Properties of composition operators on spaces of hyperbolic type

A. El-Sayed Ahmed

Department of Mathematics, Faculty of Science, Taif University Box 888 El-Hawiyah, Saudi Arabia and Department of Mathematics, Faculty of Science, Sohag University 82524 Sohag Egypt e-mail- ahsayed80@hotmail.com

Abstract

In this paper, we study boundedness and compactness of the composition operators C_{ϕ} between the hyperbolic Bloch and general hyperbolic Besov-type classes.

Mathematics Subject Classification: 47B38, 46E15

Keywords: Hyperbolic classes, composition operators

Introduction 1

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} . Let ϕ be an analytic self-map of the open unit disk \mathbb{D} . Let $H(\mathbb{D})$ denote the classes of functions holomorphic in the unit disc \mathbb{D} , the hyperbolic function classes are subsets of the class $B(\mathbb{D})$ of all analytic functions f in the unit disc \mathbb{D} such that |f(z)| < 1. If (X, d) is a metric space, we denote the open and closed balls with center x and radius r > 0 by

$$B(x,r) := \{ y \in X : d(y,x) < r \} \text{ and } \bar{B}(x,r) := \{ y \in X : d(x,y) \le r \},\$$

respectively.

Hyperbolic function classes are usually defined by using either the hyperbolic derivative $f^*(z) = \frac{|f'(z)|}{1-|f(z)|^2}$ of $f \in B(\mathbb{D})$, or the hyperbolic distance $\rho(f(z), 0) := \frac{1}{2} \log(\frac{1+|f(z)|}{1-|f(z)|}) \text{ between } f(z) \text{ and zero.}$ The hyperbolic \mathcal{B}^*_{α} (see [6]) is defined as the sets of $f \in B(\mathbb{D})$ for which

 $\mathcal{B}^*_{\alpha} = \{f : f \text{ analytic in } \mathbb{D} \text{ and } \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} f^*(z) < \infty\}.$

The little hyperbolic Bloch space $\mathcal{B}^*_{\alpha,0}$ is a subspace of \mathcal{B}^*_{α} consisting of all $f \in \mathcal{B}^*_{\alpha}$ such that

$$\lim_{|z| \to 1^{-}} (1 - |z|^2)^{\alpha} f^*(z) = 0.$$

Quite recently, the first author in [6] gave the following definitions for (p, α) -Bloch spaces $\mathcal{B}_{p,\alpha}$ and $\mathcal{B}_{p,\alpha,0}$ for $f \in H(\mathbb{D})$

$$||f||_{\mathcal{B}_{p,\alpha}} = \frac{p}{2} \sup_{z \in \mathbb{D}} |f(z)|^{\frac{p}{2}-1} |f'(z)| (1-|z|^2)^{\alpha} < \infty,$$

and

$$\lim_{|z| \to 1} |f(z)|^{\frac{p}{2}-1} |f'(z)| (1-|z|^2)^{\alpha} = 0,$$

where $2 \le p < \infty$ and $0 < \alpha < 1$.

Also in [6], the first author gave the following generalized hyperbolic derivative:

$$f_p^*(z) = \frac{p}{2} \frac{|f(z)|^{\frac{p}{2}-1} |f'(z)|}{1 - |f(z)|^p}, \quad f(z) \in H(\mathbb{D}),$$

when p = 2 we obtain the usual hyperbolic derivative as defined above. A function $f \in B(\mathbb{D})$ is said to belong to the generalized (p, α) hyperbolic Bloch-type class $\mathcal{B}_{p,\alpha}^*$ if

$$\|f\|_{\mathcal{B}^*_{p,\alpha}} = \sup_{z\in\mathbb{D}} (1-|z|^2)^{\alpha} f_p^*(z) < \infty,$$

the little generalized (p, α) hyperbolic Bloch-type class $\mathcal{B}_{p,\alpha,0}^*$ consists of all $f \in \mathcal{B}_{p,\alpha}^*$ such that

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} f_p^*(z) = 0.$$

Remark 1.1 It should be remarked that, the Schwarz-Pick lemma implies $\mathcal{B}_{p,\alpha}^* \equiv B(\mathbb{D})$ for all $1 \leq \alpha < \infty$ with $||f||_{\mathcal{B}_{p,\alpha}^*} \leq 1$, hence the class $\mathcal{B}_{p,\alpha}^*$ is of interest only when $0 < \alpha < 1$.

Denote by

$$g(z,a) = \log \left| \frac{1 - \bar{a}z}{z - a} \right| = \log \frac{1}{|\varphi_a(z)|}$$

the Green's function of \mathbb{D} with logarithmic singularity at $a \in \Delta$. Now, we define the hyperbolic $F_p(p, q, s; \omega)$ type class $F_p^*(p, q, s; \omega)$. Let $2 \leq p < \infty, 0 < s < \infty$ and $-2 < q < \infty$, for given a reasonable function $\omega : (0, 1] \to (0, \infty)$, the hyperbolic class $F_p^*(p, q, s; \omega)$ consists of those functions $f \in B(\mathbb{D})$ for which

$$\|f\|_{F_{p}^{*}(p,q,s)}^{p} = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} (f_{p}^{*}(z))^{p} (1-|z|^{2})^{q} \frac{g^{s}(z,a)}{\omega(1-|z|)} dA(z) < \infty.$$

Moreover, we say that $f \in F_p^*(p,q,s)$ belongs to the class $F_{p,0}^*(p,q,s;\omega)$ if

$$\lim_{|a| \to 1} \int_{\mathbb{D}} (f_p^*(z))^p (1 - |z|^2)^q \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) = 0.$$

Note that hyperbolic classes are not linear spaces, since they consist of functions that are self-maps of \mathbb{D} . Thus, the result is a generalization of the recent results of Pérez-González, Rättyä and Taskinen [31].

For any holomorphic self-mapping ϕ of \mathbb{D} . The symbol ϕ induces a linear composition operator $C_{\phi}(f) = f \circ \phi$ from $H(\mathbb{D})$ or $B(\mathbb{D})$ into itself. The study of composition operator C_{ϕ} acting on spaces of different function classes has engaged many analysts for many years (see e.g. [10, 11, 16, 17, 21, 26, 27, 28, 29, 30] and others).

Recall that a linear operator $T: X \to Y$ is said to be bounded if there exists a constant C > 0 such that $||T(f)||_Y \leq C||f||_X$ for all maps $f \in X$. By elementary functional analysis, it is well-known that a linear operator between normed spaces is bounded if and only if it is continuous, and the boundedness is trivially also equivalent to the Lipschitz-continuity. Moreover, $T: X \to Y$ is said to be compact if it takes bounded sets in X to sets in Y which have compact closure. For Banach spaces X and Y contained in $B(\mathbb{D})$ or $H(\mathbb{D})$, $T: X \to Y$ is compact if and only if for each bounded sequence $(x_n) \in X$, the sequence $(Tx_n) \in Y$ contains a subsequence converging to a function $f \in Y$.

Two quantities A and B are said to be equivalent if there exist two finite positive constants C_1 and C_2 such that $C_1B \leq A \leq C_2B$, written as $A \approx B$. Throughout this paper, the letter C denotes different positive constants which are not necessarily the same from line to line.

Now, we introduce the following definitions:

Definition 1.1 A composition operator $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$ is said to be bounded, if there is a positive constant C such that $\|C_{\phi}f\|_{F_p^*(p,q,s;\omega)} \leq C\|f\|_{\mathcal{B}_{p,\alpha}^*}$ for all $f \in \mathcal{B}_{p,\alpha}^*$.

Definition 1.2 A composition operator $C_{\phi} : \mathcal{B}^*_{p,\alpha} \to F^*_p(p,q,s;\omega)$ is said to be compact, if it maps any ball in $\mathcal{B}^*_{p,\alpha}$ onto a pre-compact set in $F^*_p(p,q,s;\omega)$.

We can find a natural metric on the generalized hyperbolic (p, α) -Bloch class $\mathcal{B}_{p,\alpha}^*$ and the class $F_p^*(p, q, s; \omega)$. Let $2 \leq p < \infty, 0 < s < \infty, -2 < q < \infty$, and $0 < \alpha < 1$. First we can find a natural metric in $\mathcal{B}_{p,\alpha}^*$ [6] by defining

$$d(f,g;\mathcal{B}_{p,\alpha}^*) := d_{\mathcal{B}_{p,\alpha}^*}(f,g) + ||f-g||_{\mathcal{B}_{p,\alpha}} + |f(0) - g(0)|^{\frac{p}{2}}$$

where

$$d_{\mathcal{B}^*_{p,\alpha}}(f,g) := \sup_{a \in \mathbb{D}} \Big| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1-|f(z)|^p} - \frac{g'(z)|g(z)|^{\frac{p}{2}-1}}{1-|g(z)|^p} \Big| (1-|z|^2)^{\alpha}.$$

For $f, g \in F_p^*(p, q, s; \omega)$, define their distance by

$$d(f,g;F_p^*(p,q,s;\omega)) := d_{F_p^*(p,q,s;\omega)}(f,g) + ||f-g||_{F_p(p,q,s;\omega)} + |f(0) - g(0)|,$$

where

$$d_{F_p^*(p,q,s;\omega)}(f,g) := \left(\sup_{z\in\mathbb{D}}\int_{\mathbb{D}} |f_p^*(z) - g_p^*(z)|^p (1-|z|^2)^q \frac{g^s(z,a)}{\omega(1-|z|)} dA(z)\right)^{\frac{1}{p}}.$$

The following result of the complete metric spaces $d(., .; \mathcal{B}_{p,\alpha}^*)$ is proved in ([6]). Now we prove the following proposition:

Proposition 1.1 The class $\mathcal{B}_{p,\alpha}^*$ equipped with the metric $d(.,.;\mathcal{B}_{p,\alpha}^*)$ is a complete metric space. Moreover, $\mathcal{B}_{p,\alpha,0}^*$ is a closed (and therefore complete) subspace of $\mathcal{B}_{p,\alpha}^*$.

Proposition 1.2 The class $F_p^*(p,q,s)$ equipped with the metric $d(.,.;F_p^*(p,q,s;\omega))$ is a complete metric space. Moreover, $F_{p,0}^*(p,q,s;\omega)$ is a closed (and therefore complete) subspace of $F_p^*(p,q,s;\omega)$.

The proof is very similar to the corresponding result in [7], so it will be omitted.

The following lemma follows by standard arguments similar to those outline in [34]. Hence we omit the proof.

Lemma 1.3 Assume ϕ is a holomorphic mapping from \mathbb{D} into itself and let $2 \leq p < \infty, 0 < \alpha < 1, 0 < s < \infty, and -2 < q < \infty$. Then the composition operator $C_{\phi}: \mathcal{B}^*_{p,\alpha} \to F^*_p(p,q,s;\omega)$ is compact if and only if for any bounded sequence $(f_n)_{n\in N} \in \mathcal{B}_{p,\alpha}^*$ which converges to zero uniformly on compact subsets of \mathbb{D} as $n \to \infty$ we have

$$\lim_{n \to \infty} \|C_{\phi} f_n\|_{F_p^*(p,q,s;\omega)} = 0.$$

There are some papers used the weight function ω to study some classes of function spaces, for more details, we refer to [7, 8, 13, 14, 15, 18, 32, 33].

Boundedness of composition operator $\mathbf{2}$

For $0 < \alpha < 1$ $2 \le p < \infty$. Let $f, g \in \mathcal{B}_{p,\alpha}^*$, we will suppose that

$$(|f_p^*(z)| + |g_p^*(z)|) \ge \frac{C}{(1 - |z|^2)^{\alpha}} > 0,$$
(1)

for some constant C and for each $z \in \mathbb{D}$.

Now, we give the following result.

Theorem 2.1 Assume ϕ is a holomorphic mapping from \mathbb{D} into itself and let $0 < \alpha < 1$, $2 \le p < \infty, 0 \le s < \infty, -2 < q < \infty$. Suppose that (1) is satisfied. Then the following statements are equivalent: (i) $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$ is bounded;

(ii) $C_{\phi}: \mathcal{B}^*_{p,\alpha} \to F^*_p(p,q,s;\omega)$ is Lipschitz continuous;

(iii)

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}\frac{|\phi'(z)|^p}{(1-|\phi(z)|^p)^{p\alpha}}(1-|z|^2)^q\frac{g^s(z,a)}{\omega(1-|z|)}dA(z)<\infty.$$

Proof: To prove (i) \Leftrightarrow (iii), first assume that (iii) holds and that $f \in \mathcal{B}_{p,\alpha}^*$, then, we obtain

$$\begin{split} \sup_{a \in \mathbb{D}} & \int_{\mathbb{D}} \left((f_p \circ \phi)^*(z) \right)^p (1 - |z|^2)^q \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) \\ &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left(f_p^*(\phi(z)) \right)^p |\phi'(z)|^p (1 - |z|^2)^q \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) \\ &\leq \|f\|_{\mathcal{B}^*_{p,\alpha}}^p \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^p}{(1 - |\phi(z)^p|)^{p\alpha}} (1 - |z|^2)^q \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) \end{split}$$

Hence, it follows that (i) holds.

Conversely, assuming that (i) holds, then there exists a constant C such that

$$||C_{\phi}f||_{F_{p}^{*}(p,q,s;\omega)} \leq C||f||_{\mathcal{B}_{p,\alpha}^{*}}.$$

For giving $f \in \mathcal{B}_{p,\alpha}^*$, the function $f_t(z) = f(tz)$, where 0 < t < 1, belongs to $\mathcal{B}_{p,\alpha}^*$ with the property $||f_t||_{\mathcal{B}_{p,\alpha}^*} \leq ||f||_{\mathcal{B}_{p,\alpha}^*}$. Let f, g be the functions from (1), we have

$$|f_p^*(z)| + |g_p^*(z)| \ge \frac{C}{(1-|z|^2)^{\alpha}} > 0$$

for all $z \in \mathbb{D}$, then

$$\frac{|\phi'(z)|}{(1-|\phi(z)|)^{\alpha}} \le (f_p \circ \phi)^*(z) + (g_p \circ \phi)^*(z),$$

thus,

$$\begin{split} &\int_{\mathbb{D}} \frac{|t\phi'(z)|^p}{(1-|t\phi(z)^p|)^{p\alpha}} (1-|z|^2)^q \frac{g^s(z,a)}{\omega(1-|z|)} dA(z) \\ &\leq \int_{\mathbb{D}} \left(\left((f_p \circ \phi)^*(z) \right)^p + \left((g_p \circ \phi)^*(z) \right)^p \right) (1-|z|^2)^q \frac{g^s(z,a)}{\omega(1-|z|)} dA(z) \\ &\leq C (\|C_\phi f\|_{F_p^*(p,q,s;\omega)}^p + \|C_\phi g\|_{F_p^*(p,q,s)}^p) \\ &\leq C \|C_\phi\|^p (\|f\|_{\mathcal{B}_{p,\alpha}^*}^p + \|g\|_{\mathcal{B}_{p,\alpha}^*}^p), \end{split}$$

this estimate together with the Fatou's lemma, implies that C_{ϕ} is bounded, so (iii) is satisfied.

To prove (ii) \Leftrightarrow (iii), assume first that $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$ is Lipschitz continuous, that is, there exists a positive constant C such that

 $d(f \circ \phi, g \circ \phi; F_p^*(p, q, s; \omega)) \le Cd(f, g; \mathcal{B}_{p, \alpha}^*), \quad \text{for all } f, g \in \mathcal{B}_{p, \alpha}^*.$

Taking g = 0, this implies

$$\|f \circ \phi\|_{F_p^*(p,q,s;\omega)} \le C(\|f\|_{\mathcal{B}_{p,\alpha}^*} + \|f\|_{\mathcal{B}_{p,\alpha}} + |f(0)|^{\frac{p}{2}}), \quad \text{for all } f \in \mathcal{B}_{p,\alpha}^*.$$
(2)
The assertion (iii) for $\alpha = 1$, follows by choosing $f(z) = z$ in (2).

If $0 < \alpha < 1$, then

$$\begin{split} |f(z)|^{\frac{p}{2}} &\leq C \Big| \int_{0}^{z} |f(s)|^{\frac{p}{2}-1} f'(s) ds + |f(0)^{\frac{p}{2}} \\ &\leq C \|f\|_{\mathcal{B}_{p,\alpha}} \int_{0}^{|z|} \frac{ds}{(1-s^{2})^{\alpha}} + |f(0)|^{\frac{p}{2}} \\ &\leq C \frac{\|f\|_{\mathcal{B}_{p,\alpha}}}{1-\alpha} + |f(0)|^{\frac{p}{2}}, \end{split}$$

this yields

$$|f(\phi(0)) - g(\phi(0))|^{\frac{p}{2}} \leq C \frac{\|f - g\|_{\mathcal{B}_{p,\alpha}}}{(1 - \alpha)} + \frac{2}{p}|f(0) - g(0)|^{\frac{p}{2}}$$

Moreover, from (1), for $f, g \in \mathcal{B}^*_{p,\alpha}$, we deduce that

$$(|f_p^*(z)| + |g_p^*(z)|)(1 - |z|^2)^{\alpha} \ge C > 0, \quad \text{for all } z \in \mathbb{D}.$$

Therefore,

$$\begin{split} \|f\|_{\mathcal{B}^*_{p,\alpha}} + \|g\|_{\mathcal{B}^*_{p,\alpha}} + \|f\|_{\mathcal{B}_{p,\alpha}} + \|g\|_{\mathcal{B}_{p,\alpha}} + |f(0)|^{\frac{p}{2}} + |g(0)|^{\frac{p}{2}} \\ \geq & C \int_{\mathbb{D}} \frac{|\phi'(z)|^p}{(1-|\phi(z)^p|)^{p\alpha}} (1-|z|^2)^q \frac{g^s(z,a)}{\omega(1-|z|)} dA(z). \end{split}$$

For which the assertion (iii) follows . Assume now that (iii) is satisfied, we have

$$\begin{aligned} &d(f \circ \phi, g \circ \phi; F_p^*(p, q, s; \omega)) = d_{F_p^*(p, q, s; \omega)}(f \circ \phi, g \circ \phi) \\ &+ \|f \circ \phi - g \circ \phi\|_{F(p, q, s; \omega)} + |f(\phi(0)) - g(\phi(0))^{\frac{p}{2}}| \\ &\leq d_{\mathcal{B}_{p, \alpha}^*}(f, g) \Big(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^p (1 - |z|^2)^q}{(1 - (\phi(z))^p)^{p, \alpha}} \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) \Big)^{\frac{1}{p}} \\ &+ \|f - g\|_{\mathcal{B}_{p, \alpha}} \Big(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^p (1 - |z|^2)^q}{(1 - (\phi(z))^p)^{p, \alpha}} \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) \Big)^{\frac{1}{p}} \\ &+ \frac{\|f - g\|_{\mathcal{B}_{p, \alpha}}}{1 - \alpha} + \|f(0) - g(0)\|^{\frac{p}{2}} \leq C \, d(f, g; \mathcal{B}_{p, \alpha}^*). \end{aligned}$$

Thus $C_{\phi}: \mathcal{B}_{p,\alpha}^* \to F_p(p,q,s;\omega)$ is Lipschitz continuous and the proof is established.

Remark 2.1 We know that a composition operator $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$ is said to be bounded if there is a positive constant C such that $\|C_{\phi}f\|_{F_p^*(p,q,s;\omega)} \leq C\|f\|_{\mathcal{B}_{p,\alpha}^*}$; for all $f \in \mathcal{B}_{p,\alpha}^*$. Theorem 2.1 shows that $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$ is bounded if and only if it is Lipschitz continuous, that is, if there exists a positive constant C such that $d(f \circ \phi, g \circ \phi; F_p^*(p,q,s;\omega)) \leq Cd(f,g; \mathcal{B}_{p,\alpha}^*)$, for all $f, g \in \mathcal{B}_{p,\alpha}^*$.

By elementary functional analysis, a linear operator between normed spaces is bounded if and only if it is continuous, Since the boundedness is trivially also equivalent to the Lipschitz-continuity. Our result for composition operators in hyperbolic spaces is the correct and natural generalization of the linear operator theory.

3 Compactness of $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$

Recall that a composition operator $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s\omega)$ is said to be compact, if it maps any ball in $\mathcal{B}_{p,\alpha}^*$ onto a pre-compact set in $F_p^*(p,q,s;\omega)$. Now, we give the following important results.

Proposition 3.1 Assume ϕ is a holomorphic mapping from \mathbb{D} into itself. Let $2 \leq p < \infty$, $-2 < q < \infty$, $0 < \alpha < 1$ and $0 \leq s < \infty$. If $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to F_p(p,q,s;\omega)$ is compact, it maps closed balls onto compact sets.

Proof: If $B \subset \mathcal{B}_{p,\alpha}^*$ is a closed ball and $g \in F_p^*(p, q, s; \omega)$ belongs to the closure of $C_{\phi}(B)$, we can find a sequence $(f_n)_{n=1}^{\infty} \subset B$ such that $f_n \circ \phi$ converges to $g \in F_p^*(p, q, s; \omega)$ as $n \to \infty$. But $(f_n)_{n=1}^{\infty}$ is a normal family, hence it has a subsequence $(f_{n_j})_{j=1}^{\infty}$ converging uniformly on the compact subsets of \mathbb{D} to an analytic function f. A s in earlier arguments of Proposition 2.1 in [31], we get a positive estimate which shows that f must belong to the closed ball B. On the other hand, also the sequence $(f_{n_j} \circ \phi)_{j=1}^{\infty}$ converges uniformly on compact subsets to an analytic function, which is $g \in F_p^*(p, q, s; \omega)$. We get $g = f \circ \phi$, i.e. g belongs to $C_{\phi}(B)$. Thus, this set is closed and also compact.

Compactness of composition operators acting between $\mathcal{B}_{p,\alpha}^*$ and $F_p^*(p,q,s;\omega)$ classes can be characterized in the following result.

Theorem 3.1 Assume ϕ is a holomorphic mapping from \mathbb{D} into itself. Let $2 \leq p < \infty, -2 < q < \infty, 0 < \alpha < 1$ and $0 \leq s < \infty$. Then the following statements are equivalent:

(i) $C_{\phi}: \mathcal{B}_{p,\alpha}^* \to F_p^*(p,q,s;\omega)$ is compact.

(ii) $G(\phi, g) = 0$, where

$$G(\phi,g) = \lim_{r \to 1^{-}} \sup_{a \in \mathbb{D}} \int_{|\phi(z)| > r} \frac{|\phi'(z)|^p}{(1-|\phi(z)|^p)^{p\alpha}} (1-|z|^2)^q \frac{g^s(z,a)}{\omega(1-|z|)} dA(z) = 0.$$

Proof: We first assume that (ii) holds. Let $B := \overline{B}(g, \delta) \subset \mathcal{B}_{p,\alpha}^*$, $g \in \mathcal{B}_{p,\alpha}^*$ and $\delta > 0$, be a closed ball, and let $(f_n)_{n=1}^{\infty} \subset B$ be any sequence. We show that its image has a convergent subsequence in $F_p^*(p, q, s; \omega)$, which proves the compactness of C_{ϕ} by definition.

Again, $(f_n)_{n=1}^{\infty} \subset B(\mathbb{D})$ is normal, hence, there is a subsequence $(f_{n_j})_{j=1}^{\infty}$ which converges uniformly on the compact subsets of \mathbb{D} to an analytic function f. By Cauchy formula for the derivative of an analytic function, also the sequence $(f'_{n_j})_{j=1}^{\infty}$ converges uniformly on the compact subsets of \mathbb{D} to f'. It follows that also the sequences $(f_{n_j} \circ \phi)_{j=1}^{\infty}$ and $(f'_{n_j} \circ \phi)_{j=1}^{\infty}$ converge uniformly on the compact subsets of \mathbb{D} to $f \circ \phi$ and $f' \circ \phi$, respectively. Moreover, $f \in B \subset \mathcal{B}_{p,\alpha}^*$ since for any fixed R, 0 < R < 1, the uniform convergence yield

$$\begin{split} \sup_{|z| \le R} & \Big| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1 - |f(z)|^p} - \frac{g'(z)|g(z)|^{\frac{p}{2}-1}}{1 - |g(z)|^p} \Big| (1 - |z|^2)^{\alpha} \\ &+ \sup_{|z| \le R} |f'(z) - g'(z)| |f(z) - g(z)|^{\frac{p}{2}-1} (1 - |z|^2)^{\alpha} + |f(0) - g(0)|^{\frac{p}{2}-1} \end{split}$$

$$= \lim_{j \to \infty} \sup_{|z| \le R} \left| \frac{f'_{n_j}(z) |f_{n_j}(z)|^{\frac{p}{2}-1}}{1 - |f_{n_j}(z)|^p} - \frac{g'(z) |g(z)|^{\frac{p}{2}-1}}{1 - |g(z)|^p} \right| (1 - |z|^2)^{\alpha} \\ + \lim_{j \to \infty} (\sup_{|z| \le R} |f'_{n_j}(z) - g'(z)| |f_{n_j}(z) - g_(z)|^{\frac{p}{2}-1} (1 - |z|^2)^{\alpha} + |f_{n_j}(0) - g(0)|^{\frac{p}{2}-1}) \\ < \delta.$$

Hence, $d(f, g; \mathcal{B}^*_{p,\alpha}) \leq \delta$.

Let $\varepsilon > 0$. Since (ii) is satisfied, we may fix r, 0 < r < 1, such that

$$\sup_{a \in \mathbb{D}} \int_{|\phi(z)| > r} \frac{|\phi'(z)|^p}{(1 - |\phi(z)|^p)^{p\alpha}} (1 - |z|^2)^q \frac{g^s(z, a)}{\omega(1 - |z|)} dA(z) \le \varepsilon.$$

By the uniform convergence, we may fix $N_1 \in \mathbb{N}$ such that

$$|f_{n_j} \circ \phi(0) - f \circ \phi(0)| \le \varepsilon, \quad \text{for all } j \ge N_1.$$
(3)

The condition (ii) is known to imply the compactness of $C_{\phi} : \mathcal{B}_{p,\alpha} \to F_p(p,q,s;\omega)$, hence possibly to passing once more to a subsequence and adjusting the notations, we may assume that

$$\|f_{n_j} \circ \phi - f \circ \phi\|_{F_p(p,q,s)} \le \varepsilon, \quad \text{for all } j \ge N_2; \ N_2 \in \mathbb{N}.$$
(4)

Now let

$$I_1(a,r) = \sup_{a \in \mathbb{D}} \int_{|\phi(z)| > r} \left[(f_{p,n_j} \circ \phi)^*(z) - (g_p \circ \phi)^*(z) \right]^p (1 - |z|^2)^q \frac{g^s(z,a)}{\omega(1 - |z|)} dA(z),$$

and

$$I_2(a,r) = \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} \left[(f_{p,n_j} \circ \phi) * (z) - (g_p \circ \phi)^*(z) \right]^p (1 - |z|^2)^q \frac{g^s(z,a)}{\omega(1 - |z|)} dA(z).$$

Since $(f_{n_j})_{j=1}^{\infty} \subset B$ and $f \in B$, it follows that

$$\begin{split} I_{1}(a,r) &= \sup_{a \in \mathbb{D}} \int_{|\phi(z)| > r} \left[(f_{p,n_{j}} \circ \phi)^{*}(z) - (g_{p} \circ \phi)^{*}(z) \right]^{p} (1 - |z|^{2})^{q} \frac{g^{s}(z,a)}{\omega(1 - |z|)} dA(z) \\ &\leq \frac{p}{2} \sup_{a \in \mathbb{D}} \int_{|\phi(z)| > r} \mathcal{L}(f_{n_{j}},g,\phi) (1 - |z|^{2})^{q} \frac{g^{s}(z,a)}{\omega(1 - |z|)} dA(z) \\ &\leq d_{\mathcal{B}^{*}_{p,\alpha}}(f_{n_{j}},g) \sup_{a \in \mathbb{D}} \int_{|\phi(z)| > r} \frac{|\phi'(z)|^{p} (1 - |z|^{2})^{q}}{1 - (|\phi(z)|^{p})^{\alpha p}} \frac{g^{s}(z,a)}{\omega(1 - |z|)} dA(z), \end{split}$$

where

$$\mathcal{L}(f_{n_j}, g, \phi) = \left| \frac{((f_{n_j} \circ \phi)'(z))|((f_{n_j} \circ \phi)(z))|^{\frac{p}{2}-1}}{1 - |(f_{n_j} \circ \phi)(z)|^p} - \frac{(g \circ \phi)'(z)|((g_{n_j} \circ \phi)(z)))|^{\frac{p}{2}-1}}{1 - |(g \circ \phi)(z)|^p} \right|^p$$

hence,

$$I_1(a,r) \le C\varepsilon. \tag{5}$$

On the other hand, by the uniform convergence on the compact disc \mathbb{D} , we can find an $N_3 \in \mathbb{N}$ such that for all $j \geq N_3$,

$$\mathcal{L}_{1}(f_{n_{j}},g,\phi) = \Big|\frac{(f_{n_{j}}'(\phi(z))|((f_{n_{j}}\circ\phi)(z)))|^{\frac{p}{2}-1}}{1-|(f_{n_{j}}\circ\phi)(z)|^{p}} - \frac{g_{n_{j}}'(\phi(z))|((g_{n_{j}}\circ\phi)(z))|^{\frac{p}{2}-1}}{1-|(g\circ\phi)(z)|^{p}}\Big| \le \varepsilon.$$

For all z with $|\phi(z)| \leq r$. Hence, for such j,

$$I_{2}(a,r) = \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} [(f_{p,n_{j}} \circ \phi)^{*}(z) - (g_{p} \circ \phi)^{*}(z)]^{p} (1 - |z|^{2})^{q} \frac{g^{s}(z,a)}{\omega(1 - |z|)} dA(z)$$

$$\leq \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} \mathcal{L}_{1}(f_{n_{j}}, g, \phi) |\phi'(z)|^{p} (1 - |z|^{2})^{q} \frac{g^{s}(z,a)}{\omega(1 - |z|)} dA(z)$$

$$\leq \varepsilon \Big(\sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} \frac{|\phi'(z)|^{p} (1 - |z|^{2})^{q}}{1 - (|\phi(z)|^{p})^{\alpha p}} \frac{g^{s}(z,a)}{\omega(1 - |z|)} dA(z) \Big)^{\frac{1}{p}} \le C\varepsilon,$$

hence,

$$I_2(a,r) \le C \ \varepsilon. \tag{6}$$

where C is bounded which is obtained from (iii) of Theorem 3.1. Combining (4), (5), (6) and (7) we deduce that $f_{n_j} \to f$ in $F_p^*(p, q, s)$. For the converse direction, let $f_n(z) := \frac{1}{2}n^{\alpha-1}z^n$ for all $n \in \mathbb{N}$, $n \ge 2$.

$$\|f\|_{\mathcal{B}^*_{p,\alpha}} = \frac{p}{2} \sup_{a \in \mathbb{D}} \frac{n^{\frac{\alpha p}{2}} |z|^{\frac{\alpha p}{2}-1} (1-|z|^2)^{\alpha}}{1-2^{-p} n^{p(\alpha-1)} |z|^{np}} \le (2^{p-1}+1) \sup_{a \in \mathbb{D}} n^{\frac{\alpha p}{2}} |z|^{\frac{\alpha p}{2}-1} (1-|z|^2)^{\alpha}$$

Then the sequence $(f_n)_{n=1}^{\infty}$ belongs to the ball $\overline{B}(0; (2^{p-1}+1)) \subset \mathcal{B}_{p,\alpha}^*$ [6]. We are assuming that C_{ϕ} maps the closed ball $\overline{B}(0; (2^{p-1}+1)) \subset \mathcal{B}_{p,\alpha}^*$ into a compact subset of $F_p^*(p, q, s; \omega)$, hence, there exists an unbounded increasing subsequence $(n_j)_{j=1}^{\infty}$ such that the image subsequence $(C_{\phi}f_{n_j})_{n=1}^{\infty}$ converges with respect to the norm. Since, both $(f_n)_{n=1}^{\infty}$ and $(C_{\phi}f_{n_j})_{n=1}^{\infty}$ converge to the zero function uniformly on compact subsets of \mathbb{D} , the limit of the latter sequence must be 0. Hence,

$$\lim_{j \to \infty} \|n_j^{\alpha - 1} \phi^{n_j}\|_{F_p^*(p, q, s; \omega)} = 0.$$
(7)

Now let $r_j = 1 - \frac{1}{n_j}$. For all numbers $a, r_j \leq a < 1$, (see [6]) we have the estimate

$$\frac{n_j^{\alpha} a^{n_j - 1}}{1 - a^{n_j}} \ge \frac{1}{e(1 - a)^{\alpha}}.$$
(8)

Using (8), we deduce

$$\begin{aligned} &\|n_{j}^{\alpha-1}\phi^{n_{j}}\|_{F_{p}^{*}(p,q,s;\omega)} \\ &\geq \frac{p}{2}\sup_{a\in\mathbb{D}}\int_{|\phi(z)|\geq r_{j}}\Big|\frac{n_{j}^{\alpha}(\phi(z))^{n_{j}-1}|\phi^{n_{j}}(z)|^{\frac{p}{2}-1}|\phi'(z)|}{1-|\phi^{n_{j}}(z)|^{p}}\Big|^{p}\frac{(1-|z|^{2})^{q}g^{s}(z,a)}{\omega(1-|z|)}dA(z) \\ &\geq \frac{Cp}{2(2e)^{p}}\sup_{a\in\mathbb{D}}\int_{|\phi(z)|>r_{j}}\frac{|\phi'(z)|^{p}}{(1-|\phi(z)|^{p})^{p\alpha}}\frac{(1-|z|^{2})^{q}g^{s}(z,a)}{\omega(1-|z|)}dA(z). \end{aligned}$$
(9)

From (8) and (10), the condition (ii) follows. The proof is therefore completed.

Remark 3.1 It is still an open problem to study composition operators in Clifford analysis. For more details on some classes of quaternion function spaces, we refer to ([1, 2, 3, 4, 5, 9, 19, 20, 23, 24, 25]) and others.

References

 A. El-Sayed Ahmed, On some classes and spaces of holomorphic and hyperholomorphic functions, Dissertationes, Bauhaus University at Weimar-Germany. (2003), 1-127.

- [2] A. El-Sayed Ahmed, On weighted α -Besov spaces and α -Bloch spaces of quaternion-valued functions, Numer. Funct. Anal. Optim. 2008; 29: 1064-1081.
- [3] A. El-Sayed Ahmed, Lacunary series in quaternion $B^{p,q}$ spaces, Complex Var. Elliptic Equ, 54(7)(2009), 705-723.
- [4] A. El-Sayed Ahmed, Lacunary series in weighted hyperholomorphic $B^{p,q}(G)$ spaces, Numer. Funct. Anal. Optim. 32(1)(2011), 41-58.
- [5] A. El-Sayed Ahmed, Hyperholomorphic Q classes, Math. Comput. Modelling. 55(2012) 1428-1435.
- [6] A. El-Sayed Ahmed, Natural metrics and composition operators in generalized hyperbolic function spaces, J. Inequal. Appl. 185(2012) DOI:10.1186/1029-242X-2012-185.
- [7] A. El-Sayed Ahmed, General Toeplitz operators on weighted Blochtype spaces in the unit ball of \mathbb{C}^n , J. Inequal. Appl., (2013), 237 doi:10.1186/1029-242X-2013-237.
- [8] A. El-Sayed Ahmed, Composition operators in function spaces of hyperbolic type, J. Math. Comput. Sci. 3(5)(2013), 169-1179.
- [9] A. El-Sayed Ahmed and A. Ahmadi, On weighted Bloch spaces of quaternion-valued functions, International Conference on Numerical Analysis and Applied Mathematics: 19-25 September 2011 Location: Halkidiki, (Greece): AIP Conference Proceedings, 1389(2011), 272-275.
- [10] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Math. Scand. 104(2)(2009), 275-295.
- [11] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators acting between some weighted Mobius invariant spaces, Ann. Funct. Anal. AFA 2(2)(2011), 138-152
- [12] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators in hyperbolic general Besov-type spaces, Cubo A Mathematical Journal, 15(3)(2013), 19-30.
- [13] A. El-Sayed and A. Kamal, Logarthmic order and type on some weighted function spaces, Journal of applied functional analysis. 7(2012), 108-117.
- [14] A. El-Sayed Ahmed and A. Kamal, Generalized composition operators on $Q_{K,\omega}(p,q)$ spaces, Mathematical Sciences Springer. (2012), 6:14. DOI:10.1186/2251-7456-6-14.

- [15] A. El-Sayed Ahmed and A. Kamal, $Q_{K,\omega,\log}(p,q)$ -type spaces of analytic and meromorphic functions, Mathematica Culj, 54 (2012) 26-37.
- [16] A. El-Sayed Ahmed and A. Kamal, Generalized composition operators on $Q_{K,\omega}(p,q)$ spaces, Journal of Fractional Calculus and Applications, Proc. of the 4th. Symb. of Fractional Calculus and Applications, Vol. 3(S). (2012), 1-9.
- [17] A. El-Sayed Ahmed and A. Kamal, Carleson measure characterization on analytic $Q_K(p,q)$ spaces, International Mathematical Virtual Institute, Vol 3(2013), 1-21.
- [18] A. El-Sayed Ahmed and A. Kamal, Riemann-Stieltjes operators on some weighted function spaces, International Mathematical Virtual Institute, 3(2013), 81-96.
- [19] A. El-Sayed Ahmed and S. Omran, Weighted classes of quaternion-valued functions, Banach J. Math. Anal. 6(2012), 180-191.
- [20] A. El-Sayed Ahmed and S. Omran, On Bergman spaces in Clifford analysis, Applied Mathematical Sciences, 7(85)(2013), 4203 - 4211.
- [21] S. Charpentier, Compact composition operators on the Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball, J. Oper. Theory 69(2)(2013), 463-481.
- [22] T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory. (2008), 1-20.
- [23] K. Gürlebeck and A. El-Sayed Ahmed, Integral norms for hyperholomorphic Bloch functions in the unit ball of ℝ³, Proceedings of the 3rd International ISAAC Congress held in Freie Universtaet Berlin-Germany, August 20-25 (2001), Editors H.Begehr, R. Gilbert and M.W. Wong, Kluwer Academic Publishers, World Scientific New Jersey, London, Singapore, Hong Kong, Vol I(2003), 253-262.
- [24] K. Gürlebeck and A. El-Sayed Ahmed, On series expansions of hyperholomorphic B^q functions, Trends in Mathematics: Advances in Analysis and Geometry, Birkäuser verlarg Switzerland (2004), 113-129.
- [25] K. Gürlebeck and A. El-Sayed Ahmed, On B^q spaces of hyperholomorphic functions and the Bloch space in \mathbb{R}^3 , Le Hung Son ed. Et al. In the book Finite and infinite dimensional complex Analysis and Applications, Advanced complex Analysis and Applications, Kluwer Academic Publishers, (2004), 269-286.

- [26] A. Kamal and A. El-Sayed Ahmed, On Lipschitz continuity and properties of composition operators acting on some hyperbolic classes, AIP Conference Proceedings, Vol 1558(2013), 533-537.
- [27] M. Kotilainen, Studies on composition operators and function spaces, Report Series. Department of Mathematics, University of Joensuu 11. Joensuu. (Dissertation) (2007).
- [28] L. Luo and J. Chen, Essential norms of composition operators between weighted Bergman spaces of the unit disc, Acta Math. Sin., Engl. Ser. 29(4)(2013), 633-638.
- [29] S. Makhmutov and M. Tjani, Composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc. 62(2000), 1-19.
- [30] X. Li, F. Pérez-González and J. Rättyä, Composition operators in hyperbolic Q-classes, Ann. Acad. Sci. Fenn. Math. 31(2006), 391-404.
- [31] F. Pérez-González, J.Rättyä and J. Taskinen, Lipschitz continuous and compact composition operators in hyperbolic classes, Mediterr. J. Math. 8 (2011), 123-135.
- [32] R. A. Rashwan, A. El-Sayed Ahmed and A. Kamal, Some characterizations of weighted Bloch space, Eur. J. Pure Appl. Math. 2(2009), 250-267.
- [33] R. A. Rashwan, A. El-Sayed Ahmed and A. Kamal, Integral characterizations of weighted Bloch spaces and $Q_{K,\omega}(p,q)$ spaces, Mathematica Tome. 2009; 51(1)(74): 63-76.
- [34] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), 4683-4698.

Received: November, 2013