Mathematica Aeterna, Vol. 5, 2015, no. 5, 911-915

q-Lie Algebras and q-3-Lie Algebras

BAI Ruipu
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn
\section*{GUO Weiwei}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China
\section*{LIN Lixin}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

In this paper, the quantum Lie algebras and quantum 3-Lie algebras over a field K with $c h K=0$ are discussed for q generic, where $q \in$ $K, q \neq 0,1$. A quantum Lie algebra is realized by a Z-graded algebra (Theorem 2.3), and a Lie algebra is realized by a quantum algebra which satisfying the property $q^{-i} x_{i}\left(x_{j} x_{k}\right)_{q}=\left(x_{i} x_{j}\right)_{q} x_{k}$ (Theorem 2.4). From quantum Lie algebras and linear functions, two classes quantum 3-Lie algebras are constructed (Theorem 2.6 and Theorem 2.7).

2010 Mathematics Subject Classification: 17B05 17D30
Keywords: Z-graded space, q-Lie algebra, q - 3 -Lie algebra.

1 Introduction

Recently one can observe a growing interest in the investigations and explanations of the quantum groups and algebras [1-4]. These structures appeared in the study of integrable models especially during the searching for solutions of the quantum Yang-Baxter equation [3-4]. So in this paper, we construct quantum Lie algebras from quantum algebras which satisfy some conditions, and from quantum Lie algebras, we also can construct general Lie algebras. We also define a class of quantum 3-Lie algebras [5-6], and realized two classes
quantum 3-Lie algebras from quantum Lie algebras. In the following, denote K an arbitrary field with $\operatorname{char}(K)=0, q \in K, q \neq 0,1$, and Z be the set of integers. For a positive integer n, set $(n)_{q}=\frac{1-q^{n}}{1-q}$.

2 main Result

In this section we study quantum Lie algebras and quantum 3-Lie algebras. For convenience, in the following, for a quantum Lie algebra and a quantum 3 -Lie algebra, is simply called a q-Lie algebra and a q-3-Lie algebra for $q \in K$, respectively.

Definitions 2.1. For a Z-graded vector space $L=\oplus_{i \in Z} L_{i}$ over a field K equipped with a bilinear q-bracket product $[,]_{q}$ (where $q \in K, q \neq 0$, , dim $\left.L_{i}<\infty\right)$ satisfying $\left[L_{i}, L_{j}\right]_{q} \subseteq L_{i+j}$, and for all $x_{i} \in L_{i}, \forall i \in Z$, if

$$
\begin{gather*}
{\left[x_{i}, x_{j}\right]_{q}=-\left[x_{j}, x_{i}\right]_{q},} \tag{1}\\
(2)_{q^{i}}\left[x_{i},\left[x_{j}, x_{k}\right]_{q}\right]_{q}=(2)_{q^{j}}\left[x_{j},\left[x_{k}, x_{i}\right]_{q}\right]_{q}+(2)_{q^{k}}\left[\left[x_{i}, x_{j}\right]_{q}, x_{k}\right]_{q}, \tag{2}
\end{gather*}
$$

are fulfilled under $[,]_{q}$, then $\left(L,[,]_{q}\right)$ is called a q-Lie algebra, and $[,]_{q}$ is called the q-Lie product.

Example 2.2. Let K be an arbitrary field with $\operatorname{char}(K) \neq 2,3$, and $q \in$ $K, q \neq 0,1$ be generic. We define q-differential operator ∂_{q} over $K\left[x, x^{-1}\right]$ by $\partial_{q}(P)=\frac{P(q x)-P(x)}{q x-x}, \quad \forall P \in K\left[x, x^{-1}\right]$. Let τ_{q} denote an algebra automorphism of $K\left[x, x^{-1}\right]$ defined by $\tau_{q}(x)=q x$. The q-differential operator ∂_{q} is called a τ_{q}-derivation or skew derivation if for all $P, Q \in K\left[x, x^{-1}\right]$, we have

$$
\partial_{q}(P Q)=\partial_{q}(P) Q+\tau_{q}(P) \partial_{q}(Q)
$$

Let $\operatorname{Der}_{q}\left(K\left[x, x^{-1}\right]\right)$ denote the set of all τ_{q}-derivation over $K\left[x, x^{-1}\right]$, and let $e_{n}=x^{n+1} \partial_{q}$ for all $n \in Z$. If we define a q-bracket product $[,]_{q}$ on $\operatorname{Der}_{q}\left(K\left[x, x^{-1}\right]\right)$ by

$$
\begin{equation*}
\left[e_{i}, e_{j}\right]_{q}=\left[(j+1)_{q}-(i+1)_{q}\right] e_{i+j}, i, j \in Z, \tag{3}
\end{equation*}
$$

then the q-bracket product $[,]_{q}$ is bilinear over K and satisfies the antisymmetry (1) and the weighted q-Jacobi identity (2). Thus $\left(\operatorname{Der}_{q}\left(K\left[x, x^{-1}\right]\right),[,]_{q}\right)$ is a q-Lie algebra [1].

Theorem 2.3. For a Z-graded vector space $L=\oplus_{i \in Z} L_{i}$ over a field K equipped with a bilinear multiplication satisfying $L_{i} L_{j} \subset L_{i+j}$, and

$$
\begin{equation*}
(2)_{q^{-i}} x_{i}\left(x_{j} x_{k}\right)=(2)_{q^{k}}\left(x_{i} x_{j}\right) x_{k} . \tag{4}
\end{equation*}
$$

Then for all $x_{i} \in L_{i}$, and $x_{j} \in L_{i}, \forall i, j \in Z$, define the q-bracket product

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]_{q}=q^{i+1} x_{i} x_{j}-q^{j+1} x_{j} x_{i}, \tag{5}
\end{equation*}
$$

$\left(L,[,]_{q}\right)$ is a q-Lie algebra, where $q \in K, q \neq 0,1, \operatorname{dim} L_{i}<\infty$.
Proof The bilinearity of the q-bracket product $[,]_{q}$ is obvious over K, since

$$
\left[x_{j}, x_{i}\right]_{q}=q^{j+1} x_{j} x_{i}-q^{i+1} x_{i} x_{j}=-\left[x_{i}, x_{j}\right]_{q},
$$

we only need to prove the identity (2). Now for all $x_{i} \in L_{i}, x_{j} \in L_{i}$, and $x_{k} \in L_{k}, \forall i, j, k \in Z$,

$$
\begin{aligned}
& (2)_{q^{i}}\left[x_{i},\left[x_{j}, x_{k}\right]_{q}\right]_{q}+(2)_{q^{j}}\left[x_{j},\left[x_{k}, x_{i}\right]_{q}\right]_{q}+(2)_{q^{k}}\left[x_{k},\left[x_{i}, x_{j}\right]_{q}\right]_{q} \\
& =(2)_{q^{i}}\left[x_{i}, q^{j+1} x_{j} x_{k}-q^{k+1} x_{k} x_{j}\right]_{q}+(2)_{q^{j}}\left[x_{j}, q^{k+1} x_{k} x_{i}-q^{i+1} x_{i} x_{k}\right]_{q} \\
& +(2)_{q^{k}}\left[x_{k}, q^{i+1} x_{i} x_{j}-q^{j+1} x_{j} x_{i}\right]_{q} \\
& =\left(1+q^{i}\right) \cdot q^{j+1}\left[x_{i}, x_{j} x_{k}\right]_{q}-\left(1+q^{i}\right) \cdot q^{k+1}\left[x_{i}, x_{k} x_{j}\right]_{q}+\left(1+q^{j}\right) \cdot q^{k+1}\left[x_{j}, x_{k} x_{i}\right]_{q} \\
& -\left(1+q^{j}\right) \cdot q^{i+1}\left[x_{j}, x_{i} x_{k}\right]_{q}+\left(1+q^{k}\right) \cdot q^{i+1}\left[x_{k}, x_{i} x_{j}\right]_{q}-\left(1+q^{k}\right) \cdot q^{j+1}\left[x_{k}, x_{j} x_{i}\right]_{q} \\
& =q^{j+1}\left[x_{i}, x_{j} x_{k}\right]_{q}+q^{i+j+1}\left[x_{i}, x_{j} x_{k}\right]_{q}-q^{k+1}\left[x_{i}, x_{k} x_{j}\right]_{q}-q^{i+k+1}\left[x_{i}, x_{k} x_{j}\right]_{q} \\
& +q^{k+1}\left[x_{j}, x_{k} x_{i}\right]_{q}+q^{j+k+1}\left[x_{j}, x_{k} x_{i}\right]_{q}-q^{i+1}\left[x_{j}, x_{i} x_{k}\right]_{q}-q^{i+j+1}\left[x_{j}, x_{i} x_{k}\right]_{q} \\
& +q^{i+1}\left[x_{k}, x_{i} x_{j}\right]_{q}+q^{i+k+1}\left[x_{k}, x_{i} x_{j}\right]_{q}-q^{j+1}\left[x_{k}, x_{j} x_{i}\right]_{q}-q^{j+k+1}\left[x_{k}, x_{j} x_{i}\right]_{q}=0 .
\end{aligned}
$$

Therefore, $\left(L,[,]_{q}\right)$ is a q-Lie algebra.
Theorem 2.4. If a Z-graded algebra $L=\oplus_{i \in Z} L_{i}$ over a field K satisfies $L_{i} L_{j} \subset L_{i+j}$, and

$$
\begin{equation*}
q^{-i} x_{i}\left(x_{j} x_{k}\right)_{q}=\left(x_{i} x_{j}\right)_{q} x_{k} . \tag{6}
\end{equation*}
$$

Then $(L,[]$,$) is a Lie algebra, where for \forall x_{i} \epsilon L_{i}, x_{j} \epsilon L_{j}$, the product [,] is defined by

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]=q^{i+1}\left(x_{i} x_{j}\right)_{q}-q^{j+1}\left(x_{j} x_{i}\right)_{q}, \tag{7}
\end{equation*}
$$

where $q \in K, q \neq 0,1$, $\operatorname{dim} L_{i}<\infty$.
Proof The bilinearity of the product [,] is obvious over K. The antisymmetry (1) is clear according to identity (7). Now we consider the Jacobi identity of Lie algebras. For all $x_{i} \in L_{i}, x_{j} \in L_{j}$ and $x_{k} \in L_{k}, \forall i, j, k \in L$, from

$$
\left[x_{k},\left[x_{i}, x_{j}\right]\right]=\left[x_{k}, q^{i+1}\left(x_{i} x_{j}\right)_{q}-q^{j+1}\left(x_{j} x_{i}\right)_{q}\right]
$$

$$
=q^{i+1}\left[q^{k+1} x_{k}\left(x_{i} x_{j}\right)_{q}-q^{i+j+1}\left(x_{i} x_{j}\right)_{q} x_{k}\right]-q^{j+1}\left[q^{k+1} x_{k}\left(x_{j} x_{i}\right)_{q}-q^{i+j+1}\left(x_{j} x_{i}\right)_{q} x_{k}\right] .
$$

And the cyclic permutation of (i, j, k), we have $\left[x_{i},\left[x_{j}, x_{k}\right]\right]+\left[x_{j},\left[x_{k}, x_{i}\right]\right]$ $+\left[x_{k},\left[x_{i}, x_{j}\right]\right]=0$. It follows the result.

In the following, we construct quantum 3-Lie algebras from quantum Lie algebras. First we give the following definition.

Definitions 2.5 For a Z-graded vector space $L=\oplus_{i \in Z} L_{i}$ over a field K equipped with a 3-ary linear q-3-bracket product $[,,]_{q}$ satisfying $\left[L_{i}, L_{j}, L_{k}\right]_{q} \subseteq$ L_{i+j+k}. If for all $x_{i} \in L_{i}, x_{j} \in L_{j}, x_{k} \in L_{k}$, we have

$$
\begin{equation*}
\left[x_{1}, x_{2}, x_{3}\right]_{q}=\operatorname{sgn}(\sigma)\left[x_{\sigma_{(1)}}, x_{\sigma_{(2)}}, x_{\sigma_{(3)}}\right], \forall x_{1}, x_{2}, x_{3} \in L \tag{8}
\end{equation*}
$$

and the weighted q-Jacobi identity

$$
\begin{align*}
& (2)_{q^{i+j}}\left[x_{i}, x_{j},\left[x_{k}, x_{s}, x_{t}\right]_{q}\right]_{q}=(2)_{q^{s+t}}\left[\left[x_{i}, x_{j}, x_{k}\right]_{q}, x_{s}, x_{t}\right]_{q} \\
& +(2)_{q^{k+t}}\left[x_{k},\left[x_{i}, x_{j}, x_{s}\right]_{q}, x_{t}\right]_{q}+(2)_{q^{k+s}}\left[x_{k}, x_{s},\left[x_{i}, x_{j}, x_{k}\right]_{q}\right]_{q}, \tag{9}
\end{align*}
$$

$\left(L,[,,]_{q}\right)$ is called a q-3-Lie algebra, where $q \in K, q \neq 0,1, \operatorname{dim} L_{i}<\infty$.
Theorem 2.6 Let $\left(L,[,]_{q}\right)$ be a q-Lie algebra over a field K, and $x_{0} \notin L$. Define the q-3-bracket on vector space $A=L \dot{+} F x_{0}$ by

$$
\left\{\begin{array}{l}
{\left[x_{i}, x_{j}, x_{0}\right]_{q}=\left[x_{i}, x_{j}\right]_{q},} \tag{10}\\
{\left[x_{i}, x_{j}, x_{k}\right]_{q}=0,}
\end{array}\right.
$$

for all $x_{i} \in L_{i}, x_{j} \in L_{j}$ and $x_{k} \in L_{k}$. Then $\left(A,[,,]_{q}\right)$ is a q-3-Lie algebra.
Proof It is clear that the q-3-bracket is skew-symmetric, so we need to consider the weighted q-Jacobi identity on $(2)_{q^{j}}\left[x_{0}, x_{j},\left[x_{s}, x_{t}, x_{0}\right]_{q}\right]_{q}$. From
$(2)_{q^{t}}\left[\left[x_{0}, x_{j}, x_{s}\right]_{q}, x_{t}, x_{0}\right]_{q}+(2)_{q^{s}}\left[x_{s},\left[x_{0}, x_{j}, x_{t}\right]_{q}, x_{0}\right]_{q}$
$=(2)_{q^{t}}\left[\left[x_{j}, x_{s}\right]_{q}, x_{t}\right]_{q}+(2)_{q^{s}}\left[x_{s},\left[x_{j}, x_{t}\right]_{q}\right]_{q}=(2)_{q^{j}}\left[x_{j},\left[x_{s}, x_{t}\right]_{q}\right]_{q}$.
The result follows.
Theorem 2.7 Let $\left(L,[,]_{q}\right)$ be a q-Lie algebra over a field $K, f: L \rightarrow K$ be a linear function satisfying $f\left(\left[x_{i}, x_{j}\right]_{q}\right)=0$, for all $x_{i} \in L_{i}$ and $x_{j} \in L_{j}$. Define q-3-bracket product $[,,]_{q}$ on L by

$$
\begin{equation*}
\left[x_{i}, x_{j}, x_{k}\right]_{q}=f\left(x_{i}\right) q^{j+k}\left[x_{j}, x_{k}\right]_{q}+f\left(x_{j}\right) q^{k+i}\left[x_{k}, x_{i}\right]_{q}+f\left(x_{k}\right) q^{i+j}\left[x_{i}, x_{j}\right]_{q}, \tag{11}
\end{equation*}
$$

then $(L,[,]$,$) is a q$-3-Lie algebra.
Proof From Eq.(11), the q-3-bracket is skew-symmetric. So we only need to prove the q-Jacobi identity (9). Since

$$
\begin{aligned}
& q^{i+j}\left[x_{i}, x_{j},\left[x_{s}, x_{t}, x_{r}\right]_{q}\right]_{q} \\
& =q^{i+j} f\left(x_{i}\right) q^{j+s+t+r}\left(f\left(x_{s}\right) q^{t+r}\left[x_{j},\left[x_{t}, x_{r}\right]_{q}\right]_{q}+f\left(x_{t}\right) q^{r+s}\left[x_{j},\left[x_{r}, x_{s}\right]_{q}\right]_{q}\right. \\
& \left.+f\left(x_{r}\right) q^{s+t}\left[x_{j},\left[x_{s}, x_{t}\right]_{q}\right]_{q}\right)+q^{i+j} f\left(x_{j}\right) q^{i+s+t+r}\left(f\left(x_{s}\right) q^{t+r}\left[\left[x_{t}, x_{r}\right]_{q}, x_{i}\right]_{q}\right. \\
& \left.+f\left(x_{t}\right) q^{r+s}\left[\left[x_{r}, x_{s}\right]_{q}, x_{i}\right]_{q}+f\left(x_{r}\right) q^{s+t}\left[\left[x_{s}, x_{t}\right]_{q}, x_{i}\right]_{q}\right) . \\
& q^{t+r}\left[\left[x_{i}, x_{j}, x_{s}\right]_{q}, x_{t}, x_{r}\right]_{q}+q^{r+s}\left[x_{s},\left[x_{i}, x_{j}, x_{t}\right]_{q}, x_{r}\right]_{q}+q^{s+t}\left[x_{s}, x_{r},\left[x_{i}, x_{j}, x_{r}\right]_{q},\right]_{q} \\
& =q^{t+r} f\left(x_{t}\right) q^{i+j+r+s}\left[x_{r},\left[x_{i}, x_{j}, x_{s}\right]_{q}\right]_{q}+q^{t+r} f\left(x_{r}\right) q^{i+j+s+t}\left[\left[x_{i}, x_{j}, x_{s}\right]_{q}, x_{t}\right]_{q} \\
& +q^{s+r} f\left(x_{s}\right) q^{i+j+t+r}\left[\left[x_{i}, x_{j}, x_{t}\right]_{q}, x_{r}\right]_{q}+q^{s+r} f\left(x_{r}\right) q^{i+j+s+t}\left[x_{s},\left[x_{i}, x_{j}, x_{t}\right]_{q}\right]_{q} \\
& +q^{s+t} f\left(x_{s}\right) q^{i+j+t+r}\left[x_{t},\left[x_{i}, x_{j}, x_{r}\right]_{q}\right]_{q}+q^{s+t} f\left(x_{t}\right) q^{i+j+s+r}\left[\left[x_{i}, x_{j}, x_{r}\right]_{q}, x_{s}\right]_{q} \\
& =q^{t+r} f\left(x_{t}\right) q^{i+j+r+s}\left(f\left(x_{i}\right) q^{j+s}\left[x_{r},\left[x_{j}, x_{s}\right]_{q}\right]_{q}+f\left(x_{j}\right) q^{i+s}\left[x_{r},\left[x_{s}, x_{i}\right]_{q}\right]_{q}\right. \\
& \left.+f\left(x_{s}\right) q^{++j}\left[x_{r},\left[x_{i}, x_{j}\right]_{q}\right]_{q}\right)+q^{t+r} f\left(x_{r}\right) q^{i+j+s+t}\left(f\left(x_{i}\right) q^{j+s}\left[\left[x_{j}, x_{s}\right]_{q}, x_{t}\right]_{q}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+f\left(x_{j}\right) q^{i+s}\left[\left[x_{s}, x_{i}\right]_{q}, x_{t}\right]_{q}+f\left(x_{s}\right) q^{i+j}\left[\left[x_{i}, x_{j}\right]_{q}, x_{t}\right]_{q}\right) \\
& +q^{s+r} f\left(x_{s}\right) q^{i+j+t+r}\left(f\left(x_{i}\right) q^{j+t}\left[\left[x_{j}, x_{t}\right]_{q}, x_{r}\right]_{q}+f\left(x_{j}\right) q^{t+i}\left[\left[x_{t}, x_{i}\right]_{q}, x_{r}\right]_{q}\right. \\
& \left.+f\left(x_{t}\right) q^{i+j}\left[\left[x_{i}, x_{j}\right]_{q}, x_{r}\right]_{q}\right)+q^{s+r} f\left(x_{r}\right) q^{i+j+s+t}\left(f\left(x_{i}\right) q^{j+t}\left[x_{s},\left[x_{j}, x_{t}\right]_{q}\right]_{q}\right. \\
& \left.+f\left(x_{j}\right) q^{t+i}\left[x_{s},\left[x_{t}, x_{i}\right]_{q}\right]_{q}+f\left(x_{t}\right) q^{i+j}\left[x_{s},\left[x_{i}, x_{j}\right]_{q}\right]_{q}\right) \\
& +q^{s+t} f\left(x_{s}\right) q^{i+j+t+r}\left(f\left(x_{i}\right) q^{j+r}\left[x_{t},\left[x_{j}, x_{r}\right]_{q}\right]_{q}+f\left(x_{j}\right) q^{r+i}\left[x_{t},\left[x_{r}, x_{i}\right]_{q}{ }_{q}\right.\right. \\
& \left.+f\left(x_{r}\right) q^{i+j}\left[x_{t},\left[x_{i}, x_{j}\right]_{q}\right]_{q}\right)+q^{s+t} f\left(x_{t}\right) q^{i+j+s+r}\left(f\left(x_{i}\right) q^{j+r}\left[\left[x_{j}, x_{r}\right]_{q}, x_{s}\right]_{q}\right. \\
& \left.+f\left(x_{j}\right) q^{r+i}\left[\left[x_{r}, x_{i}\right]_{q}, x_{s}\right]_{q}+f\left(x_{r}\right) q^{i+j}\left[\left[x_{i}, x_{j}\right]_{q}, x_{s}\right]_{q}\right) .
\end{aligned}
$$

Therefore, $\left(L,[,,]_{q}\right)$ is a q-3-Lie algebra.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

[1] N.Hu, q-Witt Algebras,q-Virasoro algebra,q-Lie ,q-Holomorph Structure and Reresentations, Algebra Colloq. 6 (1), (1999) 51-70.
[2] C.Kassei, Cyclic Homology of Differential Operators,the Virasoro Algebra and a q-Analogue, Comm. Math. Phys. 146 (1992), 343-356.
[3] N.Hu, Quantum group structure of q-deformed Virasoro algebra, Lett Math. Phys. 44 (2), (1998) 99-103.
[4] C.De Concini,C.Procesi, Quantum Groups, Lecture Notes in Math. 1565 (1994), 30-141.
[5] R. Bai, W. Guo, L. Lin, Structure of the 3-Lie algebra J_{11}, Mathematica Aeterna, 2015, 5(4):593-597.
[6] A. Pozhidaev, Monomial n-Lie algebras, Algebra Log. 1998, 37(5):307-322.

Received: October, 2015

