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Pricing Gamma based Temperature Derivatives

Kondwani Daniel Vwalika’, Nelson Dzupire

Department of Mathematical Science, University of Malawi, Zomba, Malawi

ABSTRACT

Farmers are impacted by temperature as high temperatures during the rainy season can lead to a substantial decrease
in crop production. To safeguard farmers from this risk, temperature derivatives can be used, but they are frequently
mispriced. This study aims to address this issue by developing a Stochastic Differential Equation (SDE) for
temperature, with the assumption that it conforms to a gamma distribution. A synthesis technique that effectively
manages the auto correlation within the data is employed to deduce the SDE. The resulting pricing formula is based
on the anticipated value derived from the SDE. Notably, the formulated equation’s outcome is not linked to the
expected temperature itself, but rather hinges on the gamma distribution parameters and the trigger temperature.
This approach yields accurate forecasts for both price predictions and temperature projections. The model is found to
predict temperature with R?=91%, MSE=0.14 and MAPE=1.3%. When used to price call option, the prices decrease
with increase in trigger value, which is more realistic. Thus, the model is more flexible.

Keywords: Gamma derivatives; Temperature; Synthesis method; Trigger temperature

INTRODUCTION

Temperature plays a vital role in agricultural growth and
production, impacting crop development, seed germination,
flowering and fruit ripening. Extreme temperatures, whether too
high or too low, can adversely affect crop yields and quality,
causing heat stress, reduced photosynthesis, water loss, slowed
growth, frost damage and diminished pest control effectiveness.
To mitigate temperaturerelated risks, various approaches are
employed, including irrigation, breeding for heat and drought
tolerance and the use of shade nets and greenhouses. An
emerging and popular method for risk management is the use of
weather derivatives financial contracts linked to specific weather
events or indices. These derivatives offer advantages over
traditional insurance, being more costeffective, flexible and
transparent, based on objective weather data. The weather
derivatives market has seen significant growth since its inception
in 1996, primarily driven by the energy sector in developed
countries. In developing countries, weather derivatives are
gradually gaining especially
renewable energy sectors. However, challenges remain, such as

traction, in agricultural and
the lack of standardized weather data and regulatory barriers.

Call options are more commonly used in developing countries

for weather hedging due to their simplicity and accessibility. The
study aims to price weather derivatives using data from Chitedze

research station, providing coverage for farmers against
unfavorable temperature conditions and ensuring payout
security.

The majority of authors who employ the Ornstein-Uhlenbeck
(OU) model assume that the noise follows Gaussian Wiener,
Levy or fractional Brownian motion, as noted by Dzupire et al.
Using the first two processes implies independent temperature
changes, but authors note correlations in changes. Temperature
reverts to seasonal trend, confirming the argument. Mean-
reverting parameter captures this behavior. Certain researchers
utilize fractional Brownian motion as an alternative to assuming
independence. However, it remains uncertain whether the issue
is completely resolved.

It is reasonable to assume independence in the random noise
process while still retaining the characteristic of reverting to the
regular justifiable
temperature as Markovian, implying that the mean-reversion

trend. Nonetheless, it is to consider
parameter should encompass autocorrelation. The authors
highlight that this parameter reflects the rate at which
temperature returns to its seasonal average. The question not
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answered by many authors is how to ensure that this parameter
also captures information about autocorrelation. Additionally,
using the Ornstein-Uhlenbeck (OU) process implies the
underlying probability distribution of temperature follows a
Gaussian family, like the normal or inverse one.

The Kolmogorov forward equation (Fokker-Planck equation) can
be satisfied to acquire the particular probability distribution
resulting from the fitting of the OU differential equation.
Satisfying these additional partial differential equations addresses
nonlinearity and non-stationarity problems, emphasizing the
Gaussian family probability distribution. Nonetheless, historical
temperature datasets frequently exhibit deviations from a normal
distribution. This discrepancy has prompted authors to utilize
the normal inverse Gaussian distribution in order to depict data
that displays skewness and possesses heavy-tailed characteristics

(1].

The gamma distribution, a widely used probability distribution
for modeling weather variables, such as rainfall, evaporation and
temperature, has two parameters (shape and scale) that can be
estimated from historical temperature data. Modeling
temperature using the gamma distribution helps estimate the
likelihood of extreme temperature events and corresponding
financial losses, which is relevant for pricing temperature
derivatives like call options. While the gamma distribution has
been used to model temperature, its application to weather
derivatives remains less explored.

Several studies have used the gamma distribution as a flexible
and accurate model for temperature. For instance, Andrews and
Shivamoggi [2], found the gamma distribution provided a good
fit to temperature data and effectively estimated temperature,
while Moriarty et al. [3], found it suitable for estimating
expected temperature in the future. Haddad [4], shows the
gamma distribution is appropriate for daily temperature
readings, accommodating both maximum and minimum
temperatures and non-negative values. However, the literature
does not address how to ensure an associated stochastic
differential equation satisfies the Fokker Planck equation and
Markovian auto-correlation. Stochastic Differential Equations
(SDEs) are widely used mathematical models in various fields
such as physics, finance and engineering, derived through
methods dependent on stochastic calculus type or moments.

Three techniques for deriving diffusion time evolution are
commonly utilised. The first is Ito calculus, based on the Ito
formula, which defines SDEs using underlying physical or
economic processes and is widely used in finance and
economics. The second is the Stratonovich calculus, similar to
Ito calculus but with a different interpretation of drift and
diffusion terms, often applied in physics and engineering. The
third is the Fokker-Planck equation, a partial differential
equation describing the evolution of the probability density
function of a stochastic process, useful for studying long-term
behavior. However, converting partial differential equations into
SDEs can result in information loss. Another approach is the
method of moments, which involves finding moments like mean
and covariance from SDEs, derived based on physical intuition,
data analysis and domain knowledge. However, this method
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relies on assumptions of stationary moments and independence,
which may not be valid in some cases.

The Kalman filter [5], is a widely used recursive algorithm in
stochastic control theory and engineering that estimates the
system state based on measurements and a model. However, its
numeric drift and diffusion coefficients make it challenging to
incorporate temperature data’s seasonality. To address this, the
Bayesian estimation method utilizes Bayes’ theorem to update
probabilities of system states, commonly employed in decision
making and machine learning.

Nevertheless, recurrent neural networks require large sample
sizes for accurate seasonality capture. Existing methods fail to
ensure that differential equations capture nonlinearity,
nonstationarity and auto-correlation in data. To address this,
Primak et al., introduced a synthesis method for deriving Ito’s
differential equations, satisfying Fokker-Planck
equation and auto-correlation intervals, commonly used in

stochastic

telecommunication and non-seasonal data. This study intends to
use the method to derive stochastic differential equations for
seasonal temperature data.

Weather commonly Esscher
transforms, stochastic optimization and discounting expected

derivative  pricing involves
payoff [6]. The reflection method, constructing Brownian
motion from temperature and reflecting it to estimate prices, is
difficult to incorporate temperature readings in Brownian

motion noise.

Esscher transform uses probability density to price derivatives
but may lose time-dependent parameters. Geman and Yor [7],
proposed a Brownian motion-based equilibrium approach for
pricing temperature derivatives, extending the model with
stochastic volatility for heating degree day options using Monte
Carlo simulation. Scher and Messori examined temperature
forecast uncertainty’s impact on weather derivative pricing,
proposing a model incorporating both forecast uncertainty and
temperature volatility, although lacking the most accurate
pricing. Hess [8], introduced a forward-looking weather model
for pricing rainfall derivatives, showing improved accuracy over
models ignoring rainfall-temperature correlation.

Ahcan [9], proposed a new model using the variance gamma
process for pricing temperature derivatives, capable of pricing
both heating and cooling degree day options but with weak
estimations. Another early model is the Seasonal Autoregressive
Integrated Moving Average (SARIMA) introduced by Liu et al.
[10], effective for pricing simple temperature derivatives like
Heating Degree Day (HDD) and Cooling Degree Day (CDD)
swaps, capturing seasonality and longterm trends. Another
approach is using the Ornstein-Uhlenbeck (OU) process,
introduced by Zhu and Bauer, which is a mean-reverting process
suitable for pricing complex temperature derivatives, including
HDD and CDD swap options. Additionally, other proposed
models for temperature derivatives pricing include the Regime-
Switching model (RS), allowing changes in statistical properties
over time, the Jump-Diffusion model (JD) capturing sudden
jumps in temperature data and the Stochastic Volatility model
(SV) handling temperature data volatility.
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Pricing temperature derivatives remains challenging in finance,
with  model depending on temperature data
characteristics and derivative complexity. Ongoing research aims

choice

to enhance accuracy in temperature derivative pricing models.
Alaton et al. [11], applied martingale methods to value weather
call options; however, this approach contradicts the Black-
Scholes assumption of market completeness due to the non-
tradability of temperature. This study uses the method of
discounting expected payoff, incorporating temperature model
information and probability density [12].

In summary, the existing literature has extensively explored the
development of a more precise and efficient stochastic model for
temperature forecasting, aiming to enhance the pricing of
weather derivatives. However, the potential of the derived
stochastic model for forecasting temperature values remains
unaddressed in the literature. Furthermore, there is a lack of
research on how the derived stochastic model can be utilized to
price temperature derivatives effectively. Additionally, the
literature has not provided a comprehensive understanding of
how the mean-reverting Ornstein-Uhlenbeck (OU) process,
employed by Scher and Messori, Hess and Zapranis and
Alexandridis, tackles non-inearity and non-stationarity in
temperature data through the satisfaction of the Fokker-Planck
equation. Specifically, the limitations of the OU process in
dealing with autocorrelation intervals in temperature data
remain unexplored. Therefore, it is crucial to investigate how the
proposed stochastic model can be constructed to incorporate
autocorrelation interval parameters in both diffusion and drift
components, enabling it to effectively capture autocorrelation,
nonlinearity and non-stationarity in temperature data. This
endeavor will provide insights into how the inclusion of
autocorrelation interval parameters in the proposed model
enhances the accuracy of temperature predictions.

MATERIALS AND METHODS

To solve this problem, this paper derives a stochastic model from
temperature that follows a gamma distribution. By utilizing the
synthesis method for deriving diffusion and drift coefficients, we
incorporate a parameter representing the autocorrelation
interval in the model. The satisfaction of the Fokker-Planck
equation enables the parameters to capture nonlinearity and
non-stationarity in the data, resulting in more accurate daily
temperature predictions. With this model, we can predict
temperature values that are subsequently used to estimate prices
of gamma weather derivatives, whose underlying asset is
temperature.

Preliminary concepts

Gamma distribution was fitted to daily temperature data. Below
is the provided description of the gamma distribution as

outlined in the work by Haddad [4].

Definition 1: A gamma distribution is defined for a random
variable Y when its probability density function is expressed in
the following manner.
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The term used to denote this concept is referred to as the upper
incomplete gamma.

Lemma 1: limg e I(a)=%, limg e ig(o,w)=2° and limy_0
ig(a,w)=I"(a)

The significance of this lemma is that when applying gamma
distributions to model temperature, it's important for the a

values to be moderate in size. Furthermore, if the w values are
small, employing the gamma function is also a viable option.

Lemma 2: If Y follows gamma probability distribution with
parameters o and 6, then the mean of Y is given b,

E(Y)=00

its second moment is given by

E(Y2)=a6%(0+1)

and its variance is

Var(Y)=a6?

Definition 2: The method of moment estimators of the

parameters o and 0 are given by
ﬁzm

0 )

Var(Y)

E(Y) (5)

This study focuses on univariate stochastic differential equations
of Ito’s type to model temperature given that it follows gamma
distribution.

Definition 3: Ito’s stochastic differential equation is given by
dY=u(Y,t)de+o(Y,, ) d W, (6)
u(Y,t) is the drift coefficient, o(Y,,t) is the diffusion coefficient

Definition 4: W, is the standard Brownian motion and is
defined as the stochastic process {W(t),t > 0} such that
P(W(0)=0)=1, E(W(t))=0, Var(W(t))=t, W(t) ~ N(0,t) and {W(t)-
W(s),0<s<t} is independent process.

Lemma 3: It can be proved that variance of {W(t)-W(s),0<s<t} is
t-s.

Theorem 1: If the probability density function of an Ito’s
stochastic differential equation is given by fY(y) and that T is
auto correlation function of the process {Yt}, then synthesis
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method of finding the drift and the diffusion coefficient is given
by

-2 Y
o*(¥irf) = TH(LﬂwaW”h&MS "
uri) = 0D Lnogr vl @

Definition 5: As the data exhibited a seasonal pattern, a
truncated Fourier series was employed to estimate certain
parameters. Here is the formal definition of the truncated
Fourier series:

M 9

27t it
g(t) = Z a, cos — + b, sin —
= L L ()

where L represents the duration of the seasonal pattern and 2M
+1 denotes the count of parameters involved.

The majority of stochastic differential equations do not have
analytical solutions. In this study, the Euler-Maruyama method
was employed for discretization to obtain an approximation for a
stochastic differential equation.

Definition 6: The EulerMuryama method given by Yn+1=Yn
+a(Yn, T)At+b(Yo, Th) AW, where AW, =Won+1—Wen and recursively
defined Y, for 0 <n <N-1

In the context of this analysis, where approximations are
necessary due to the inherent complexity of most stochastic
differential equations, three key metrics to assess the accuracy
and precision of our models were employed. The Mean Square
Error (MSE) was used to quantify the extent of both
overestimation and underestimation between predicted values
and raw data. Meanwhile, the Mean Absolute Percentage Error
(MAPE) was used to gauge the reliability of the models in terms
of prediction accuracy. Lastly, the coefficient of determination
(R2), was used to evaluate the models’ effectiveness in describing
variations within the dataset. These measures collectively
provided a comprehensive evaluation of the approximations’
performance, which helped to address the challenges presented
by stochastic differential equations.

Definition 7: To estimate auto-correlation parameters, both
Runge-Kutta and optimization methods were employed.

n s ‘A‘ 2
Msp=y W) nfh)

i=1 ‘ (10)
Ly =i
MAPE ==Y |24
L ; Yi (11)
o1 i s — 4i)®
Yy —w)? (12)

Definition 8: The form of the fourth-order Runge-Kutta method
is as follows:
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The pricing approach employed the method of expected payoff,
as defined in the following description.

Definition 9: The price of the call option, determined by
discounting the expected payoff using the available temperature
data, is expressed as follows:

c(t) = e-rt-0EQ[max{Z: - K,0}|Fe] (13)

Temperature model derivation

The general expression for an Ito stochastic differential equation
is provided as follows:

dY =p(Y,0dt+o(Y,,0)d W, (14)

u(Y,t) denotes the drift coefficient, o(Y,t) is the diffusion
coefficient and W, is the standard Brownian motion also called
the stochastic process {W(t),t > 0} in which P(W(0)=0)=1,
E(W()=0, Var(W(t))=t, W(t) ~ N(O,t) and {W(t)-W(s),0<s<t} is
independent process. It is the noise only that is normally
distributed and not the temperature. This assumption is
realistic.

Utilising the synthesis method outlined in Bykhovsky [13] and
Kanellopoulos et al. [14], for deriving diffusion equations, we
stem the stochastic differential equation governing daily
temperature. During this derivation, we make two fundamental
assumptions. Firstly, we presume that temperature values exhibit
autocorrelation. Secondly, we assume that the normalized covariance
function is expressed as

Cr _ -l — a -
5 = R(7) = exp[-7]
and we define the auto-correlation interval as,

00 oo 1
Teorr = f() ‘R(T)ldT = fo ‘szp[—F\ITHCZT = - (15)
!

= oY, t) = V2n()0Y:
a?(Y;,t) 0 2 .
tvi) = 220 o (02051 )
= %% {log (%) — % + (a—1)log(y ):| (16)
_fla-1)—y
= Y, t) =n(a—1) =)

Following the derivation of the stochastic equation presented
earlier, we have determined the expressions for drift and the
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diffusion coefficient as 15 and 16 respectively. Now, by
substituting these in 14 we obtain the result as below:

dY=y1(0(0(c-1)-Y)dt+poy1(00Y dWp(c) (17)

This differs slightly from the Ornstein-Uhlenbeck differential
equation in that the diffusion coefficient in 30 is contingent
upon the random variable Y,.

Analysis of the temperature model parameters

Lemma 4: The expected value of (Y) is given by the following
differential equation

dz=y(6(0-1)-z)dt, where z=E(Y,) (18)
Proof

We apply Ito isometry in equation 30
dE(Y=y(0(o-1)-E(Yo)d, dz=y(6(a-1)-2)d,

Lemma 5: Suppose that the model in equation 30 satisfies the
following FPE.

O3] — & v, )]+ 5 glo”(Y- 00 o)

Then v is given by the following equation

- (log (u) da J{;;»ﬂ% _ ﬁt):‘(ln)) Oy
mT (0207 — 208y — 62 — Oy + 42)) (20)

Proof

We assume that 6(t) and of(t) are {FJ—measurable

; e’%
Letf"(y) T(n then by Iogarlthmlc differentiation, we have

— l()g(f, (y)) = En (((\ —1)log(y) — 5 —log(I'(a)) — l()g((}))

it
Fry) ot

da  y 00 ¢
(f) () = (1%(7/) o Tea o) o oot —101%((7’)(.—

da  y 00 ¢ ¢ e
@(fr(?/)) (l%( )8f tEa T o dot 10%(@@) fr(y)

Applying laws of logarithms and simplifying fraction, we get

0 (1ou (Y Joa  y—abd0) 1 O(a)
) = (103(9) % @ o “ T o )fY(Z/) -

The second operator in the FPE can be expressed as follows

(Y Ofy)  —(ny® e (0207 — 200 — 200y + 6 + Oy + )
dy B 6o+1T (a)

Applying the third operator of the FPE to the stochastic
differential equation gives
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Therefore, the right hand side of the FPE can be expressed as
follows

—(ny* % # (—a?0? + 200y + 6% + Oy — )

o?
Gl (VD )] = -

2 dy?

~ oY, 0] +

1

f(r/)*%

2
[l' (Y, ) fn(’!)]*z[) S0P (V) ()] =

Since’ we have the following
—(71(—a%6? + 220y + 6% + Oy — y?))

Oy

Irly) 2

Putting the results in Equation (21) and (22) in the FPE and
then solving for y; gives

y) @ —ab 99 1
(IOE (g)eT?Jr}o%E*r(a) at )97/

(0202 — 200y — 02 — Oy + 4?)) (23)

=

Numerical estimation of trigger value

A trigger value refers to a specific threshold or level that, when
crossed or reached, initiates a specific action or event in a
financial instrument or contract. It serves as a condition or
criterion that determines when certain provisions or features
associated with the instrument come into effect. It varies
depending on the context and the specific financial instrument
or contract involved. It could be a predefined price level, a
specified time period or value of a particular variable, a
particular event occurrence or a combination of factors. For
example, in options contracts, a trigger value may represent the
strike price at which the option is exercised or the barrier level at
which a knock-out or knock-in feature is activated.

In order to apply the Runge-Kutta method in equation 18 we let

f(t;,2)=y1(6(0-1)-z)) then,

ky = /hhv(’zl —0; ((Yr = 1))
(nshi(mihi = 2) (0 + 2 — aib;))
2
o = OB = 2+ (05 = ut))
: 4
(nihi(6: + 20 — i) (b} — 295ih3 + dyihi — 4))
4

ky =

ky =

Zig1 = 2+ é(/\'[ + 2k + 2k3 + ky)

2 K2 3 53 4 p4 2 h2 3 13 2 h2
'71,/7',91 _ Yihi0i | ki iz _ 71ihi 0 "/1,]’49 Yihizi
2 6 u 24 & 2 6 24 ® 2

T3z Lhiz ayihi0; a0 ainiihe,
_ u(); i m 6% o b — ot el — u,; i l(;).q i 14;47 i

i=1,2,3---,N - 1, and the time step given by h; = tay=t

Forecasting temperature: The parameters o and 6 governing
scale and shape respectively in the Stochastic differential
equation 30, estimated through a combination of Fourier series
as outlined in definition 9 and optimization. Subsequently, the
Euler-Muryama method as defined in definition 6 and
supported by Mao [15], was employed to estimate temperature
values. MSE given by equation 10 was used to account for
discrepancies between raw and predicted values Willmott and
Matsuura, MAPE given by equation 11 was used to assess model
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reliability, in accordance with Khair et al., and equation 12 was
used to gauge the model’s suitability for the given dataset,
aligning with the methods presented by Allison et al. Ultimately,
pricing was determined by discounting the expected payoff, as
specified in equation 13 based on available temperature data at
any given time t, ensuring that our model incorporates real-time
information.

Pricing temperature derivatives: Taking into account the fact
that Y, follows a gamma distribution, thus, the call option’s price
at t <ty is given by:

c(t) = erIEC[max{Y: — K,0}|Fe] (24)

=g tn=t) /’ (y — K) fy,(y)dz. (25)

where K=7,

Here, Z, represents the mathematical expectation, which serves
as the solution to Ordinary Differential Equation 23, We
designate K as the agreed-upon critical or trigger value, which we
take to be the predicted average of Z, and F, signifies
temperature information at time t also known as the filtration.
Upon evaluating the integral in Equation 3 the outcome is as
follows:

€(ts) = ~erI(KT (K /6) - 6T (a + 1,K/6))/T(t) (26)

o= [ e @

where T'(@) is given by
(o, w) = / sleds (8)

This is referred to as the upper incomplete gamma function,
with r denoting the risk-free interest rate, while t and t,
represent the initial and final times of the agreed contract,
respectively.

RESULTS AND DISCUSSIONS

This section provides results on modeled temperature, how
gamma distribution fits into data collected. It also indicates
parameter estimates both alpha and theta as in scale and shape
respectively. A sample contract has been demonstrated with an
African Risk Company (ARC) and Malawi government. Finally,

Table 1: Parameter estimates.
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the paper has also demonstrated the relationship between the
call option and trigger value.

Estimating a gamma distribution for temperature
data

Temperature (Y) in the area conforms to a gamma distribution.
The conventional method typically involves assuming that
temperature adheres to the probability distribution described by
the Ornstein-Uhlenbeck stochastic process which posits that the
residuals, when the trend reverts to the mean, follow a Gaussian
probability distribution. However, the research done by
Gyamerah et al., suggests that there is a non-negligible probability
that temperature residuals may not adhere to a normal
distribution.

In previous research, a normal probability distribution was
found to be a good fit primarily for maximum temperatures.
Haddad demonstrate that the gamma distribution is more
appropriate when considering daily temperature data, which
incorporates both the maximum and minimum temperatures
recorded on a given day. The probability density function of the
gamma distribution is described by the function (1). The mean
of Y, second moment and variance are given by results in
Lemma 2. Similarly, the method of moment estimators of the
parameters are given in definition 2.

In this scenario, we estimate E(Y) by the sample mean and
Var(Y) by sample variance. To illustrate, temperature data
obtained from the Chitedze research station in Malawi, spanning
the years from 1981 to 2021 (as available during the writing of
this paper) was used. The resulting statistics were as follows.

This study incorporated temperature data collected concurrently
with rainfall data. Specifically, all temperature values on days
with zero rainfall were excluded from the dataset. Subsequently,
the collected data was fitted to a gamma distribution, as
illustrated in Figures la and 1b where it is evident from Figure
1b that temperature values closely align with the bestfit line,
indicating a strong adherence to the gamma distribution [16].
It’s worth noting that the histogram slightly resembles a normal
curve due to the presence of a large scale parameter, as detailed

in Table 1.

Mean

Variance

0" a”

21.67 31.89

1.4718 14.72

z = 9 ) z = =
Theareical quanties

(a) Histogram for Temperature (b) Quantiles of sample data against Theoreticalones

Figure 1: Exploring probability distribution of temperature.
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To evaluate the goodness of fit of the model, a Chisquare test was
employed, as detailed by Balakrishnan et al. utilizing the
parameter estimates computed, the chissquare test is defined as
follows:
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N

3 2
XQ:Z(O? ElEz)

i=1

(29)

The outcomes indicated that temperature conforms to a gamma
distribution as a random variable, with a p-value of 0.9261. This
took into consideration the fact that temperature was
categorized into seasons like “winter,” “spring,” “summer”
and "autumn.” This categorization allows to treat temperature as
a categorical variable for the chi-square test.

The temperature model: The derived temperature model is
given by

dY=y1(0) (B(a-1)-Yde+p2y1(00Y . dW1y(0) (30)

The properties of this equation are derived in section 3.1. Such
properties give conditions that must be satisfied by the auto-
correlation interval coefficients y; for the model to satisfy the
Fokker-Planck equation. This approach is also found in the work
of Dzupire et al. According to Tabandeh et al., Fokker-Planck
equation is responsible for describing how uncertainly spreads in
dynamic systems that are influenced by random events. The
solution to this equation is a Probability Density Function (PDF)
that changes over time and is often of large size and scope. In
addition, there are certain characteristics of the joint and any
marginal solution PDF that need to remain constant over time.
Furthermore, meeting the requirements of the Fokker-Planck
equation guarantees that the coefficients y; address issues of
non-linear and non-stationary behavior within the data set that
may have arisen as a result of climate change.

Parameter estimation: The estimate for the mean a(t)0(t) was
derived using a truncated Fourier series in equation 9. The
parameters a, and b, were determined through the application
of the least square method, as described by Yazdi et al. To
estimate variance o(t)8(t)?, the mean square error was computed
from

1
= 2 (Y1) —a()0(1))?
N-np—-1 ; “ (31)

Table 2: Estimates of y.
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where 1) is the number of parameters. This value was subsequently
multiplied by 1-hy;, where h;; are representing influential points in
the Fourier series. The obtained results were further modeled
using the Fourier series, following a similar approach to that
employed by Benth et al. [17], in estimating variance. As a result,
we derived estimates for 0~ =a(t)0(t)2/(a()0(t)) and o =a(t)d(t)/
(0°). The summarized outcomes are presented in Figure 2.
Notably, the values obtained in Figures 2a, 2b and 2¢ correspond
to the values listed in Table 1, demonstrating the consistency of
this method.

B0 W00 10 DM B0 W00 00 4000 TTo 0 w00 1500 000 28O
Days Days

(a) Distribution of mean(af) (b) Distribution of @

W0 00 M A0 KO W0 W 00
Days

(c) Distribution of 8

Figure 2: Estimates of a and 0.

Nonetheless, employing maximum likelihood estimation entails
assuming that there is independent sampling. Given that this
study assumes the presence of autocorrelation within the data
and follows a gamma distribution, a different approach has been
adopted by using Equation (23). Alternatively, Equation 18 can
be solved using the Runge-Kutta method to obtain the sequence
Z,. Following this, the parameters were determined by solving
the subsequent minimization problem. The results were not

different (Table 2).
argminL(y)=X(Y;Z,)? (32)

Shape parameter(o) Scale parameter (0)

Y1 estimate

9.54 0.734 0.048 0.045
9.49 0.735 0.043 0.039
9.46 0.736 0.04 0.042
9.44 0.736 0.039 0.041
10.15 0.721 0.503 0.507
10.04 0.724 0.145 0.138
992 0.726 0.112 0.11
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9.8 0.729 0.089 0.88
9.7 0.731 0.07 0.06
9.61 0.733 0.057 0.053

This provides us with the following estimates for the auto-
correlation parameter (y). In Table 2 shown above, the auto-
correlation parameter (y) exhibits a range spanning from 0.039
to 0.503. With these diverse y values from Table 2, temperature
values were estimated utilizing a stochastic differential equation
(30), resulting in the estimated values depicted in Figure 3
below.

24.5 T T T T T T T T T

~—Raw data
24 —6— Prediction | 1

Temperature (°C)

Days

Figure 3: Temperature estimation.

Table 3: Accuracy and reliability.

Figure 3 depicted above illustrates that the predicted
temperature values closely align with the raw data. The
predictions and computations encompassed the entire dataset,
while the graph specifically displays predictions for the last
season, offering a more accessible visual representation. To assess
accuracy, we employed the Coefficient of Determination (R-
squared), Mean Absolute Percentage Error (MAPE) and Mean
Squared Error (MSE) as defined in Equations 10, 11 and 12,
respectively. The coefficient of determination gauges the model’s
suitability for the dataset, with values closer to 1 indicating
strong alignment between model variations and raw data
variations. MSE aids in identifying whether the predictions
involve underestimation or overestimation. MAPE quantifies the
reliability of the predictions, measuring the percentage of points
for which the distance from the mean falls within the MAPE
range, as elucidated by Chicco et al. [18].

With an R-squared value of 91%, it can be inferred that the
model can explain approximately 91% of the variations in the
data, indicating its suitability for the dataset. The MSE value of
0.1429 suggests that the model’s tendency for underestimation or
overestimation has been mitigated to within 0.1429 units of the
actual data. Furthermore, it's worth noting that approximately
58% of the data points within the model fall within a MAPE of
1.36% as shown in Table 3, signifying a high level of reliability in
the predictions. The performance of this model is comparable to
that of Schiller et al. and Benth et al.,, who used fractional
integration together with Bsplines to derive temperature model.
Since the reliability is much better than their model, then this
model is less expensive than their model.

R-Squared MSE

MAPE

Reliability

0.9112 0.1429

0.0136 58%

Pricing derivatives: The following table shows a sample contract
between the African Risk Capacity (ARC) and the Malawi

government.

The payout of the contract would be used to support vulnerable
communities affected by the temperature variations. In exchange
for this coverage, the Malawi government would pay a premium

to the ARC, which would be determined based on the level of

coverage and the likelihood of the predetermined conditions

Table 4: Sample contract between (ARC) and government.

being met [19,20]. The contract would help the Malawi
government to manage the financial risk associated with
temperature variations and ensure that vulnerable communities
are supported in times of need.

Now suppose we have 0=10.15, 8=0.721, then the price of call
option per farmer in Table 4 is K9361.

Specification

Details

Agreed station

Chitedze research weather station

Calculation of index

Ordinary differential equation and average
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Type of derivative

Call option

Initiation 15t Nov 2021
Maturity 15t May 2022
Tick price K2307.00/degree Celsius

Maximum payout

K50,000.00

Based on the graph in Figure 4 above, it is evident that as the
trigger value increases, the premium decreases.

10000
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7000

6000

5000

4000

Premium in (MK)

3000

2000

1000

o g i i ; . i
21.5 22 225 23 235 24 24.5 25
Trigger value (°C)

Figure 4: Relationship between call option and trigger value.

This observation suggests that in financial derivatives, an event
is less likely to occur when the average trigger value is higher,
resulting in lower premiums.

These results obtained using the model (26) are indicating a
similarity with the work of Turvey who derives feasible regions
of temperature process space in which a farmer is more likely to
be paid by a buyer like ARC. This explains why Johnson suggests
that those signing the contract with the ARC on behalf of the
government should have sound knowledge about the weather
derivatives which are temperature dependent. This model is
different from that of Karydas and Xepapadeas in that it is
independent of initial temperature and volatility. It is also
reflecting well as suggested by Cramer et al., in his study using
Machine learning. However, the information about the volatility
is contained in the parameters o(t) and 0(t). Therefore, this
model can be more flexible for pricing temperature derivatives.

CONCLUSION

The objective of this research was to construct a model for
estimating call option prices with temperature as the underlying
factor. To accomplish this, several steps were undertaken: a
Stochastic  Differential Equation (SDE) was developed,
temperature was modeled and predicted using this SDE, a
pricing model was formulated, and ultimately, call option prices
were estimated.

Math Eter, Vol.15 Iss.1 No:1000244

A stochastic differential equation was formulated using the
synthesis method, with the assumption that temperature
exhibited autocorrelation. This equation demonstrated strong
predictive accuracy for weather values.

The pricing model does not directly rely on the underlying
temperature as a solution to the Stochastic Differential Equation
(SDE). Instead, it explicitly hinges on the gamma parameters
and the trigger value. As the trigger value increases, the prices
generally exhibit a decreasing trend.

The model is much dependent on the gamma parameters and
hence it may be used using intermediate and pre-processed data
to price temperature derivatives. Hence, we recommend authors
as well as traders of weather derivatives to consider using this
model for estimating fair prices of derivatives.

In an extension beyond the scope of this paper, it is possible to
consider combinations of any two of the following weather
conditions: temperature, wind speed and rainfall, as the
underlying factors for pricing call options.
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