# Products of simple group involving the alternating $A_{8}$ 

\author{


#### Abstract

<br> In this note, we will find the structure of the finite simple groups $G$ with two subgroups $A$ and $B$ such that $G=A B$, where $A$ is a nonabelian simple group and $B$ is isomorphic to the alternating group on eight letters.


}

Mathematics Subject Classification(2010): 20D60.
Keywords: Simple group, Factorization, Alternating group.

## 1 Introduction

Let $G$ be a group with subgroups $A$ and $B$. If $G=A B$, then $G$ is called a factorizable group and $G=A B$ is called a factorization of $G$. Sometimes we say that $G$ is a product of two subgroups $A$ and $B$. It is an interesting problem to know the groups with proper factorization. Of course not every group has a proper factorization, for example an infinite group with all proper subgroups finite has no proper factorization, $L_{2}(13)$ and also the Janko simple group $J_{1}$ of order 175560 have no proper factorization.

A factorization $G=A B$ is called maximal if both factors $A$ and $B$ are maximal subgroups of $G$. In [1], all the maximal factorizations of all the finite simple groups and their automorphism groups are found. In [2], all the factorizations of the alternating and symmetric groups are found with both factors simple.

Here we quote some results concerning the alternating groups in a factorization. In [3], factorizable groups where one factor is a non-abelian simple group and the other factor is isomorphic to the alternating group on 5 letters are classified. Also in [4], the structure of a finite factorizable group with one factor a simple group and the other factor isomorphic to the symmetric group on 6 letters is determined. In [5], the structure of factorizable groups $G=A B$
where $A \cong A_{7}$ and $B \cong S_{n}$ was given. In [6], the structure of the finite simple factorizable groups $G=A B$ such that $A$ is a non-abelian simple group and $B \cong A_{7}$, the symmetric group on seven letters is classified. As a development of the topics, we determined the structure of products of a non-abelian simple group with an alternating group of degree eight.

## 2 Preliminary results

In this section we obtain results which are needed in the proof of our main theorem. Suppose $\Omega$ is a set of cardinality $m$ and $G$ is a $k$-homogeneous, $1 \leq k \leq m$, group on $\Omega$. If $H$ is a $k$-homogeneous subgroup of $G$, then it is easy to get that the orders of subgroups of alternating group $A_{8}$ are: $1,2,3,4$, $5,6,7,8,9,10,12,15,16,18,20,21,24,30,32,36,48,56,60,64,72,96,120$, 144, 168, 180, 192, 288, 360, 576, 720, 1344, 2520, 20160. Thus the indexes of subgroups of $A_{8}$ are: $1,8,15,28,35,56,70,105,112,120,140,168,210$, 280, 315, 336, 360, 420, 560, 630, 672, 840, 960, 1008, 1120, 1260, 1344, 1680, 2016, 2240, 2520, 2880, 3360, 4032, 5040, 6720, 10080, 20160. Therefore $A_{8}$ has transitive action on sets of cardinality equal to any of the latter numbers. It is well-known that $A_{8} \cong L_{4}(2)$ has a 2 -transitive action on 15 points [7]. Since we need factorizations of the alternating group involving $A_{8}$, hence using [1], we will prove the following results.

Lemma 2.1 Let $A_{m}$ denote the alternating group of degree $m$. If $A_{m}=A B$ is a non-trivial factorization of $A_{m}$ with $A$ a non-abelian simple group of $A_{m}$ and $B \cong A_{8}$, then one of the following cases occurs:
(a) $A_{m}=A_{m-1} A_{8}$, where $m=15,28,35,56,70,105,112,120,140,168$, 210, 280, 315, 336, 360, 420, 560, 630, 672, 840, 960, 1008, 1120, 1260, 1344, 1680, 2016, 2240, 2520, 2880, 3360, 4032, 5040, 6720, 10080, 20160.
(b) $A_{15}=A_{13} A_{8}$.
(c) $A_{12}=M_{12} A_{8}$

Proof. It is obvious that $m$ is at least 9. By Theorem D of [1], we have that either $m=6,9$ or 10 or one of $A$ or $B$ is $k$-homogeneous on m letters. Since $m=6,8$ or $10, A_{m}$ does not involve $A_{8}$ and so we consider the following cases.

Case (i): $A_{m-k} \unlhd A \leq S_{m-k} \times S_{k}$ for some $k$ with $1 \leq k \leq 5$, and $B$ is $k$-homogeneous on m letters.

Since $A$ is assumed to be simple we obtain $A_{m-k}=1$ or $A$. If $A_{m-k}=1$, then $m-k=1$ or 2 , hence $k=m-1$ or $m-2$. But then from $1 \leq k \leq 5$ we
obtain $2 \leq m \leq 6$ or $3 \leq m \leq 7$, a contradiction because $m \geq 9$. Therefore $A=A_{m-k}$ and $B \cong A_{8}$ is $k$-homogeneous on m letters, $1 \leq k \leq 5$. If $k=1$, then the size of the set $\Omega$ on which $A_{8}$ can act transitively is as statd in the Lemma and all the factorizations in case (a) occur. If $k \geq 2$, then $m=8$ or 15. If $m=15$, then $A_{8} \cong L_{4}(2)$, where $L_{4}(2)$ is the projective special linear group of degree 4 over field of order 2, has a transitive action on 15 letters and hence $A_{15}=A_{14} A_{8}$ and $A_{15}=A_{13} A_{8}$ which is case (b).

Case (ii): $A_{m-k} \unlhd B \leq S_{m-k} \times S_{k}$ for some $k$ with $1 \leq k \leq 5$, and $A$ is $k$-homogeneous on $m$ letters.

Since $B \cong A_{8}$ we obtain $A_{m-k}=1$ or $B$ and so $m-k=1,2$ or 8 . From $1 \leq k \leq 5$, we have $2 \leq m \leq 6,3 \leq m \leq 9$ or $9 \leq m \leq 13$. Therefore, we know that only $m=9,10,11,12$ or 13 are possible which is correspond to $k=1,2,3,4,5$ respectively. But now from Theorem 4.11 and page 197 of [7], and [8], for possible $(m, k)$ we have: $(m, k)=(12,4), A_{12}=M_{12} A_{8}$, and this is the possibility in case (c) of the Lemma.

## 3 Main Results

These are the main results of the paper. To find the structure of the factorizable simple groups $G=A B$ with $A$ simple and $B \cong A_{8}$, we need to know about the primitive groups of certain degrees which are equal to the indices of subgroups in $A_{8}$. Simple primitive groups of degree at most 2500 and 4096 are given in [10] and [11] respectively, and the index of most of the subgroups of $A_{8}$ are less than 4096 except the four indices which are 5040, 6720, 10080, and 20160.

Lemma 3.1 Let $G$ be a non-abelian simple group which is not an alternating group. If $G$ is a primitive group of degree 5040, 6720, 10080, or 20160, then $G$ does not have a factorization $G=A_{n} B$ with $A$ simple and $B \cong A_{8}$.

Proof. From Classification Theorem for the finite simple groups, $G$ is isomorphic either a sporadic simple group or a simple group of Lie type. From [12], there is no factorization as mentioned in the Lemma for a sporadic group. Thus we assume that $G$ is a simple group of Lie type. If the rank of $G$ is 1 or 2 , then from [13], here does not have the desired factorization. Hence we we consider that the Lie rank of $G$ is at least 3 . We consider the minimum index of a subgroup of a simple group of Lie type (see [14]).

Case (a). $G=L_{n}(q), n \geq 4$.
In this case, the minimum index of a proper subgroup of $G$ is $\frac{q^{n}-1}{q-1}$. If $\frac{q^{n}-1}{q-1} \leq$ 20160, then we have the following possibilities for $G$ : $L_{4}(q), q=2,3, \cdots, 25$, $L_{5}(q), q=2,3, \cdots, 9,11, L_{6}(2), L_{6}(3), L_{6}(4), L_{6}(5), L_{6}(7), L_{7}(2), L_{7}(3), L_{7}(4)$, $L_{7}(5), L_{8}(2), L_{8}(3), L_{9}(2), L_{9}(3), L_{10}(2), L_{11}(2), L_{12}(2), L_{13}(2)$, or $L_{14}(2)$.
$L_{4}(2) \cong A_{8}$ is not the case. If $L_{4}(3)=A_{8} A_{n}$, then since $13\left|\left|L_{4}(3)\right|, n \geq 13\right.$ and so $11\left|\left|L_{4}(3)\right|\right.$, a contradiction. Similarly we can rule out the above possibilities except $L_{6}(2)$ and $L_{6}(3)$. If $L_{6}(2)=A_{8} A_{n}$, then since $\left|L_{6}(2)\right|=2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}$, $n=7,8,9,10$. If $n=7$ or 8 , then $L_{6}(2)=A_{8}$, a contradiction. If $n=8,9$, or 10 , then $8\left|\left|L_{6}(2)\right|\right.$, a contradiction. Thus $L_{6}(3)=A_{8} A_{n}$. Since 13$|\left|L_{6}(3)\right|$, then $n=13,14,15$, or 16 . We can rule out the case as the proof of $L_{6}(2)$.

Case (b). $G=U_{n}(q), n \geq 6$.
In this case, the proper subgroups have index at least

$$
\frac{\left(q^{n}-(-1)^{n}\right)\left(q^{n-1}-(-1)^{n-1}\right)}{q^{2}-1}
$$

If

$$
\frac{\left(q^{n}-(-1)^{n}\right)\left(q^{n-1}-(-1)^{n-1}\right)}{q^{2}-1} \leq 20160
$$

then we have the following possibilities for $G: U_{6}(2), U_{7}(2)$ or $U_{8}(2)$. From [19], $U_{6}(2)$ and $U_{7}(2)$ have no maximal subgroup of index 5040, 6720, 10080, or 20160. Therefore, $U_{8}(2)=A_{8} A_{n}$. Since $17\left|\left|U_{8}(2)\right|\right.$, then $n \geq 17$ and so $13\left|\left|U_{8}(2)\right|\right.$, a contradiction.

Case (c). $G=S_{2 m}(q), m \geq 3$.
In this case if $q>2$ then the index of a proper subgroup of $G$ is at least $\frac{q^{2 m}-1}{q-1}$ and if $\mathrm{q}=2$ then this number is $2^{m-1}\left(2^{m}-1\right)$.

If $q=2$, then $2^{m}\left(2^{m}-1\right) \leq 20160$, and so we have the following possibilities for $G: S_{6}(2), S_{8}(2), S_{10}(2), S_{12}(2)$, or $S_{14}(2)$. If $q>2$, then $\frac{q^{2 m}-1}{q-1} \leq 20160$, and so the possibilities for $G$ are: $S_{6}(3), S_{6}(4), S_{6}(5), S_{6}(7)$, or $S_{8}(3)$. From [15], it is easy to get that the groups $S_{6}(2), S_{6}(3)$ or $S_{8}(2)$ have no maximal subgroup of index $5040,6720,10080$, or 20160 . For the groups $S_{10}(2), S_{12}(2), S_{14}(2)$, $S_{6}(4), S_{6}(5), S_{6}(7)$ and $S_{8}(3)$ similar arguments as used as case (b) rule out the possibility of factorizing these groups as product of a simple group and a group isomorphic to $A_{8}$.

Case (d). $G=O_{2 m}^{\varepsilon}(q), m \geq 4, \varepsilon= \pm$.
In this case, the proper subgroups have index at least $\frac{\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{q-1}$ where $\varepsilon=+$ and at least $\frac{\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{q-1}$ when $\varepsilon=-$ except for the case $(q, \varepsilon)=(2,+)$ when a proper subgroup has index at least $2^{m-1}\left(2^{m}-1\right)$. Then we have the following possibilities for $G$ of degree less than or equal to 20160: $O_{8}^{ \pm}(2)$, $O_{10}^{ \pm}(2), O_{12}^{ \pm}(2), O_{14}^{ \pm}(2), O_{8}^{ \pm}(3), O_{10}^{ \pm}(3), O_{8}^{ \pm}(4)$, or $O_{10}^{ \pm}(4)$. From [15], $O_{8}^{ \pm}(2)$, $O_{10}^{ \pm}(2)$ and $O_{8}^{ \pm}(3)$ have no maximal subgroup of index 5040, 6720, 10080, or 20160. For the remaining cases, using order we can rule out these possibilities.

Case (e). $G=O_{2 m+1}(q), m \geq 3, q$ odd.
In this case, the proper subgroups have index at least $\frac{q^{2 m}-1}{q-1}$ except when $q=3$ and in the latter case $\frac{q^{2 m}-q^{m}}{2}$. Then we have the following possibilities
for $G$ of degree less than or equal to 20160: $O_{7}(3), O_{7}(5), O_{7}(7)$, or $O_{9}(3)$. We can exclude the possibilities by using order of $G$.

Case (f). $G$ is an exceptional simple groups of Lie type.
From [1], we can find that there is no group involving $A_{8}$.
The Lemma is proved.
Table 1. Non-abelian simple primitive groups of degree n

| degree | group |
| :--- | :--- |
| 15 | $A_{15}, A_{8}$ |
| 28 | $A_{28}, L_{2}(8)$ |
| 35 | $A_{35}, A_{8}$ |
| 56 | $A_{56}, L_{3}(8)$ |
| 70 | $A_{70}$ |
| 105 | $A_{105}$ |
| 112 | $A_{112}, U_{4}(3)$ |
| 120 | $A_{120}, A_{9}, L_{2}(16), L_{3}(8), S_{4}(4), S_{6}(2)$ |
| 140 | $A_{140}$ |
| 168 | $A_{168}$ |
| 210 | $A_{210}$ |
| 280 | $A_{280}, A_{9}, L_{3}(4), U_{4}(3), J_{2}$ |
| 315 | $A_{315}, S_{6}(2), J_{2}$ |
| 336 | $A_{336}, S_{6}(2)$ |
| 360 | $A_{360}$ |
| 420 | $A_{420}$ |
| 560 | $A_{560},{ }^{2} B_{2}(8)$ |
| 630 | $A_{630}$ |
| 672 | $A_{672}, U_{6}(2), M_{22}$ |
| 840 | $A_{840}, A_{9}, J_{2}$ |
| 960 | $A_{960}, S_{6}(2), O_{8}^{+}(2)$ |
| 1008 | $A_{1008}, J_{2}$ |
| 1120 | $A_{1120}, S_{6}(3), O_{7}(3)$ |
| 1260 | $A_{1260}$ |
| 1344 | $A_{1344}$ |
| 1680 | $A_{1680}$ |
| 2016 | $A_{2016}, L_{2}(64), S_{4}(8), S_{6}(4)$ |
| 2240 | $A_{2240}$ |
| 2520 | $A_{2520}, A_{10}, A_{11}, A_{12}$ |
| 2880 | $A_{2880}$ |
| 3360 | $A_{3360}$ |
| 4032 | $A_{4032}$ |
|  |  |

Theorem 3.2 Let $G=A B$ is a non-trivial factorization of a simple group $G$ with $A$ a non-abelian simple group and $B \cong A_{8}$, then one of the following cases occurs:
(a) $A_{m}=A_{m-1} A_{8}$, where $m=15,28,35,56,70,105,112,120,140,168$, 210, 280, 315, 336, 360, 420, 560, 630, 672, 840, 960, 1008, 1120, 1260, 1344, 1680, 2016, 2240, 2520, 2880, 3360, 4032, 5040, 6720, 10080, 20160.
(b) $A_{15}=A_{13} A_{8}$.
(c) $A_{12}=M_{12} A_{8}$
(d) $S_{6}(2)=U_{3}(3) A_{8}=L_{2}(8) A_{8}$

Proof. Assume that $G=A B$ is a non-trivial factorization of a simple group $G$ with $A$ a non-abelian simple group and $B \cong A_{8}$. If $M$ is a maximal subgroup of $G$ containing $A$, then $G=M B$, hence $|G: M|||B: M \cap B|$. Since $d=|B: B \cap M|$ is equal to the index of a subgroup of $A_{8}$, therefor $G$ is primitive permutation group of degree $d$. We know that $d=1,8,15,28,35,56$, $70,105,112,120,140,168,210,280,315,336,360,420,560,630,672,840$, 960, 1008, 1120, 1260, 1344, 1680, 2016, 2240, 2520, 2880, 3360, 4032, 5040, $6720,10080,20160$. It is easy to see that $d \neq 1$ or 8 . By Lemma 3.1, if $d=$ $5040,6720,10080$, or $20160, G$ is isomorphic to an alternating group of these degrees. If $G$ is an alternating group, then Lemma 2.1 implies that the cases (a) (b) and (c) is as in the Theorem. The following, we will prove if $G$ is not an alternating group, then since the remaining degrees $d$ are less than 4096, we can establish the Table 1 by using [10] and [11].

By [16], [17], [12] and [13], we only consider the following groups: $S_{4}(4)$, $S_{4}(8), S_{6}(2), S_{6}(4), S_{6}(3), O_{7}(3), O_{8}^{+}(2),{ }^{2} B_{2}(8)$. Let M be a maximal subgroup of $G$ containing $A$.

If $G=S_{4}(4)$, then $d=|G: M|=120$. According to [15], we get $M \cong$ $L_{2}(16): 2$ and so $A=L_{2}(16)$, But now order consider rule out the case.

If $G={ }^{2} B_{2}(8)$, then $d=|G: M|=560$. By [15], we have $M \cong 13: 4$, and so $A \leq M$ is a simple group, a contradiction.

If $G=S_{6}(2)$, then $d=|G: M|=120,315,336$ or 960 . If $d=120$, then $M \cong U_{3}(3): 2$ and so $A \cong U_{3}(3)$. Therefore we have $S_{6}(2)=U_{3}(3) A_{8}$. This factorization is possible. In fact, the intersection the two factors is a group of order 12, which is contained in both $A_{8}$ and $U_{3}(3)$. If $d=315$ or 336 , then from [15], we rule out this case. If $d=960$, then we have $S_{6}(2)=L_{2}(8) A_{8}$. This is case (d).

If $G=S_{6}(3)$, then from [15], there is no maximal subgroup of index 2016 and so we rule out the case.

If $G=O_{7}(3)$, then $d=|G: M|=1120$ and from [15], we have $M \cong 3^{3+3}$ : $L_{3}(3)$, and $A=L_{3}(3)$. Thus $O_{7}(3)=L_{3}(3) A_{8}$. Order consideration rule out the case.

If $G=O_{8}^{+}(2)$, then $d=960$. From [15], we have $A=A_{9}$. Hence we have $O_{8}^{+}(2)=A_{8} A_{9}=A_{9}$, a contradiction.

If $G=S_{4}(8)$, then $d=|G: M|=2016$ and $|A|=2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \cdot\left|A \cap A_{8}\right|$. Note that $\pi\left(A \cap A_{8}\right) \subset\{2,3,5,7\}$. From [20] and order consideration, we have $A={ }^{3} D_{4}(2)$. Then since $A \leq M,|G: A|=5 \geq d=|G: M|$, a contradiction.

This completes the proof of the Theorem.

## 4 Conclusion

In this note, we give the structure of product of a simple group with an alternating group $A_{8}$. We know that $A_{n}=n!$, then determining the structure of subgroups of $A_{n}$ is difficult if $n \geq 9$. So how to determine the structure of product of simple groups with $A_{n}$ for $n>8$ is a very interesting problem.

ACKNOWLEDGEMENTS. The author is supported by the Department of Education of Sichuan Province (No: 12ZB085, 12ZB291 and 13ZA0119). The author is very grateful for the helpful suggestions of the referee.

## References

[1] M.W. Libeck, C.E. Praeger and J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, Memoirs of the American Mathematical Society1990, 86(432),iv+151.
[2] G.L.Walls, Non-simple groups which are the product of simple groups, Archiv der Mathematik, 1989 ,53,209-216.
[3] W.R., Scott, Products of $A_{5}$ and a finite simple group, Journal of Algebra, 1975,37,165-171.
[4] M.R. Darafsheh, G.R. Rezaeezadeh and G.L. Walls, Groups which are the product of $S_{6}$ and a simple group, Algebra Colloquium, 2003,10(2),195204.
[5] M.R. Darafsheh, Product of the symmetric group with the alternating group on seven letters, Quasigroups and Related Systems, 2002, 9,33-44.
[6] M.R. Darafsheh, Factorization of simple groups involving the alternatinggroup, Quasigroups and Related Systems, 2005, 13,205-211.
[7] P. J. Cameron, Permutation groups, Cambridge University Press, Cambridge, 1999.
[8] W.M. Kantor, k-homogeneous groups, Mathematische Zeitschrift,1972, 124,261-265.
[9] N. It0̈ On the factorizations of the linear fractional groups $\operatorname{LF}\left(2, p^{n}\right)$, Acta Sci. Math., 1953, 15: 79-84.
[10] C.M. Roney-Dougal, The primitive permutation groups of degree less than 2500. Journal of Algebra,2005, 292,154-183.
[11] H.J. Coutts, M. Quick and C.M. Roney-Dougal, The primitive permutation groups of degree less than 4096, Commucations in Algebra, 2011, 393526-3546.
[12] T.R. Gentchev, Factorizations of the sporadic simple groups, Archiv der Mathematik, 1986, 47,97-102.
[13] T.R. Gentchev, Factorization of the groups of Lie type of Lie rank 1 or 2,Archiv der Mathematik, 1986, 47,493-499.
[14] B.N. Cooperstein, Minimal degree for a permutation representation of a classical group, Israel Journal of Mathematics, 1978, 30,213-235.
[15] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A.Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[16] M. Blaum, Factorizations of the simple groups $\operatorname{PSL}(3, q)$ and $\operatorname{PSL}\left(3, q^{2}\right)$, Archiv der Mathematik, 1983, 40,8-13.
[17] L.E. Dickson, Linear groups with an exposion of the Galois field theory, Leipzig, 1901.
[18] O. Kegel and H. Luneberg, Uber die kleine reidermeister bedingungen, Archiv der Mathematik, 1963, 14,7-10.
[19] R. Wilson, P. Walsh, Tripp, J. I. Suleiman, et. al, ATLAS of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/v3.
[20] A.V. Zavarnitsine, Finite simple groups with narrow prime spectrumm Siberian Electronic Mathematical Reports, 2009, 6,1-12.

Received: May, 2013

