Mathematica Aeterna, Vol. 5, 2015, no. 5, 911 - 915

q-Lie Algebras and q-3-Lie Algebras

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GUO Weiwei

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

LIN Lixin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

In this paper, the quantum Lie algebras and quantum 3-Lie algebras over a field K with chK = 0 are discussed for q generic, where $q \in K, q \neq 0, 1$. A quantum Lie algebra is realized by a Z-graded algebra (Theorem 2.3), and a Lie algebra is realized by a quantum algebra which satisfying the property $q^{-i}x_i(x_jx_k)_q = (x_ix_j)_qx_k$ (Theorem 2.4). From quantum Lie algebras and linear functions, two classes quantum 3-Lie algebras are constructed (Theorem 2.6 and Theorem 2.7).

2010 Mathematics Subject Classification: 17B05 17D30 Keywords: Z-graded space, q-Lie algebra, q-3-Lie algebra.

1 Introduction

Recently one can observe a growing interest in the investigations and explanations of the quantum groups and algebras [1-4]. These structures appeared in the study of integrable models especially during the searching for solutions of the quantum Yang-Baxter equation [3-4]. So in this paper, we construct quantum Lie algebras from quantum algebras which satisfy some conditions, and from quantum Lie algebras, we also can construct general Lie algebras. We also define a class of quantum 3-Lie algebras [5-6], and realized two classes quantum 3-Lie algebras from quantum Lie algebras. In the following, denote K an arbitrary field with char(K) = 0, $q \in K, q \neq 0, 1$, and Z be the set of integers. For a positive integer n, set $(n)_q = \frac{1-q^n}{1-q}$.

2 main Result

In this section we study quantum Lie algebras and quantum 3-Lie algebras. For convenience, in the following, for a quantum Lie algebra and a quantum 3-Lie algebra, is simply called a q-Lie algebra and a q-3-Lie algebra for $q \in K$, respectively.

Definitions 2.1. For a Z-graded vector space $L = \bigoplus_{i \in Z} L_i$ over a field K equipped with a bilinear q-bracket product $[,]_q$ (where $q \in K, q \neq 0, 1$, dim $L_i < \infty$) satisfying $[L_i, L_j]_q \subseteq L_{i+j}$, and for all $x_i \in L_i$, $\forall i \in Z$, if

$$[x_i, x_j]_q = -[x_j, x_i]_q, (1)$$

$$(2)_{q^{i}}[x_{i}, [x_{j}, x_{k}]_{q}]_{q} = (2)_{q^{j}}[x_{j}, [x_{k}, x_{i}]_{q}]_{q} + (2)_{q^{k}}[[x_{i}, x_{j}]_{q}, x_{k}]_{q},$$
(2)

are fulfilled under $[,]_q$, then $(L, [,]_q)$ is called a q-Lie algebra, and $[,]_q$ is called the q-Lie product.

Example 2.2. Let K be an arbitrary field with $char(K) \neq 2, 3$, and $q \in K, q \neq 0, 1$ be generic. We define q-differential operator ∂_q over $K[x, x^{-1}]$ by $\partial_q(P) = \frac{P(qx) - P(x)}{qx - x}, \quad \forall P \in K[x, x^{-1}]$. Let τ_q denote an algebra automorphism of $K[x, x^{-1}]$ defined by $\tau_q(x) = qx$. The q-differential operator ∂_q is called a τ_q -derivation or skew derivation if for all $P, Q \in K[x, x^{-1}]$, we have

$$\partial_q(PQ) = \partial_q(P)Q + \tau_q(P)\partial_q(Q).$$

Let $Der_q(K[x, x^{-1}])$ denote the set of all τ_q -derivation over $K[x, x^{-1}]$, and let $e_n = x^{n+1}\partial_q$ for all $n \in \mathbb{Z}$. If we define a *q*-bracket product $[,]_q$ on $Der_q(K[x, x^{-1}])$ by

$$[e_i, e_j]_q = [(j+1)_q - (i+1)_q]e_{i+j}, i, j \in \mathbb{Z},$$
(3)

then the q-bracket product $[,]_q$ is bilinear over K and satisfies the antisymmetry (1) and the weighted q-Jacobi identity (2). Thus $(Der_q(K[x, x^{-1}]), [,]_q)$ is a q-Lie algebra [1].

Theorem 2.3. For a Z-graded vector space $L = \bigoplus_{i \in Z} L_i$ over a field K equipped with a bilinear multiplication satisfying $L_i L_j \subset L_{i+j}$, and

$$(2)_{q^{-i}}x_i(x_jx_k) = (2)_{q^k}(x_ix_j)x_k.$$
(4)

Then for all $x_i \in L_i$, and $x_j \in L_i$, $\forall i, j \in Z$, define the q-bracket product

$$[x_i, x_j]_q = q^{i+1} x_i x_j - q^{j+1} x_j x_i,$$
(5)

 $(L, [,]_q)$ is a q-Lie algebra, where $q \in K, q \neq 0, 1, \dim L_i < \infty$.

Proof The bilinearity of the q-bracket product $[,]_q$ is obvious over K, since

$$[x_j, x_i]_q = q^{j+1} x_j x_i - q^{i+1} x_i x_j = -[x_i, x_j]_q,$$

we only need to prove the identity (2). Now for all $x_i \in L_i, x_j \in L_i$, and $x_k \in L_k, \forall i, j, k \in \mathbb{Z}$,

$$\begin{split} &(2)_{q^{i}}[x_{i},[x_{j},x_{k}]_{q}]_{q}+(2)_{q^{j}}[x_{j},[x_{k},x_{i}]_{q}]_{q}+(2)_{q^{k}}[x_{k},[x_{i},x_{j}]_{q}]_{q} \\ &=(2)_{q^{i}}[x_{i},q^{j+1}x_{j}x_{k}-q^{k+1}x_{k}x_{j}]_{q}+(2)_{q^{j}}[x_{j},q^{k+1}x_{k}x_{i}-q^{i+1}x_{i}x_{k}]_{q} \\ &+(2)_{q^{k}}[x_{k},q^{i+1}x_{i}x_{j}-q^{j+1}x_{j}x_{i}]_{q} \\ &=(1+q^{i})\cdot q^{j+1}[x_{i},x_{j}x_{k}]_{q}-(1+q^{i})\cdot q^{k+1}[x_{i},x_{k}x_{j}]_{q}+(1+q^{j})\cdot q^{k+1}[x_{j},x_{k}x_{i}]_{q} \\ &-(1+q^{j})\cdot q^{i+1}[x_{j},x_{i}x_{k}]_{q}+(1+q^{k})\cdot q^{i+1}[x_{k},x_{i}x_{j}]_{q}-(1+q^{k})\cdot q^{j+1}[x_{k},x_{j}x_{i}]_{q} \\ &=q^{j+1}[x_{i},x_{j}x_{k}]_{q}+q^{i+j+1}[x_{i},x_{j}x_{k}]_{q}-q^{k+1}[x_{i},x_{k}x_{j}]_{q}-q^{i+k+1}[x_{i},x_{k}x_{j}]_{q} \\ &+q^{k+1}[x_{j},x_{k}x_{i}]_{q}+q^{j+k+1}[x_{j},x_{k}x_{i}]_{q}-q^{i+1}[x_{k},x_{j}x_{i}]_{q}-q^{i+k+1}[x_{k},x_{j}x_{i}]_{q} = 0. \end{split}$$

Theorem 2.4. If a Z-graded algebra $L = \bigoplus_{i \in Z} L_i$ over a field K satisfies $L_i L_j \subset L_{i+j}$, and

$$q^{-i}x_i(x_jx_k)_q = (x_ix_j)_q x_k.$$
 (6)

Then (L, [,]) is a Lie algebra, where for $\forall x_i \in L_i, x_j \in L_j$, the product [,] is defined by

$$[x_i, x_j] = q^{i+1} (x_i x_j)_q - q^{j+1} (x_j x_i)_q,$$
(7)

where $q \in K, q \neq 0, 1, dim L_i < \infty$.

Proof The bilinearity of the product [,] is obvious over K. The antisymmetry (1) is clear according to identity (7). Now we consider the Jacobi identity of Lie algebras. For all $x_i \in L_i$, $x_j \in L_j$ and $x_k \in L_k$, $\forall i, j, k \in L$, from

$$[x_k, [x_i, x_j]] = [x_k, q^{i+1}(x_i x_j)_q - q^{j+1}(x_j x_i)_q]$$

$$= q^{i+1}[q^{k+1}x_k(x_ix_j)_q - q^{i+j+1}(x_ix_j)_qx_k] - q^{j+1}[q^{k+1}x_k(x_jx_i)_q - q^{i+j+1}(x_jx_i)_qx_k].$$

And the cyclic permutation of (i, j, k), we have $[x_i, [x_j, x_k]] + [x_j, [x_k, x_i]] + [x_k, [x_i, x_j]] = 0$. It follows the result.

In the following, we construct quantum 3-Lie algebras from quantum Lie algebras. First we give the following definition.

(9)

Definitions 2.5 For a Z-graded vector space $L = \bigoplus_{i \in Z} L_i$ over a field K equipped with a 3-ary linear q-3-bracket product $[,,]_q$ satisfying $[L_i, L_j, L_k]_q \subseteq L_{i+j+k}$. If for all $x_i \in L_i, x_j \in L_j, x_k \in L_k$, we have

$$[x_1, x_2, x_3]_q = sgn(\sigma)[x_{\sigma_{(1)}}, x_{\sigma_{(2)}}, x_{\sigma_{(3)}}], \forall x_1, x_2, x_3 \in L$$
(8)

and the weighted q-Jacobi identity

$$(2)_{q^{i+j}}[x_i, x_j, [x_k, x_s, x_t]_q]_q = (2)_{q^{s+t}}[[x_i, x_j, x_k]_q, x_s, x_t]_q + (2)_{q^{k+t}}[x_k, [x_i, x_j, x_s]_q, x_t]_q + (2)_{q^{k+s}}[x_k, x_s, [x_i, x_j, x_k]_q]_q,$$

 $+ (2)_{q^{k+t}}[x_k, [x_i, x_j, x_s]_q, x_t]_q + (2)_{q^{k+s}}[x_k, x_s, [x_i, x_j, x_k]_q]_q,$ $(L, [,,]_q) \text{ is called a } q\text{-}3\text{-}Lie \text{ algebra, where } q \in K, q \neq 0, 1, \text{ dim } L_i < \infty.$

Theorem 2.6 Let $(L, [,]_q)$ be a q-Lie algebra over a field K, and $x_0 \notin L$. Define the q-3-bracket on vector space $A = L + Fx_0$ by

$$\begin{cases} [x_i, x_j, x_0]_q = [x_i, x_j]_q, \\ [x_i, x_j, x_k]_q = 0, \end{cases}$$
(10)

for all $x_i \in L_i, x_j \in L_j$ and $x_k \in L_k$. Then $(A, [, ,]_q)$ is a q-3-Lie algebra.

Proof It is clear that the q-3-bracket is skew-symmetric, so we need to consider the weighted q-Jacobi identity on $(2)_{q^j}[x_0, x_j, [x_s, x_t, x_0]_q]_q$. From

 $(2)_{q^{t}}[[x_{0}, x_{j}, x_{s}]_{q}, x_{t}, x_{0}]_{q} + (2)_{q^{s}}[x_{s}, [x_{0}, x_{j}, x_{t}]_{q}, x_{0}]_{q}$

 $=(2)_{q^t}[[x_j, x_s]_q, x_t]_q + (2)_{q^s}[x_s, [x_j, x_t]_q]_q = (2)_{q^j}[x_j, [x_s, x_t]_q]_q.$ The result follows.

Theorem 2.7 Let $(L, [,]_q)$ be a q-Lie algebra over a field K, $f : L \to K$ be a linear function satisfying $f([x_i, x_j]_q) = 0$, for all $x_i \in L_i$ and $x_j \in L_j$. Define q-3-bracket product $[,]_q$ on L by

$$[x_i, x_j, x_k]_q = f(x_i)q^{j+k}[x_j, x_k]_q + f(x_j)q^{k+i}[x_k, x_i]_q + f(x_k)q^{i+j}[x_i, x_j]_q, \quad (11)$$

then (L, [,]) is a q-3-Lie algebra.

Proof From Eq.(11), the q-3-bracket is skew-symmetric. So we only need to prove the q-Jacobi identity (9). Since

$$\begin{split} q^{i+j}[x_i, x_j, [x_s, x_t, x_r]_q]_q \\ &= q^{i+j}f(x_i)q^{j+s+t+r}(f(x_s)q^{t+r}[x_j, [x_t, x_r]_q]_q + f(x_t)q^{r+s}[x_j, [x_r, x_s]_q]_q \\ &+ f(x_r)q^{s+t}[x_j, [x_s, x_t]_q]_q) + q^{i+j}f(x_j)q^{i+s+t+r}(f(x_s)q^{t+r}[[x_t, x_r]_q, x_i]_q \\ &+ f(x_t)q^{r+s}[[x_r, x_s]_q, x_i]_q + f(x_r)q^{s+t}[[x_s, x_t]_q, x_i]_q). \\ q^{t+r}[[x_i, x_j, x_s]_q, x_t, x_r]_q + q^{r+s}[x_s, [x_i, x_j, x_t]_q, x_r]_q + q^{s+t}[x_s, x_r, [x_i, x_j, x_r]_q,]_q \\ &= q^{t+r}f(x_t)q^{i+j+r+s}[x_r, [x_i, x_j, x_s]_q]_q + q^{t+r}f(x_r)q^{i+j+s+t}[[x_i, x_j, x_s]_q, x_t]_q \\ &+ q^{s+r}f(x_s)q^{i+j+t+r}[[x_i, x_j, x_t]_q, x_r]_q + q^{s+r}f(x_r)q^{i+j+s+t}[x_s, [x_i, x_j, x_t]_q]_q \\ &+ q^{s+t}f(x_s)q^{i+j+t+r}[x_t, [x_i, x_j, x_r]_q]_q + q^{s+t}f(x_t)q^{i+j+s+r}[[x_i, x_j, x_r]_q, x_s]_q \\ &= q^{t+r}f(x_t)q^{i+j+r+s}(f(x_t)q^{j+s}[x_r, [x_j, x_s]_q]_q + f(x_j)q^{i+s}[x_r, [x_s, x_i]_q]_q \\ &+ f(x_s)q^{i+j}[x_r, [x_i, x_j]_q]_q) + q^{t+r}f(x_r)q^{i+j+s+t}(f(x_i)q^{j+s}[[x_j, x_s]_q, x_t]_q \end{split}$$

$$\begin{split} &+f(x_{j})q^{i+s}[[x_{s},x_{i}]_{q},x_{t}]_{q}+f(x_{s})q^{i+j}[[x_{i},x_{j}]_{q},x_{t}]_{q})\\ &+q^{s+r}f(x_{s})q^{i+j+t+r}(f(x_{i})q^{j+t}[[x_{j},x_{t}]_{q},x_{r}]_{q}+f(x_{j})q^{t+i}[[x_{t},x_{i}]_{q},x_{r}]_{q}\\ &+f(x_{t})q^{i+j}[[x_{i},x_{j}]_{q},x_{r}]_{q})+q^{s+r}f(x_{r})q^{i+j+s+t}(f(x_{i})q^{j+t}[x_{s},[x_{j},x_{t}]_{q}]_{q})\\ &+f(x_{j})q^{t+i}[x_{s},[x_{t},x_{i}]_{q}]_{q}+f(x_{t})q^{i+j}[x_{s},[x_{i},x_{j}]_{q}]_{q})\\ &+q^{s+t}f(x_{s})q^{i+j+t+r}(f(x_{i})q^{j+r}[x_{t},[x_{j},x_{r}]_{q}]_{q}+f(x_{j})q^{r+i}[x_{t},[x_{r},x_{i}]_{q}]_{q})\\ &+f(x_{r})q^{i+j}[x_{t},[x_{i},x_{j}]_{q}]_{q})+q^{s+t}f(x_{t})q^{i+j+s+r}(f(x_{i})q^{j+r}[[x_{j},x_{r}]_{q},x_{s}]_{q}\\ &+f(x_{j})q^{r+i}[[x_{r},x_{i}]_{q},x_{s}]_{q}+f(x_{r})q^{i+j}[[x_{i},x_{j}]_{q},x_{s}]_{q}).\\ &\text{Therefore,}\ (L,[,,]_{q})\ \text{is a } q\text{-3-Lie algebra.} \end{split}$$

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- [1] N.Hu, q-Witt Algebras,q-Virasoro algebra,q-Lie ,q-Holomorph Structure and Reresentations, Algebra Colloq.6 (1), (1999) 51-70.
- [2] C.Kassei, Cyclic Homology of Differential Operators, the Virasoro Algebra and a q-Analogue, Comm. Math. Phys. 146 (1992), 343-356.
- [3] N.Hu, Quantum group structure of q-deformed Virasoro algebra, Lett Math. Phys. 44 (2), (1998) 99-103.
- [4] C.De Concini, C.Procesi, Quantum Groups, Lecture Notes in Math. 1565 (1994), 30-141.
- [5] R. Bai, W. Guo, L. Lin, Structure of the 3-Lie algebra J_{11} , Mathematica Aeterna, 2015, 5(4):593-597.
- [6] A. Pozhidaev, Monomial n-Lie algebras, Algebra Log. 1998, 37(5):307-322.

Received: October, 2015