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Abstract

In this paper, the quantum Lie algebras and quantum 3-Lie algebras
over a field K with chK = 0 are discussed for q generic, where q ∈

K, q 6= 0, 1. A quantum Lie algebra is realized by a Z-graded algebra
(Theorem 2.3), and a Lie algebra is realized by a quantum algebra which
satisfying the property q−ixi(xjxk)q = (xixj)qxk (Theorem 2.4). From
quantum Lie algebras and linear functions, two classes quantum 3-Lie
algebras are constructed (Theorem 2.6 and Theorem 2.7).
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1 Introduction

Recently one can observe a growing interest in the investigations and expla-
nations of the quantum groups and algebras [1-4]. These structures appeared
in the study of integrable models especially during the searching for solutions
of the quantum Yang-Baxter equation [3-4]. So in this paper, we construct
quantum Lie algebras from quantum algebras which satisfy some conditions,
and from quantum Lie algebras, we also can construct general Lie algebras.
We also define a class of quantum 3-Lie algebras [5-6], and realized two classes
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quantum 3-Lie algebras from quantum Lie algebras. In the following, denote
K an arbitrary field with char(K) = 0, q ∈ K, q 6= 0, 1, and Z be the set of
integers. For a positive integer n, set (n)q =

1−qn

1−q
.

2 main Result

In this section we study quantum Lie algebras and quantum 3-Lie algebras.
For convenience, in the following, for a quantum Lie algebra and a quantum
3-Lie algebra, is simply called a q-Lie algebra and a q-3-Lie algebra for q ∈ K,
respectively.

Definitions 2.1. For a Z-graded vector space L = ⊕i∈ZLi over a field
K equipped with a bilinear q-bracket product [, ]q ( where q ∈ K, q 6= 0, 1, dim
Li < ∞ ) satisfying [Li, Lj ]q ⊆ Li+j , and for all xi ∈ Li, ∀i ∈ Z, if

[xi, xj ]q = −[xj , xi]q, (1)

(2)qi[xi, [xj , xk]q]q = (2)qj [xj , [xk, xi]q]q + (2)qk [[xi, xj ]q, xk]q, (2)

are fulfilled under [, ]q, then (L, [, ]q) is called a q-Lie algebra, and [, ]q is called
the q-Lie product.

Example 2.2. Let K be an arbitrary field with char(K) 6= 2, 3, and q ∈

K, q 6= 0, 1 be generic. We define q-differential operator ∂q over K[x, x−1] by

∂q(P ) = P (qx)−P (x)
qx−x

, ∀P ∈ K[x, x−1]. Let τq denote an algebra automorphism

of K[x, x−1] defined by τq(x) = qx. The q-differential operator ∂q is called a
τq-derivation or skew derivation if for all P,Q ∈ K[x, x−1], we have

∂q(PQ) = ∂q(P )Q+ τq(P )∂q(Q).

Let Derq(K[x, x−1]) denote the set of all τq−derivation over K[x, x−1],
and let en = xn+1∂q for all n ∈ Z. If we define a q-bracket product [, ]q
on Derq(K[x, x−1]) by

[ei, ej ]q = [(j + 1)q − (i+ 1)q]ei+j , i, j ∈ Z, (3)

then the q-bracket product [, ]q is bilinear overK and satisfies the antisymmetry
(1) and the weighted q-Jacobi identity (2). Thus (Derq(K[x, x−1]), [, ]q) is a
q-Lie algebra [1].

Theorem 2.3. For a Z-graded vector space L = ⊕i∈ZLi over a field K
equipped with a bilinear multiplication satisfying LiLj ⊂ Li+j, and

(2)q−ixi(xjxk) = (2)qk(xixj)xk. (4)
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Then for all xi ∈ Li, and xj ∈ Li, ∀i, j ∈ Z, define the q-bracket product

[xi, xj]q = qi+1xixj − qj+1xjxi, (5)

(L, [, ]q) is a q-Lie algebra, where q ∈ K, q 6= 0, 1, dimLi < ∞.
Proof The bilinearity of the q-bracket product [, ]q is obvious over K, since

[xj , xi]q = qj+1xjxi − qi+1xixj = −[xi, xj]q,

we only need to prove the identity (2). Now for all xi ∈ Li, xj ∈ Li, and
xk ∈ Lk, ∀i, j, k ∈ Z,

(2)qi[xi, [xj , xk]q]q + (2)qj [xj , [xk, xi]q]q + (2)qk [xk, [xi, xj]q]q

= (2)qi[xi, q
j+1xjxk − qk+1xkxj ]q + (2)qj [xj , q

k+1xkxi − qi+1xixk]q

+(2)qk [xk, q
i+1xixj − qj+1xjxi]q

= (1+ qi) · qj+1[xi, xjxk]q− (1+ qi) · qk+1[xi, xkxj ]q +(1+ qj) · qk+1[xj , xkxi]q

−(1+ qj) · qi+1[xj , xixk]q +(1+ qk) · qi+1[xk, xixj ]q − (1+ qk) · qj+1[xk, xjxi]q

= qj+1[xi, xjxk]q + qi+j+1[xi, xjxk]q − qk+1[xi, xkxj ]q − qi+k+1[xi, xkxj ]q

+qk+1[xj , xkxi]q + qj+k+1[xj , xkxi]q − qi+1[xj , xixk]q − qi+j+1[xj , xixk]q

+qi+1[xk, xixj ]q + qi+k+1[xk, xixj ]q − qj+1[xk, xjxi]q − qj+k+1[xk, xjxi]q = 0.
Therefore, (L, [, ]q) is a q-Lie algebra.

Theorem 2.4. If a Z-graded algebra L = ⊕i∈ZLi over a field K satisfies
LiLj ⊂ Li+j, and

q−ixi(xjxk)q = (xixj)qxk. (6)

Then (L, [, ]) is a Lie algebra, where for ∀xiǫLi, xjǫLj, the product [, ] is defined
by

[xi, xj ] = qi+1(xixj)q − qj+1(xjxi)q, (7)

where q ∈ K, q 6= 0, 1, dim Li < ∞.
Proof The bilinearity of the product [, ] is obvious over K. The anti-

symmetry (1) is clear according to identity (7). Now we consider the Jacobi
identity of Lie algebras. For all xi ∈ Li, xj ∈ Lj and xk ∈ Lk, ∀i, j, k ∈ L,
from

[xk, [xi, xj ]] = [xk, q
i+1(xixj)q − qj+1(xjxi)q]

= qi+1[qk+1xk(xixj)q− qi+j+1(xixj)qxk]− qj+1[qk+1xk(xjxi)q− qi+j+1(xjxi)qxk].

And the cyclic permutation of (i, j, k), we have [xi, [xj , xk]] +[xj , [xk, xi]]
+[xk, [xi, xj]] = 0. It follows the result.

In the following, we construct quantum 3-Lie algebras from quantum Lie
algebras. First we give the following definition.
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Definitions 2.5 For a Z-graded vector space L = ⊕i∈ZLi over a field K
equipped with a 3-ary linear q-3-bracket product [, , ]q satisfying [Li, Lj, Lk]q ⊆
Li+j+k. If for all xi ∈ Li, xj ∈ Lj , xk ∈ Lk, we have

[x1, x2, x3]q = sgn(σ)[xσ(1)
, xσ(2)

, xσ(3)
], ∀x1, x2, x3 ∈ L (8)

and the weighted q-Jacobi identity

(2)qi+j [xi, xj , [xk, xs, xt]q]q = (2)qs+t[[xi, xj , xk]q, xs, xt]q

+(2)qk+t[xk, [xi, xj , xs]q, xt]q + (2)qk+s[xk, xs, [xi, xj , xk]q]q, (9)
(L, [, , ]q) is called a q-3-Lie algebra, where q ∈ K, q 6= 0, 1, dim Li < ∞.

Theorem 2.6 Let (L, [, ]q) be a q-Lie algebra over a field K, and x0 /∈ L.
Define the q-3-bracket on vector space A = L+̇Fx0 by

{

[xi, xj , x0]q = [xi, xj ]q,
[xi, xj , xk]q = 0,

(10)

for all xi ∈ Li, xj ∈ Lj and xk ∈ Lk. Then (A, [, , ]q) is a q-3-Lie algebra.
Proof It is clear that the q-3-bracket is skew-symmetric, so we need to

consider the weighted q-Jacobi identity on (2)qj [x0, xj, [xs, xt, x0]q]q. From
(2)qt[[x0, xj , xs]q, xt, x0]q +(2)qs[xs, [x0, xj, xt]q, x0]q

= (2)qt [[xj , xs]q, xt]q + (2)qs[xs, [xj , xt]q]q = (2)qj [xj , [xs, xt]q]q.
The result follows.

Theorem 2.7 Let (L, [, ]q) be a q-Lie algebra over a field K, f : L → K
be a linear function satisfying f([xi, xj ]q) = 0, for all xi ∈ Li and xj ∈ Lj.
Define q-3-bracket product [, , ]q on L by

[xi, xj, xk]q = f(xi)q
j+k[xj , xk]q + f(xj)q

k+i[xk, xi]q + f(xk)q
i+j[xi, xj ]q, (11)

then (L, [, , ]) is a q-3-Lie algebra.
Proof From Eq.(11), the q-3-bracket is skew-symmetric. So we only need

to prove the q-Jacobi identity (9). Since

qi+j[xi, xj, [xs, xt, xr]q]q

= qi+jf(xi)q
j+s+t+r(f(xs)q

t+r[xj , [xt, xr]q]q +f(xt)q
r+s[xj , [xr, xs]q]q

+f(xr)q
s+t[xj , [xs, xt]q]q) +qi+jf(xj)q

i+s+t+r(f(xs)q
t+r[[xt, xr]q, xi]q

+f(xt)q
r+s[[xr, xs]q, xi]q+ f(xr)q

s+t[[xs, xt]q, xi]q).

qt+r[[xi, xj, xs]q, xt, xr]q +qr+s[xs, [xi, xj, xt]q, xr]q +qs+t[xs, xr, [xi, xj , xr]q, ]q

= qt+rf(xt)q
i+j+r+s[xr, [xi, xj , xs]q]q +qt+rf(xr)q

i+j+s+t[[xi, xj, xs]q, xt]q

+qs+rf(xs)q
i+j+t+r[[xi, xj, xt]q, xr]q +qs+rf(xr)q

i+j+s+t[xs, [xi, xj , xt]q]q

+qs+tf(xs)q
i+j+t+r[xt, [xi, xj , xr]q]q + qs+tf(xt)q

i+j+s+r[[xi, xj , xr]q, xs]q

= qt+rf(xt)q
i+j+r+s(f(xi)q

j+s[xr, [xj , xs]q]q + f(xj)q
i+s[xr, [xs, xi]q]q

+f(xs)q
i+j[xr, [xi, xj ]q]q)+qt+rf(xr)q

i+j+s+t(f(xi)q
j+s[[xj , xs]q, xt]q



q-Lie Algebras and q-3-Lie Algebras 915

+f(xj)q
i+s[[xs, xi]q, xt]q + f(xs)q

i+j[[xi, xj ]q, xt]q)

+qs+rf(xs)q
i+j+t+r(f(xi)q

j+t[[xj , xt]q, xr]q + f(xj)q
t+i[[xt, xi]q, xr]q

+f(xt)q
i+j[[xi, xj ]q, xr]q)+qs+rf(xr)q

i+j+s+t(f(xi)q
j+t[xs, [xj, xt]q]q

+f(xj)q
t+i[xs, [xt, xi]q]q + f(xt)q

i+j[xs, [xi, xj ]q]q)

+qs+tf(xs)q
i+j+t+r(f(xi)q

j+r[xt, [xj , xr]q]q + f(xj)q
r+i[xt, [xr, xi]q]q

+f(xr)q
i+j [xt, [xi, xj ]q]q) + qs+tf(xt)q

i+j+s+r(f(xi)q
j+r[[xj , xr]q, xs]q

+f(xj)q
r+i[[xr, xi]q, xs]q + f(xr)q

i+j[[xi, xj ]q, xs]q).
Therefore, (L, [, , ]q) is a q-3-Lie algebra.
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