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Abstract 

 

Higher order linear differential equations with arbitrary order and variable coefficients are 

reduced in this work. The method is based on the decomposition of their coefficients and the 

approach reduces the order until second order equation is produced. The method to find closed-

form solutions to the second order equation is then developed. The solution for the second order 

ODE is produced by rearranging its coefficients. Exact integral evaluation is also conducted to 

complete the solutions. 
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1. Introduction 

 

 It is well-known that the well-posed problem for the linear differential 

equations has been settled and completed by means of functional analysis [1]. 

However, the concepts will not be very useful until the explicit solutions are 

produced. They are capable to describe the detail features of the systems [2,3]. 

They may also help to extend the existence, uniqueness and regularity properties 

of the solutions which are obtained from qualitative analysis [4].   
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Therefore, methods for solving linear differential equations with variable 

coefficients are important from both physical and mathematical point of views [5]. 

Especially for the second order ordinary differential equations, with 

nonhomogenous physical properties, such as in waves propagation in non-uniform 

media and vibration waves with anisotropic physical properties. Since that 

specific problem attracts many mathematicians and physicists, the methods to 

obtain exact and approximate solutions for second order equation are tackled 

systematically and some interesting results are produced [6]. One case is the 

method of differential transfer matrix to handle some physical problems which is 

computationally milder than the previous analytic methods and the method is also 

applied to the higher order ODEs [7]. Also some approximate methods can be 

extended to handle nonlinear equations [8,9]. Despite the concentrated research 

and reports on the problem, the closed-form solutions for the higher order and 

second order ODEs with variable coefficients remain one of the important area of 

differential equations [10]. Even it is recently claimed that the problem is not 

solvable in general case [11]. 

  In this work, the method for obtaining exact solutions to the second order 

equations is conducted by rearranging the coefficients. The solution of the second 

order equation will be implemented as a basis for tackling the higher order 

equations. The coefficients of the equations are decomposed in order to reduce 

their order. The reduction is continued until the second order equation is produced 

and solved. The explicit expression then can be determined by the proposed exact 

integral evaluation in order to complete solutions. Finally, we give ilustrations of 

integral evaluation by examples. 

 

2. Solutions for Second Order Differential Equations 

 

 Since the second order differential equation can be transformed into the 

Riccati class, we begin from the following statement,  

 

Theorem 1: Consider the second order linear ODE with variable coefficients, 

 

         1 2 0xx xy a y a y    

 

The coefficients 1a  and 2a  can be split into new functions, 1 2 3 4 5 6, , , , ,f f f f f f  and 

 . By determining the new functions 1 2 3 4 5 6, , , , ,f f f f f f  and  , the closed-form 

solution is obtained as, 
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    1
1 2

2 2
2 6 3 6 2 7

3 6

1
x
a dx

x x x
y a dx C f f a dx e dx C

f f

  
  

 


    

 

where   1

1
2

3 1 2 2
x
a dx

x x
f C a dx e dx C


 

  
 


   and  

  1

1
2

2

6 4 1 2 2 5
x
a dx

x x x
f C C a dx e dx C dx C





   

    
   


   .  

 

Proof: The above equation can be rewritten as, 

  1 2

1
0x

x xx
y a y a y




 

 
    
 

                             (1a) 

Suppose that, 1 2
x

x

a a




 
  

 
 to produce, 

 1 2

1
x x

a a dx dx

C e



  . The above equation 

can be rearranged as, 

3 4 0xx xa a                             (1b) 

with, 1
xa y






 
  

 
, 

1 1

3 1 1 1

1
1x x x

x x

a a a a
  


   

           
              
             

 and 

1

4 1 1
x x

x x

a a a
 


 

      
       
       

. Equation (1b) can be rearranged as, 

   1 3 1 1 4 1 0x x xx
f a f f a f                                         (1c) 

Set,   3
4 1 2 3 1 1

3

x
x

f
a f f a f f

f
    to get, 

 
 

 3 1 1
1 3 2

3

0
x

x x x

a f f
f f f

f
  


                                    (1d) 

Let, 3f   , equation (1e) will become, 

 3 1 11 2
1

3 3 3 3

1
0

x
x x

x x

a f ff f
f

f f f f
   

   
     

   

 or 5 6 0xx xa a              (2a) 

with , 5 3 3
3

1
2

x

a f a
f

 
  

 
 and 1 2

6 3 3
1 3 3 1

1 1x

x xx

f f
a f f

f f f f

   
     

   
. Repeat the procedure 

(1c – d) to produce, 

 5 4 4 54
4

6 6 6 6

1
0

x
x x

x x

a f f ff
f

f f f f
   

   
     

   

 or 7 8 0xx xa a               (2b) 
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where the relations,   6
6 4 5 5 4 4

6

x
x

f
a f f a f f

f
   , 7 6 5

6

1
2

x

a f a
f

 
  

 
, 

4 5
8 6 6

4 6 6 4

1 1x

x xx

f f
a f f

f f f f

   
     

   
 and 6f    are hold. Let, 

4 5
8 6 6

4 6 6 4

1 1
0x

x xx

f f
a f f

f f f f

   
      

   
, the solution for 4f  is, 

1

5
4

6 6

1

x
x

f
f dx C

f f


   

     
   

             (2c) 

Substituting the above equation into,   6
6 4 5 5 4 4

6

x
x

f
a f f a f f

f
   , to get, 

1 1 1

5 6 5 5 6
6 5 5

6 6 6 6 6 6 6 6

2

6 5

6 6 6 6

1 1 1

1 1

x x

x x
x x x

x

x
xx x

f f f f f
a dx C f a dx C

f f f f f f f f

f f
dx C

f f f f

  



         
               

         

     
     

     

 



 or  

Take, 5
6

1

f
a

f
 , the solution for 5f  can be obtained as, 

1

6 6
5 5 1

6 6 6 6

1 1x x

xx x

f f
f a f

f f f f

    
      
     

           (2d) 

Recall the definition of 5a  and 6a , substitute   3
4 1 2 3 1 1

3

x
x

f
a f f a f f

f
    and 

equating with (2d) to form, 
1

1 6 62
6 3 3 5

1 3 3 1 6 6 6 6

1 1 1 1x x x

x xx xx x

f f ff
a f f a

f f f f f f f f


       

           
       

 or 

3 3 6
3 4 3 3 6

3 3 1 3 6 6

1 1 1
2x x x

xx xx

f f f
f a a a f

f f f f f f

      
          

       

                    (3a) 

Let, 6
4 3

1 6

1 xf
a a

f f
 , the above equation can be written as, 

3 3 6
3 3 6

3 3 1 3 6 6

1 1 1
2x x x

xx xx

f f f
f a f

f f f f f f

    
       

     

          (3b) 

Suppose that, 3
3 3

3 3

1
0x

xx

f
f a

f f

 
  

 
, the solution for 3f  and 6f  are then, 

3

1

3 1 2
x
a dx

x
f C e dx C


 

  
 


  and 3

1
2

6 4 1 2 5
x
a dx

x x
f C C e dx C dx C




  
    
   


        (3c) 

Note that,   3
2 1 3 1 4 1

3

x
x

f
f f a f a f

f
   , with 3 6

1
4 6

xa f
f

a f
  and 3f  is expressed by (3c). 
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Therefore, equation (2b) becomes, 

7 0xx xa    or 6
5

6

2 0x
xx x

f
a

f
 

 
   
 

                           (4a) 

The solution for (4a) is then, 

6
5

6

2

6 7

x

x

f
a dx

f

x
C e dx C

 
  

  


  or 
32 2

6 3 6 7
x
a dx

x
C f f e dx C


 
         (4b) 

The solution for y  is defined as, 

   

3

1

1

2 2
1 6 3 6 7

3 6

1 2
2 2

2 6 3 6 2 7
3 6

1

1

x

x

a dx
x

x

a dx

x x x

y a C f f e dx C
f f

a dx C f f a dx e dx C
f f








 

  
     

   

 
 

 







  

             (4c) 

where   1

1
2

3 1 2 2
x
a dx

x x
f C a dx e dx C


 

  
 


   and  

  1

1
2

2

6 4 1 2 2 5
x
a dx

x x x
f C C a dx e dx C dx C





   

    
   


   . This proves theorem 1. 

 

3. Cases of Order Reduction 

 

Consider a non homogenous third order linear differential equation with 

variable coefficients below, 

1 2 3 4xxx xx xy a y a y a y a                          (5a) 

 

Lemma 1: Equation (5a) is reducible into second order equation and has closed-

form exact solutions. 

 

Proof: Let,  

5
1 1

5

xa
a b

a
                (5b) 

Then, the equation can be rewritten in the following form, 

 5 1 2 3 4
5

1
xx xx xx

a y b y a y a y a
a

     

Set, 

6
2 2 1

6

xa
a b b

a
                (5c) 

Thus, the following relation is obtained, 

   1
5 6 2 3 4

5 6

1
xx x xx x

b
a y a y b y a y a

a a
     
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Multiply by an arbitrary function   to generate [8], 

   1
5 6 2 3 4

5 6
xx x xx x

b
a y a y b y a y a

a a


                (5d) 

Suppose that the following expression is satisfied,  

2 3xb a   then, 
3

2
1

x

a
dx

b
C e 


                       (5e) 

 

Let 1 1C  , equation (5d) is rewritten as, 

   
3

21
5 6 2 4

5 6

x

a
dx

b
xx xx x

x

b
a y a y b e y a

a a




 
   
 
 


 

Suppose that, 

3

2
x

a
dx

b
e y u


, and 
3

2
x

a
dx

b
y ue






             (5f) 

Therefore equation (5d) can be expanded as, 

3 3 3 3 3

2 2 2 2 2

2

3 3 31
5 6

5 2 2 6 2

2 4

2
x x x x x

a a a a a
dx dx dx dx dx

b b b b b
xx x x

x x

x

a a ab
a u e u e u e a u e u e

a b b a b

b u a





                                   
                 

 

    

 

Differentiate the above equation once again and set the following relation,  

 

3 3

2 2

2

3 31
5 6

5 2 6 2

0
x x

a a
dx dx

b b

x x

a ab
a e a e

a b a b

        
         
         

 
                    (6a) 

Now assume that 2b  is given, then 6

6

xa

a
 can be determined from (6a) as, 

5
6 1 7 8

6 5

6 1 9

x

x

a
f b f f

a a

a b f

 

              (6b) 

Substituting into (5c) to give the expression of 1b  as a function of 5

5

xa

a
. Performing 

the resulting expression into (5b) to generate 5a . Therefore equation (5a) is 

reduced into, 

 

7 8 9xxx xx xu a u a u a             

Let, xu v , thus the above equation be transformed to the second order ODE, 

 

7 8 9xx xv a v a v a                (6c) 
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Then, by the application of theorem 1, equation (6c) is solvable in closed-form. 

The non homogenous part is covered by taking homogenous solution of (6c) as a 

particular solution in the following form, 

 

xu                (6d) 

where   is a particular solution from equation (6c). The solution for   is stated 

as, 

7 7

92

1
x x
a dx a dx

x x
e e a dx dx  



 
   

 

 
                          (6e) 

The combination of (6e) with (6f) and (6d) will produce the final solution. This 

proves lemma 1. 

 

Lemma 2: The fourth order linear differential equation, 

 

     1 2 3 4 5xxxx xxx xx xy a y a y a y a y a       

 

is reducible to third and second order equations and has closed-form solutions. 

 

Proof: Suppose that, 

5
1 1

5

xa
a b

a
  , 6

2 2 1
6

xa
a b b

a
   and 7

3 3 2
7

xa
a b b

a
                      (7a) 

Therefore the equation become, 

     1 2
5 6 7 3 4 5

5 6 7

1
xxx xx x xx x x

b b
a y a y a y b y a y a

a a a
      

Multiplying by an arbitrary function   to give, 

     1 2
5 6 7 3 4 5

5 6 7
xxx xx x xx x x

b b
a y a y a y b y a y a

a a a

 
              (7b) 

Let, 

3 4xb a   then, 
4

3
1

x

a
dx

b
C e 


            (7c) 

Equation (7c) is transformed as, 

     
4

31 2
5 6 7 3 5

5 6 7

x

a
dx

b
xxx xx xx x x

x

b b
a y a y a y b e y a

a a a

 


 
    
 
 


 

Let us assume that, 

4

3
x

a
dx

b
e y u


, and 
4

3
x

a
dx

b
y ue






            (7d) 
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Expanding equation (7b) as, 

4 4 4 4

3 3 3 3

4 4 4

3 3 3

2 3

4 4 4
5

5 3 3 3

2

1 4 4
6

6 3 3

3 3

2

x x x x

x x x

a a a a
dx dx dx dx

b b b b
xxx xx x

x

a a a
dx dx dx

b b b
xx x

a a a
a u e u e u e u e

a b b b

b a a
a u e u e u e

a b b





   

  

                     
         

              
      

   

  
4 4

3 32 4
7

7 3

3 5

x x

a a
dx dx

b b
x

x x

x

b a
a u e u e

a b

b u a





          
       

 

 

 

Performing the following relation, 

 

4 4 4

3 3 3

3 2

4 1 4 2 4
5 6 7

5 3 6 3 7 3

0
x x x

a a a
dx dx dx

b b b

x x x

a b a b a
a e a e a e

a b a b a b

              
               
               

  
      (8a) 

Suppose that 3b  and 7a  are given, then 6

6

xa

a
 can be determined form (8a) as, 

5
10 1 11 12

6 5

6 1 13

x

x

a
f b f f

a a

a b f

 

             (8b) 

Substituting (8b) into the second relation of (7a) to give 1b  as a function of 5

5

xa

a
. 

The next step is implementing into the first relation of (7a) to produce 5a . 

Therefore, the fourth order equation is reduced into, 

 

8 9 10 11xxxx xxx xx xu a u a u a u a              

Let, xu v , thus the above equation can be transformed to the third order equation, 

 

8 9 10 11xxx xx xv a v a v a v a               (8c) 

Then, by the application of theorem 1 and lemma 1, equation (8c) will have 

closed-form solutions. This proves lemma 2. 

 

It is interesting to note that, by induction, the procedure can be applied to any 

order higher than two and the considered equations are transformed into the 

second order equations. 

 

Theorem 2: Higher order linear differential equation is reducible into the second 

order equation and has closed-form solutions. 
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4. Remarks on Integral Evaluation 

 

It is important to note that the integrals which appear in the exact solutions 

are usually approximated in series form [12]. The solutions consequently are no 

longer exact. In order to resolve the problem, now the following integral is 

considered, 

fd

B e d



 


                         (9a) 

By setting, 

 
fd gd

B e d R Q e 
 


    
 

                                                                    (9b) 

Equation (9b) can be differentiated once to give, 

     
fd gd gd gd

e R Q e R Q e R Q ge   
   

          
     

Rearranging the above equation as, 

f gd

R g R e Q g Q
 

 

 

  

      
         

     


                                           (9c) 

The solution of R  is then expressed by, 

1

1 gd gd f gd

R e e e Q g Q d C  
   





 

  

        
         

       

  
                               (9d) 

Let, 

14

f gd

e Q g Q f
 





 

    
     
   


                                            (9e) 

Then, R  is evaluated in the following, 

14 14 1

1 gd gd gd

R e f d e f d ge d C  
  

  
    



     
      

     

  
                                 (9f) 

Suppose that from equation (9e), 

2

f gd

e C








  

where 2C  is also a constant.  

The expression for 
gd

e 
  is written as, 

2

fd gd

e e
C

 
 




 
                                 (10a) 

Thus, equation (9f) will become, 
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14 14 1
2

1 gd fd fd

R e f d e f d e d C
C

  
  

  


 
    

  

                    

  
                   (10b) 

Without loss of generality, set 14 ln
fd

f d e 





 



 
   

 


 , and the expression of 14f  is 

obtained as, 

14

1
ln

fd

f e 






 

   
    

   

                       (10c) 

The solution for Q  is consequently obtained from (9e) as in the following 

relation, 

 2 14

1 gd gd

Q e C f e d 
 


 





 
 
  

Substituting (10a) to get, 

  2 14
2

1 gd fd

Q e C f e d
C

 
 


 





 
 
                                          (10d) 

Equations (9b), (10b) and (10d) will give the evaluation as, 

   2 14 1
2 2

1 1fd gd fd fd

e d R Q e e C f e d C
C C

   
   

 


    


     

   
                  (10e) 

where 14f  is determined by (10c). 

 Equation (10e) can be differentiated once and rearranged to be, 

  
14

1fd fd

e d e d
f

 
 

 



  



 
   

 

 
                                 (11a) 

Now suppose that 
fd

e L





  and 14

1
ln

fd
nf e L







 

   
    

   

 , with n  is an 

arbitrary constant. The relation of   is then given by, 

1
n fd

n ne f
   

 
 

  
    

 


                                            (11b) 

Let 
1

1 n   , equation (11b) will then produce,  

   21 1
n fd

nn e n f
 




   



 
     

 


                                       (11c) 

Let 

 

1

1
n fd

nn e 











 




, the above equation will then become,  
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   

1 1

1 1
n fd n fd n fd

n n n

f

n e n e e  



  

  




  

  
  

         
      
            

  
                 (11d) 

Equation (11d) can be rearranged as, 

 1

n fd
n

n fd
n

e

n f

e







 
 






 




  
   
   

     
  
 
  




  

The solution for   is  

fd

e d



  


                                (11e) 

The solution for   is  

 

1

1
1

1
1

1

n

n

n fd
nn e 






 








 
 

   
  


                    (11f) 

The step is now perfoming the integration of (11a) to give, 
1

1
1

11 1 1 1 1 1
ln

1 1 1 1

n
n

n n
nfd fd fd

ne d L e e f
n n n n

  
    




  
 

     







                                         

  


                         (12a) 

Rearranging (12a) and substituting (11f), 

 
 

   

2

1
1

1

1 1

1 1

1
1

1

1 1

1 1

nn
n nfd

n
n fd

n

n n

n fd n fd
n n

n e d

n e

f

n e n e





 



 

  

 




 




  

  
 






 

 
  

     
   

 
    

     
      

         
  





 



          (12b) 

The polynomial equation for 
fd

e d



  


  is then, 
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 
 

 
 

     

2 1

1 1
1 1

1

1

1 1
1 1

1 1

1 1 1

1 1 1

nn n
nfd

n
n fd n fd

n n

n

n

n fd n fd n fd
n n n

n e d n f

n e n e

n e n e n e



 

  

  

 

  

  



  
 

  
 

  

  
  

 






   
      

           
         

      
     
      
             



 

  



 

2
1

1
n fd

nn e 










 
  

    
     

      
  



 or 

     
1

1 1
2 2 2

1 1 1 1 1 1 11 1

n
n

n n n
nn K n f K K K K K


      


        







 

           
 

      (12c) 

with 

 
1

1

1
n fd

n

K

n e 









. Without loss of generality let 2n   to get, 

   
1

2 2 3 3 4 2
1 1 1 1 1 1 1

1

2 3 2 2
1 1 0

K K K K f K K K

f K K


        


 


        




  







  
              

  
    
   

                 (12d) 

By using the cubic formula,  

 

 

 

2
1 1

2 3 3 4
1 1 1 1 1

2 2 2 2
1 1 1 1 1 1

1 1

3 9

f K K f K K K

M
K K K K K K

 
     

       

 
    

 

     

        
          
           

   
        

 
  

,         (12e) 

 

   

 

1 1

2 3 3 4
1 1 1 1 1

2 2
1

2 2 22 2
1 1 11 1 1

1

3 4
1 1 1 1

2 2
1 1

31

6

1

27

f K K f K K K
K

N
K K KK K K

K f K K K

K K

 
     



      


    

 

 
    

  

    


   



 

 



       
          
           

  
       

  

  
    
   



 

3

1K 

 
 
 
 
 

   
 
  

                         (12f) 

186 Gunawan Nugroho, Ahmad Zaini and Purwadi A. Darwito



With the relations  

1
1 3

3 2 2
1s N M N

 
   
  

 and  

1
1 3

3 2 2
2s N M N

 
   
  

, the root of 

(12d) is written as, 

 

 

 

1

3 4
1 1 1 1

1 2 2 2
1 1 1

1

3

fd

K f K K K

e d s s
K K K




    




   


   


  

  

  
    
   

   
 
 


                 (12g) 

This will solve the integral in (9a). Therefore, the following theorem is just 

proved, 

 

Theorem 3: Consider the following integral equation, 

                          
 f d

B e d
 


  


   

There exists a functional   and   which are defined by, 

                           
fd

e d



  


  and 

 

1

1
n fd

nn e 











 




 

such that the integral B  can be evaluated as, 

   
 

 

1

3 41 1
1 1 1 1

1 13 3
3 2 3 22 2

2 2
1 1 1

1

3

fd

K f K K K

e d N M N N M N
K K K




    




   


   


 

  

  
    
       

         
          




         

where 1
2

2

1

fd
K

e 




 


, M  and N  are defined by (12e) and (12f).   

Examples; 

 

Now, the examples of the proposed integral evaluation taken from the 

integral table are given [13]. Consider the integral, 

 
2 2

2

3

2 2ax ax

x

a x ax
y x e dx e

a

 
   

where according to theorem 3 the functions   and f  are 2x  and a  respectively. 

The comparison are shown as in the following, 
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Figure 1. The comparion of the known integral formula againts the proposed 

integral evaluation 

 

Figure 1 shows that the computations of the proposed integral evaluation for the 

spesific integral equation are very close to the known result, even coincide for 

certain constant coefficient. 

   

5. Conclusions 

 

 The method of reduction of the higher order linear ordinary differential 

equations is proposed in this article. The main strategy is to decompose the 

coefficients and the process thus continued until second order equation is obtained 

and solved. The procedure for solving second order equation and exact integral 

evaluation are also conducted and developed to complete the solutions. The paper 

have ilustrated the new idea of coefficient decompositition to solve the general 

ODEs with variable coefficients. It is shown that the method can obtain the 

solutions of arbitrary coefficients and arbitrary order higher than one in closed-

form. Moreover, the new formulation of integral evaluation will make the results 

are tractable for computer simulations. We plan to conduct the applications in our 

future works.    
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