
D
ow

nloaded
from

https://journals.lw
w
.com

/har-journalby
BhD

M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3Xr2jqKQ

Q
BA4yT/7R

R
oM

ITLc3w
XYe1V2Ba2xItvS3Q

aw
=
on

08/28/2018

Downloadedfromhttps://journals.lww.com/har-journalbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3Xr2jqKQQBA4yT/7RRoMITLc3wXYe1V2Ba2xItvS3Qaw=on08/28/2018

 

      Healthy Aging Research | www.har-journal.com   Kim et al. 2015 | 4:26 1 

 

Quantitative measures of healthy aging and biological age 
Sangkyu Kim 1*, S. Michal Jazwinski 1 
1 Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA 

Abstract 

Numerous genetic and non-genetic factors contribute to aging. To facilitate the study of these factors, various 
descriptors of biological aging, including ‘successful aging’ and ‘frailty’, have been put forth as integrative 
functional measures of aging. A separate but related quantitative approach is the ‘frailty index’, which has been 
operationalized and frequently used. Various frailty indices have been constructed. Although based on different 
numbers and types of health variables, frailty indices possess several common properties that make them useful 
across different studies. We have been using a frailty index termed FI34 based on 34 health variables. Like other 
frailty indices, FI34 increases non-linearly with advancing age and is a better indicator of biological aging than 
chronological age. FI34 has a substantial genetic basis. Using FI34, we found elevated levels of resting metabolic 
rate linked to declining health in nonagenarians. Using FI34 as a quantitative phenotype, we have also found a 
genomic region on chromosome 12 that is associated with healthy aging and longevity. 
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Introduction 
The importance of health span as opposed to life span 
has gained substantial recognition over the past 
decade. Health span is defined as the period of life 
spent in relative good health. This definition carries 
with it the necessity to quantify ‘healthy’ versus 
‘unhealthy’ aging, in order to understand the variables 
contributing to health span. The problem of how to 
quantify health span has occupied researchers for 
some three decades, and it has both basic scientific as 
well as applied clinical ramifications. 

Much work in the field of the biology of aging has 
focused on individual cellular and molecular 
mechanisms as causal factors restricting longevity. 
This has led to a wealth of information that has gained 
particular predictive value with the introduction of 

genetics, especially in lower organisms. However, 
there has always been an appreciation for aging as a 
manifestation of the organism as a whole, which 
immediately calls attention to integrated function and 
its decline in the form of physiologic dysregulation. 
Thus, the search for descriptors of this whole-
organism functional decline has resulted in the 
elaboration of various indices of healthy versus 
unhealthy aging. This search has taken into account 
the heterogeneity of the aging phenotype from 
individual to individual over space and time; a 
remarkable feature of aging common to a number of 
species [1]. The tendency to view healthy aging in a 
holistic sense is fundamentally a systems biology 
perspective on aging and health [2]. 
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The anecdotal finding of reduced disease burden in 
long-lived individuals has been frequently mentioned 
in the scientific literature, and has been underpinned 
by the quantitative classification of centenarians as 
survivors, delayers, or escapers of major diseases [3]. 
However, careful analysis has shown that there is no 
difference between centenarians and young controls in 
the frequencies of genetic variants predisposing 
individuals to major diseases of aging [4]. 
Nevertheless, it has been shown recently that 
individuals from families enriched for persons 
displaying exceptional survival exhibited a marked 
delay in the onset of age-related diseases and 
comorbidities [5], suggesting a genetic component. 
Indeed, such genetic factors have been identified [6]. 
Diseases and disorders of aging have figured into 
other measures of healthy aging, but in and of itself, 
absence of disease is not useful when categorizing 
healthy aging, since few people escape unscathed with 
increasing age. 

The concept of ‘successful aging’ [7] is an attempt to 
quantify health span as opposed to life span. 
Successful aging is defined as having a low level of 
disease and/or disease-related disability, relatively 
high physical and cognitive functioning, and active 
and productive engagement in life activities. This 
construct has been operationalized and used directly in 
genetic studies of aging [8]. 

Frailty is considered a clinical syndrome that 
distinguishes elderly individuals at risk for adverse 
outcomes. It does so by quantifying the functional loss 
that results during aging [9, 10]. This has led to 
several frailty indices. Frailty was defined by Fried et 
al. [11] based on the presence of at least three of a 
possible total of five deficits: weight loss, exhaustion, 
muscle weakness, slow walking speed, and low 
physical activity. As expected, the prevalence of 
frailty increases with age. Studies designed to uncover 
genes that play a role in frailty have been based on 
assumptions about the underlying mechanisms; i.e., 
the secondary phenotypes or endophenotypes 
involved [12, 13]. 

The clinical syndrome of frailty as defined above is 
most appropriately considered a phenotype. It is 
considered distinct from disability, which is often 
measured in the elderly as impairment in the 
performance of activities of daily living (ADL). It is 

also distinguished from comorbidity. There is some 
overlap between the three conditions across a cohort 
of older individuals [11]. The major difference 
between the frailty phenotype and disability or 
comorbidity is that with frailty, there is the 
assumption of decreased functional reserve and 
physiologic dysregulation that results in a reduced 
ability to recover from destabilizing stress. This 
suggests that the frailty phenotype is useful for 
uncovering underlying biological mechanisms. It is 
also predictive of disability [14], which may allow its 
use in understanding the factors determining 
individual trajectories of disability [15]. 

A somewhat different approach to quantifying frailty 
involves a frailty index (FI), consisting of the fraction 
of deficits accumulated by an individual out of a total 
of 92 health variables [16]. These variables 
encompass a broad array of indicators of decline in 
various physiologic systems throughout the body, and 
they group together symptoms, laboratory 
measurements, diseases and disabilities. FI is a better 
predictor of longevity than chronologic age – in 
essence, it is a measure of biologic age. Subsequently, 
it was determined that far fewer variables need be 
included to achieve an informative index, as long as 
they reflected the function of a spectrum of 
physiologic systems [17, 18]. In some studies, the 
term ‘deficit index’, rather than frailty index has been 
used [19]. One feature that can complicate use of the 
FI is its inclusion of disability and comorbidity among 
its variables. However, their use in the index can be 
constrained when the relationship of frailty to 
disability and comorbidity is examined. Claims that 
use of FI to describe frailty make investigation of 
underlying mechanisms impossible are unwarranted, 
as will be seen below. 

Recently, a hybrid approach to frailty was applied to 
two distinct geographic populations [20]. This 
clustering approach incorporates select features of 
successful aging, frailty phenotype, and FI. It 
successfully classifies individuals into different frailty 
groups differing by mortality risk. It displays a narrow 
sense (additive) heritability of 0.43 – this compares 
favorably with the heritability of longevity, which 
ranges from 0.15 to 0.35 in different estimates [21, 
22]. However, the genetic contribution to longevity 
increases with age [23]. 
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A concept that developed concurrently with frailty is 
‘allostatic load’ [24], which attempts to characterize 
the effect of cumulative biological burden as the body 
adapts to life stress. When this load exceeds a 
hypothetical threshold, the resulting wear and tear 
compromises the physiologic regulatory systems, 
leading to failure to adapt. Allostatic load has a strong 
biologic rationale, and it incorporates assessments of 
ten biomarkers that reflect the operation of several 
regulatory systems and processes. Baseline allostatic 
load predicts longitudinal mortality, as well as 
changes in physical and cognitive functioning. 

Another approach utilizing biomarkers attempts to 
quantify the physiologic dysregulation that is at the 
root of frailty. These biomarkers were selected in two 
separate groupings [25]. The ‘statistical suite’ of 
biomarkers was selected on the basis of the significant 
increase with age of the deviation of the biomarker 
from the population average value at baseline. The 
‘biological suite’ consisted of those biomarkers most 
strongly associated with the first axis of variation in a 
principle component analysis that was stable across 
three different populations. Individuals were classified 
by the multivariate statistical difference of their 
deviation (DM) from the centroid of a reference 
population characterized by healthy physiology. It 
was shown that DM accelerates with age, and is 
associated with increased risk of various health 
outcomes including mortality and frailty, after 
adjusting for age. The effort to uncover biomarkers of 
aging has also encompassed the epigenetic level in the 
form of DNA methylation marks of human cells and 
tissues [26]. 

A related multivariate approach to those listed above 
utilized principal component analysis to identify 
endophenotypes of a long and healthy life [27]. The 
individual variables incorporated into the analysis 
included an array of measures of physical and 
cognitive function, as well as physical examination 
and laboratory measures. The most dominant principal 
component accounted for 14.3% of the variability 
across the sample, and was composed of measures of 
physical function, metabolic health, and pulmonary 
function. It had a narrow sense heritability of 0.39. 
Interestingly, average and maximum handgrip 
strength, and HDL cholesterol levels, which were 
included in this principal component, had somewhat 

higher heritability. The importance of physical 
function ability in predicting survival is well known 
[28], thus the inclusion of physical function in this 
principal component is not surprising. 

In this article, we describe the derivation and 
properties of an FI we are using in our analyses of 
genetic and phenotypic aspects of healthy aging. We 
highlight its performance juxtaposed to the 
performance of various other measures of healthy 
aging, in cases in which this is possible due to the 
availability of relevant comparable information. 

 

The frailty index 
The semi-quantitative approach to frailty based on a 
small number of items may allow relatively quick 
screening of frail people and affected body domains 
[17, 29]. However, it is not considered to be 
comprehensive or sufficiently quantitative, rendering 
it less useful in assessing healthy aging at the whole 
organism level [30]. The FI introduced by Mitnitski et 
al., which is based on a set of 92 health variables, 
includes many different health variables reflecting 
different types of body systems [16]. It was intended 
to compile a broad spectrum of age-related changes 
that occur in multiple biological domains. Thus, rather 
than focusing on single markers of aging that may 
vary widely and give biased characterization of aging, 
this FI aims to characterize aging in an integrative and 
systemic way for the whole organism. Since then, 
various FIs or deficit indices with different numbers 
and types of health variables have been used and 
studied [17, 18, 31-33].  

An individual’s FI score is the proportion of any 
deficient health variables in a set of health variables 
surveyed for the individual at a given age. Collected 
data for health variables are usually quantitative 
measures, either continuous or discrete, or categorical 
responses from medical history questionnaires. Binary 
categorical responses are numerically coded; 0 for the 
absence of the deficit and 1 for the presence of the 
deficit. Quantitative data and multi-categorical 
responses are re-coded in the same way as reported 
previously [33, 34], or with appropriate modifications 
as shown in Table 1.  

 



 

      Healthy Aging Research | www.har-journal.com   Kim et al. 2015 | 4:26 4 

Table 1. List of 34 variables used to construct the frailty index FI34.  

No. Name Description Numeric code 
1 adrdz You've been told that you have an adrenal disease 0, 1 
2 anemia You've been told that you have anemia 0, 1 
3 angina You've been told that you have angina 0, 1 
4. asthma You've been told that you have asthma 0, 1 
5 balance Standing for 10 sec. with one foot behind the other 0, 1a 
6 bathing You need assistance when bathing 0, 1 
7 bmi Body mass index (BMI) 0, 0.5, 1b 
8 bronch You've been told that you have bronchitis 0, 1 
9 cataracts You've been told that you have cataracts 0, 1 
10 chair Number of stand-ups from chair without using arms 0, 1c 

11 conghrtf You've had congestive heart failure 0, 1 
12 copd You've been told that you have COPD 0, 1 
13 diabetes You've been told that you have diabetes 0, 1 
14 dressing You need assistance when dressing 0, 1 
15 emphy You've been told that you have emphysema 0, 1 
16 feeding You need assistance when eating 0, 1 
17 fhoca A first-degree relative has had cancer 0, 1 
18 gds Geriatric depression scale (GDS)[[72, 73]  0, 0,5, 1d 
19 hattack You've had a heart attack 0, 1 
20 hbp High blood pressure (based on SBP and DBP readings) 0, 0.33, 0.66, 1e 
21 hchol You've been told that you have high cholesterol 1.00 
22 hhbp You have had high blood pressure before 0, 1 
23 hrtmur You've been told that you have a heart murmur 0, 1 
24 hrtprb You've been told that you have a heart problem 0, 1 
25 kidndz You've been told that you have a kidney disease 0, 1 
26 liverdz You've been told that you have a liver disease 0, 1 
27 mmse Mini-mental state exam (MMSE)[74, 75] 0, 0.25, 0.5, 0.75, 1f 
28 osteo You've been told that you have osteoporosis 0, 1 
29 seiz You've had a seizure 0, 1 
30 selfrated Self-rating of health 0, 0.25, 0.5, 0.75, 1g 
31 stroke You've had a stroke 0, 1 
32 thydz You've been told that you have a thyroid disease 0, 1 
33 tia You've had a TIA 0, 1 
34 urininf You've been told that you have a urinary infection 0, 1 

  
 
Notes: Reproduced with permission from [35] with modifications. COPD/copd, chronic obstructive pulmonary disease; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; tia/TIA, transient ischemic attack. All binary variables were coded numerically: '0' for the 
absence of the deficit and '1' for its presence except where noted otherwise: a 0 if balanced for 10 seconds, otherwise,1; b 0 if 18.5≤x<25, 
where x=weight (kg)/(height in meters)2, 0.5 if 25≤x< 30, otherwise, 1; c 0 if one can stand up from chair at least once, otherwise 1; d 0 if 
0<x≤5, where x is the final score of the test, 0.5 if 6<x≤10, 1 if x>10; e 0 if x<80 and y<120, where x=diastolic pressure and y=systolic 
pressure, 0.33 if 80≤x≤89 or 120≤y≤139, 0.66 if 90≤x≤99 or 140≤y≤159, 1 if x≥100 or y≥160. This coding is based on the categories of 
blood pressure levels according to the National Heart Lung and Blood Institute; f 0 if 24≤x, where x is the final score of the test, 0.25 if 
20<x<24, 0.5 if 18≤x≤ 20, 0.75 if 10≤x≤17, and 1 if x<10; g 0 = Excellent, 0.25 = Very good, 0.5 = Good, 0.75 = Fair, 1 = Poor.
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Thus, FI scores range from 0, which means no 
deficient variable in all the health variables surveyed, 
to 1, which means deficiency in all the health 
variables surveyed. Accordingly, we constructed an FI 
based on 34 health variables (FI34) and studied its 
properties as a composite phenotype of healthy aging 
[35]. Our 34 variables include diseases and symptoms 
throughout the body, deficiencies in physical and 
cognitive functioning, and self-rated health status 
(Table 1). We have been using FI34 in genetic and 
phenotypic analyses of healthy aging.  

 

Properties of FI34 and other frailty indices 
Most of the data on FIs are from cross-sectional 
studies; hence the exact age trajectory of some of their 
properties may differ over time. Nevertheless, some 
interesting statistical and demographic properties have 
emerged from comparisons of different FIs available 
in the literature. The foremost features, which make 
the FI extremely useful across different studies, is that 

it is robust and consistent from study to study, as long 
as the number of health variables is statistically valid 
and sufficiently diverse to represent multiple body 
domains [16, 18].  

 

Distribution of FI scores 

The distribution of FI scores is usually positively 
skewed (Figure 1A), which is best fit by the gamma 
density function where two parameters determining 
shape and scale are involved [16]. Demographically, 
the distribution of FI scores changes depending on the 
age groups considered (Figure 1B–D). Since the FI is 
highly correlated with age, the skewed distribution 
reflects the presence of healthy groups (gamma 
distribution) and unhealthy frail groups (normal 
distribution). Longitudinally, the two-parameter 
distribution might represent two-stage changes, where 
the first stage corresponds to individuals’ resilience to 
the deleterious changes, and the second stage to the 
deteriorating stage of declining function with age [16]. 

 

 

 

 
Figure 1. Distribution of FI34 scores of individuals in the Louisiana Healthy Aging Study (LHAS) and the Healthy Aging Family Study 
(HAFS). The FI34 scores were compiled for subjects in LHAS [76] and HAFS [35], according to the methods described [35]. Shown are 
all the age groups (A), 459 young individuals (20–60 years old) (B); 348 middle-aged (60–90 years old) (C), and 382 old (90–104 years 
old) (D). 
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Non-linear increase in the rate of deficit accumulation 

FI is highly correlated with age and increases non-
linearly with increasing age. The non-linear 
relationship is best fit either by an exponential 
function or by a quadratic equation [16, 36]. 
Interestingly the rates of accumulation of deficits with 
age calculated from different numbers of health 
variables (e.g., from 20 to 92) are all close to ~2–3% 
per year. With FI34, the instantaneous rate of deficit 
accumulation falls within this range (Figure 2). The 
seemingly narrow range of rates may reflect 
insensitivity of the FI to the choice of particular items. 
This robustness may also come from the redundancy 
of variables, which may further reflect inter-
relationships of different body systems. Thus, 
redundancy is a statistical phenomenon, but it may 
well be based on functional relatedness between 
variables. It is important to remember that this 
continuous increase in FI34 is a population 
phenomenon. We have found that FI34 can increase, 

decrease, or remain unchanged over a period of three 
to five years (Figure 3). 

The non-linear increase in FI with age may represent 
increased vulnerability to stressors as health 
deteriorates [37]. Indeed, the chance of having higher 
numbers of deficits increases as the number of deficits 
accumulated increases [38]. This acceleration is an 
example of a feed-forward mechanism, and is 
characteristic of the operation of a complex system in 
which there are multiple interactions among its 
individual components. Interestingly, however, no 
differences in the rate of deficit accumulation were 
observed between ‘healthy’ individuals who did not 
contract any of 21 major diseases and ‘unhealthy’ 
individuals who contracted at least one of these [36]. 
In this case, the numbers of health deficits at baseline 
were higher in the unhealthy than in the healthy 
individuals. If contracting one or more of the major 
diseases is associated with frailty, then the rate of 
deficit accumulation in the unhealthy should be higher 
than that in the healthy. 

 

 

 
Figure 2. Scatter plots of FI34 scores by age in the “offspring of long-lived parents” (OLLP) of the Healthy Aging Family Study and the 
“offspring of short-lived parents” (OSLP) of the Louisiana Healthy Aging Study. Using the FI34 as a dependent variable and age as an 
independent variable, the exponential function a•e(b•age) was fitted to estimate the parameters a and b. The value of a=0.034 for OLLP and 
0.026 for OSLP. Shown are the estimated b values with corresponding p values under the null hypothesis that slope =0. Reproduced with 
permission from [35] with modifications. 
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Figure 3. Age trajectories of FI34 scores of individuals in the 
Healthy Aging Family Study [35]. FI34 scores can decline 
individually as noted previously [38], but the population or group 
statistic of FI34 increases over time. The plots (arrows) are from 
two data sets collected over a three- to four-year interval from 25 
HAFS participants who were 50 to 75 years old at the time of 
collection of the initial data set. The blue line is the average FI34 
for this group of subjects. 

 

One possible reason for this discrepancy could be that 
frailty is fundamentally different from the occurrence 
of diseases. In other words, frailty progression with 
advancing age is little affected by the presence of 
diseases. Disability may be more significant than 
comorbidity in assessing frailty because disability can 
alter the aging pattern [36] and frailty leads to 
disability [29, 39]. In fact, disability was not taken 
into consideration when the subjects were categorized 
into ‘healthy’ and ‘unhealthy’ according to disease 
histories (i.e., ‘healthy’ individuals could have 
disability) [36].  

Mitnitski et al. [40, 41] used a mathematical model to 
explain the non-linear accumulation of deficits: the 
average number of deficits present in an individual is 
the product of the average intensity of the 
environmental stresses and the average recovery time. 
According to this model, an individual’s frailty is the 
outcome of two competing factors: environmental 
damage and the ability to cope with that damage. 
Environmental damage is regarded as a stochastic 

process, but the ability to recover from damage 
depends on an individual’s assets, such as genetic 
endowment, health status, living conditions, access to 
health care, etc. This is a simple but useful model; not 
only does it account for the exponential increase in the 
rate of deficit accumulation, but also it emphasizes the 
importance of environmental factors in healthy aging.  

 

Gender specificity 

Some FI properties may be gender-specific. For 
example, women accumulate more deficits than men 
of the same age, but their risk of mortality is lower 
[42]. This observation is in line with the result of a 
separate study showing that within an age group, 
females have overall worse health than males even 
though they live longer [43]. In a different cross-
sectional study however, no gender differences were 
observed in the rate of deficit accumulation [36]. The 
discrepancy may be due to the presence or absence of 
gender-specific health dimensions in the health 
variables used to calculate FI score [36]. Our FI34 does 
not include any explicit gender-specific health 
variables (e.g., prostate-related pathologies) and does 
not show any significant gender differences in various 
analyses [35].  

 

An indicator of biological aging 

FI is a reliable indicator of biological age and 
predictor of survival/mortality [16, 31, 42, 44, 45]. As 
the number of deficits accumulated increases, the risk 
of mortality increases exponentially [38]. Where 
individuals are of the same age but have different FI 
scores, the individual with the higher FI score is more 
likely to die sooner. Chronological age may even be 
ignored if FI is used to predict adverse outcomes. We 
tested FI34 for its predictive role in survival/mortality 
(Table 2). As expected, both age and FI34 were 
significantly associated with survival times, which 
included both censored and uncensored data 
(p<0.0001 for both). However, when the Cox 
proportional hazard regression was limited to time to 
death (uncensored survival times), only FI34 had a 
significant effect on the hazard of death, whereas 
chronological age did not (p=0.0048 for FI34 vs 
p=0.12 for age). These results indicate that the FI34 
performs as well as other FIs. 
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 A tool to identify physiologic factors associated with 
healthy aging 

As a quantitative proxy of aging and longevity, the FI 
can be used to examine various physiologic or genetic 
factors for their contribution to healthy aging. To do 
so, we turned our attention to energy metabolism, 
which is indispensable to life [46]. Total daily energy 
expenditure (TDEE) in mammals can be divided into 
three major components: resting metabolic rate 
(RMR), activity energy expenditure (AEE), and diet-
induced thermogenesis [47-49]. RMR, which accounts 
for the bulk (60–70%) of TDEE, refers to the amount 
of energy for maintenance of body systems [49]. AEE 
and diet-induced thermogenesis constitute 

approximately 20–30% and 10% of TDEE, 
respectively. These essential components of energy 
metabolism are highly associated with age (Figure 4), 
and in examining their relationship with FI34, we 
included several covariates known to be related to the 
independent or dependent variables. These variables 
include age, gender, fat mass, fat-free mass, the 
thyroid hormones T3 and T4, insulin-like growth 
factor 1 (IGF1), and creatine phosphokinase (CPK). 
Of these, IGF1 has the potential to affect RMR by 
inducing skeletal muscle growth through activation of 
the Akt-mTOR pathway [50, 51]. CPK is a clinical 
indicator of muscle damage [52-54].  

 
 
Table 2. Cox regression for time to death as a function of FI34 or age in the Louisiana Healthy Aging Study 
 

Variable b Exp (b) p value R2 Wald test p 
FI34 2.236  9.355 0.0048 0.039 0.00482 
age 0.01695 1.017 0.124 0.014 0.124 

 
Notes: Reproduced with permission from [35] with modifications. The coefficient (b) and its exponentiated value, Exp (b), are for a unit 
increase in FI34. FI34 scores range from 0 to 1, but a FI34 score of 1 is practically impossible. Therefore, to better estimate the effect of the 
covariate, we should compute the values for a fractional increase, i.e., 0.1 rather than the whole unit [1]. In this case, e(0.1•b)=1.25, which 
means an increase in the hazard by 25% for a tenth of the unit increase in FI34 

 

 
Figure 4. Energy expenditure components are inversely correlated with age in the Louisiana Healthy Aging Study. Energy expenditure 
associated with physical activity is represented by the energy expenditure summary index (EESI) in the Yale Physical Activity survey. 
The plots were generated using data from 109 study participants aged 80-98. RMR, resting metabolic rate; TDEE, total daily energy 
expenditure. 
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First, we noticed that RMR is positively associated 
with FI34 among nonagenarians, as shown in Table 3 
(gender-adjusted regression coefficient=1.60·10-4, 
p=3.4·10-3). In other words, RMR increases as FI34 
increases. This finding was somewhat unexpected 
because of the inverse correlation of RMR with age 
(Figure 4): we expected lower RMR in older 
individuals. However, this is the first time that this 
association has been examined as a function of 
healthy versus unhealthy aging in the oldest-old. We 
also found that CPK is positively associated with FI34, 
but only in males (Table 3). On the other hand, fat-
free mass is inversely correlated with FI34 in females 
only. We regard the increase in RMR as a mechanism 
to maintain homeodynamics as health declines in the 
oldest-old. The results also indicate that details of the 
association of energy expenditure with healthy aging 
may be different between the two genders. 

It is noteworthy that FI34 becomes more variable in 
older age groups, as shown previously [35], and the 
individual variability of FI34 is positively correlated 
with the individual variability of RMR (Figure 5). 
One interpretation of these results is that those among 
the oldest-old whose frailty markedly surpasses that of 
their peers have corresponding increases in RMR. 
This is consistent with our conclusion that elevated 
levels of RMR are linked to declining health in the 
oldest-old [46]. On the other hand, increased 

variability with age was not as obvious for RMR 
(Figure 5). According to Johannsen et al. [55], mean 
values of RMR variability declined in older age 
groups when compared to the 20–34 year-old group. 
An increase in mean RMR variability was observed 
from the middle-age group (60–74) to the oldest-old 
group (≥90), but it did not reach statistical 
significance. It should be noted that these were all 
cross-sectional findings, and longitudinal assessment 
may be more informative. 

In contrast to RMR, TDEE remains stable; therefore, 
AEE would have to decline commensurately. We used 
the energy expenditure summary index (EESI) from 
the interview-based Yale Physical Activity Survey 
[56]. EESI summarizes the amount of energy in 
kilocalories spent on all the reported physical 
activities per week. We found EESI decreasing only 
in females as FI34 increases (Table 4). One possibility 
for the lack of any decrease in EESI in males is that 
AEE, represented by EESI here, is maintained at the 
expense of VO2 max as FI34 increases. VO2 max is the 
maximal oxygen uptake or maximal aerobic capacity. 
Whether male or female, physical ability would 
decline with declining health during aging, reducing 
physical activity. This would feed forward to further 
deplete physical ability, resulting in a downward 
spiral leading to frailty and disability. 

 
Table 3. Association of RMR and CPK with FI34 in “old” males and females in the Louisiana Healthy Aging Study 
 

 "Old" male group (90–97) "Old" female group (90–98) 
Variable b p value b p value 

Age  4.03·10-3  0.54 -1.76·10-3 0.75 

FM  2.26·10-3  0.40  4.80·10-3 0.014 

FFM -3.58·10-3  0.28 -8.17·10-3 0.033 
TDEE -1.42·10-5  0.69 -3.60·10-5 0.45 
RMR  2.43·10-4  0.018  4.00·10-4 3.9·10-3 

CPK  4.69·10-4  9.2·10-4 -1.29·10-5 0.66 
IGF1  1.52·10-5  0.94 -9.43·10-5 0.60 
T3 -1.83·10-4  0.58 -2.71·10-4 0.48 
T4  5.03·10-3  0.65  1.18·10-2  0.14 

 
Notes: Reproduced with permission from [46]. For the model FI34=b0+b1·age+b2·FM+ 
b3·FFM+b4·TDEE+b5·RMR+b6·CPK+b7·IGF1+b8·T3+b9·T4, adjusted R2=0.314 (p=0.017) for the female group and 0.349 (p=0.029) for 
the male group. Regression coefficient=b. For the “old” males, n=30, and n=37 for the “old” females. FM, fat mass; FFM, fat-free mass; 
TDEE, total daily energy expenditure; RMR, resting metabolic rate; CPK, creatine phosphokinase; IGF1, insulin-like growth factor 1; T3, 
triiodothyronine; T4, thyroxine. 
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Table 4. Association of physical-activity-related energy expenditure (EESI) with FI34 in female nonagenarians in the Louisiana Healthy 
Aging Study 
 

Gender b SE(b) P value R2 
Female -0.917•10-6  3.06•10-6 0.0058 0.47 (p = 0.00052) 
Male -0.1.20•10-6  4.08•10-6 0.77 0.40 (p = 0.0081) 

 
Notes: For the model FI34=b0+b1·age+b2·FM+b3·FFM+b4·TDEE+b5·RMR+b6·CPK+b7·EESI, regression coefficient=b, SE(b) is the 
standard error of the coefficient. For the “old” males, n=30, and n=37 for the “old” females.  

 

 
 
Figure 5. Age-dependent variation of FI34 and RMR. The “resid.FI34” on the y axis represents residuals (the differences between the 
observed FI34 scores and the predicted FI34 scores) from a linear regression of FI34 on age with adjustments for sex, fat mass and fat-free 
mass. Likewise, “resid.RMR” on the x axis represents residuals (the differences between the observed RMR scores and the predicted 
RMR scores) from a linear regression of RMR on age with adjustments for sex, fat mass and fat-free mass. A, 28 subjects aged 22–34 
(“young”); B, 42 subjects aged 60–74 (“middle”); C, 67 nonagenarians. FI34 (y axis) becomes more variable (spread) in older age groups 
(p=5.8·10-7 for “young” vs. “middle”; p=0.019 for “middle” vs. nonagenarian; p=7.2·10-11 for “young” vs. nonagenarian, according to an 
F test to compare the variances). On the other hand, RMR (x axis) does not exhibit much change over the three age groups (p >> 0.05). 
Note that the red dotted line in each plot represents the correlation between resid.FI34 and resid.RMR. This “residual” correlation is 
significant only in the oldest-old group as indicated.  

 

Genetic basis of frailty 

Aging involves numerous genetic and environmental 
factors, each making a small contribution to the 
gradual development of the phenotype. Thus, no 
single factor would be sufficient to account for the 
heritable variation in aging, and longevity alone falls 
short of being a reliable descriptor of the actual aging 
process, especially in view of quality of life. This is 

why the idea and application of biological aging has 
been frequently explored in the literature [12, 57-59].  

Aging accompanies progressive accumulation of age-
related changes at various biological levels that 
decrease functional abilities and vitality [60]. Thus, 
genetic analysis of aging can be carried out using a 
single biomarker, a combination of intermediate traits, 
or the more inclusive FI, as long as each of these traits 
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or measures is a significant contributor to biological 
aging. Incorporation of tissue-specific biomarkers, 
such as skeletal biomarkers, into statistical modeling 
and genetic analysis of underlying candidate genes 
has been described [59]. Skeletal muscle aging is a 
risk factor for geriatric diseases, and a number of 
factors involved in skeletal muscle metabolism, such 
as myokines, influence aging and life span [61]. Not 
surprisingly then, physical exercise stimulates 
autophagy [62], mitochondrial biogenesis [63], and 
changes DNA methylation patterns in the brain [64], 
along with its known effects on improvement of 
cognitive function [65]. It is also feasible to choose 
endophenotypes of healthy aging from a large number 
of health variables using appropriate statistical 
methods, such as principal component analysis [27]. 
No single dominant principal component could 
explain the bulk of the variance, but those variables 
that were highly correlated with the first two principal 
components showed high heritability. 

Recent studies have shown an association between 
individual molecular events and frailty measures. For 
example, oxidative stress, as revealed by lipid and 
protein oxidation, is associated with phenotypic frailty 
based on the five standard criteria [66]. Production of 
interleukin-12 and interleukin-23, which play 
important roles in the innate immune response, is 
compromised in frail individuals categorized by a 
comprehensive geriatric assessment [67]. Analysis of 
the genetic factors involved in these molecular and 
cellular processes may help us to better understand the 
genetics of healthy aging. For our understanding of 
organismal aging, however, the use of individual 
biomarkers or endophenotypes is likely to yield less 
accurate and reliable results than does the use of 
comprehensive healthy aging measures [68]. Thus, it 
is considered to be more informative and productive 
to use the FI for an integrative genetic analysis than to 
use single or a small number of health variables.  

The number of genetic studies using quantitative 
measures of healthy aging is small, and most of these 
studies are limited to linkage analysis. Reed et al. [69] 
employed a phenotype of healthy aging based on a 
small number of variables: reaching age of at least 70 
and the absence of medical history of several major 
diseases. Edwards et al. [70] used Rowe and Kahn’s 
three categories of successful aging based on nine 
study instruments. The outcomes of these two linkage 

studies are different and await corroboration. 
Importantly, the properties of these two phenotypic 
measures used in linkage analyses, especially their 
genetic basis, are unknown. In a different approach, 
assuming that inflammation and muscle maintenance 
are associated with frailty, Ho et al. took a candidate 
gene-association approach to find SNPs and genes 
associated with frailty [13]. In this study, estimation 
of frailty was based on the five-item frailty phenotype.  

We examined the genetic properties of FI34 [35]. First, 
we noted that the rates of deficit accumulation differ 
significantly between the offspring of long-lived 
parents (≥90 years old) and those of short-lived 
parents (<76 years old at death), indicating that FI34 is 
associated with parental longevity (Figure 2). Using 
86 full sib pairs, we estimated the sib correlation 
coefficient to be 0.459 (95% CI=0.273–0.611) and the 
narrow sense heritability to be 0.39 (standard 
error=0.21). These results indicate that FI34 has a 
substantial genetic basis and can be used as a 
phenotypic measure suitable for genetic analyses of 
healthy aging. This has allowed us to perform a 
linkage analysis to identify genomic regions 
associated with healthy aging [71]. One such region 
was detected on chromosome 12. In a follow-up 
association analysis using a separate population, we 
identified three discrete healthy aging-associated sites 
in this genomic region coinciding with loci associated 
with exceptional survival [71]. 

 

Conclusions 
Various measures of biological aging have been 
described and used, but FI stands out for its fully 
quantitative nature and robustness. FIs, based on 
statistically valid numbers of health variables chosen 
to cover diverse health and body dimensions, bear 
common features that qualify them as reliable 
descriptors of healthy aging and predictors of 
longevity. These features of FI include its close 
correlation with chronological age, but its better 
predictive power of survival and mortality in 
comparison with chronological age. Using FI34, we 
found resting metabolic rate is an important 
physiologic factor associated with healthy aging in the 
oldest-old. In addition, we showed that the FI has a 
substantial genetic basis, which renders it suitable for 
genetic analysis of healthy aging and longevity. Thus, 
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the FI can be extremely useful to study various 
physiologic, genetic, and epigenetic factors 
underlying aging and longevity. 
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