arbitrary order higher than one in closedform. Moreover, the new formulation of integral evaluation will make the results are tractable for computer simulations. We plan to conduct the applications in our future works.

## References

[1] W. Zhuoqun, Y. Jingxue and W. Chunpeng, Elliptic and Parabolic Equations, World Scientific Publishing Co. Pte. Ltd., (Singapore, 2006).
[2] E.A. Coddington, An Introduction to Ordinary Differential Equations, Dover Publications Inc., (New York, 1989).
[3] H.I. Abdel-Gawad, On the Behavior of Solutions of a Class of Nonlinear Partial Differential Equations, Journal of Statistical Physics, Vol. 97, Nos. ½, (1999).
[4] J.G. Heywood, W. Nagata and W. Xie, A Numerically Based Existence Theorem for the Navier-Stokes Equations, Journal of Mathematical Fluid Mechanics 1, (1999), 5-23.
[5] V.A. Galaktonov and A.R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Taylor \& Francis Group, (Boca Raton, 2007).
[6] L. Bougoffa, On the Exact Solutions for Initial Value Problems of Second Order Differential Equations, Applied Mathematics Letters 22, (2009), 1248-1251.
[7] S. Khorasani and A. Adibi, Analytical Solution of Linear Ordinary Differential Equations by Differential Transfer Matrix Method, Electronic Journal of Differential Equations, No. 1, (2003), 1 - 18.
[8] G. Adomian, Solving Frontier Problem of Physics: The Decomposition Method, Kluwer Academic Publishers, Dordrecht, (The Netherlands, 1994).
[9] Z. Zhao, Exact Solutions of a Class of Second Order Nonlocal Boundary Value Problems and Applications, Applied Mathematics and Computation 215, (2009), 1926-1936.
[10] L. Shi-Da, F. Zun-Tao, I. Shi-Kuo, X. Guo-Jun, L. Fu-Ming and F. Bei-Ye, Solitary Wave in Linear ODE with Variable Coefficients, Commun. Theor. Phys. 39, (2003), 643 - 646 .
[11] S.V. Meleshko, S. Moyo, C. Muriel, J.L. Romero, P. Guha and A.G. Choudury, On First Integrals of Second Order Ordinary Differential Equations, J. Eng. Math., DOI 10.1007/s106665-012-9590-9, (2013).
[12] R. Wong, Asymptotic Approximations of Integrals, Society for Industrial and Applied Mathematics, (2001).
[13] G. Petit Bois, Tables of Indefinite Integrals, Dover Publication Inc., (New York, 1961).


[^0]:    *Corresponding Author: gunawan@ep.its.ac.id, gunawanf31@gmail.com, gunawanzz@yahoo.com

