Positive solutions for boundary value problems of the third-order q-symmetric difference equations with parameter

Qi GE, Chengmin HOU
Department of Mathematics, Yanbian University, Yanji 133002, Jilin, China

Abstract

In this paper, we study the existence and the nonexistence of positive solutions for boundary value problems of the third-order q-symmetric difference equations with parameter. By using the properties of the Green function and Guo-Krasnoselskii fixed point theorem on cones, we prove the existence of positive solutions to this equation when the parameter belongs to different interval. And by apagoge, we prove the nonexistence of positive solutions to this equation when the parameter belongs to different interval.

Mathematics Subject Classification: 39A12;44A25;26A33
Keywords: q-symmetric difference equations,existence and the nonexistence of positive solutions,Fixed point theorem

1 Introduction

In recent years, Quantum calculus is a very interesting field in mathematics. As calculus without limits, quantum calculus plays an important role in several fields of physics such as cosmic strings and black holes [1], conformal quantum mechanics [2], nuclear and high energy physics [3]. For details, We can refer the reader to [4-7].

Quantum calculus has two types: the q-calculus and the h-calculus. The q-symmetriqc quantum calculus is a type of the q-calculus. In the q-symmetric quantum calculus, for a fixed $q \in(0,1)$ and $t \neq 0$ the q-symmetric derivative of a function f at point t is defined by

$$
\frac{f(q t)-f\left(q^{-1} t\right)}{\left(q-q^{-1}\right) t} .
$$

The q-symmetric quantum calculus has proven to be useful in several fields, in particular in quantum mechanics [8]. As noticed in [8], the q-symmetric derivative let the q-exponential function have unique properties.

In 2012,Artur M.C. Brito da Cruz [9] has introduced a wealth of knowledge about q-symmetric variational calculus, which laid a good foundation to the continue study.

In 2015, Li Wang and Chengmin Hou[10] studied the application of differential transformation method to nonlinear q-symmetric damped systems. At present, the research about the existence of positive solutions for boundary value problems of the q-symmetric difference equations are scarce.

In this paper we investigate the existence of solutions for the following boundary value problem of the third-order q-symmetric difference equations with parameter:

$$
\left\{\begin{array}{c}
\widetilde{D}_{q}^{3}[u](t)=-\lambda g(t) f(u(t)), t \in(0,1) ; \tag{1}\\
u(0)=\alpha u(\eta), \widetilde{D}_{q}[u](0)=\widetilde{D}_{q}^{2}[u](1)=0,
\end{array}\right.
$$

where $0<q<1,0<\eta<1,0<\alpha<1$, and λ is a positive parameter. Throughout this paper, we assume that the following conditions are satisfied: $\left(H_{1}\right) f:[0, \infty) \rightarrow[0, \infty)$ is continuous;
$\left(H_{2}\right) g \in C([0,1],[0, \infty))$ is increasing, and is not identically zero on any subinterval of $[0,1]$;
$\left(H_{3}\right) 0<\int_{0}^{1} g(s) \widetilde{d}_{q} s<\infty$.

2 Preliminary notes

For the convenience of the reader, we give some background materials from q-symmetric calculus theory to facilitate analysis of problem (1).

Let $q \in(0,1)$ and let I be an interval (bounded or unbounded) of \mathbb{R} containing 0 . We will denote by I^{q} the set $I^{q}:=q I:=\{q x: x \in I\}$. Note that $I^{q} \subseteq I$.

Definition 2.1 [9] Let f be a real function defined on I. The q-symmetric difference operator of f is defined by

$$
\widetilde{D}_{q}[f](x)=\frac{f(q x)-f\left(q^{-1} x\right)}{\left(q-q^{-1}\right) x}, t \in I^{q} \backslash\{0\},
$$

and $\widetilde{D}_{q}[f](0):=f^{\prime}(0)$, provided f is differentiable at 0 . We usually call $\widetilde{D}_{q}[f]$ the q-symmetric derivative of f.

The q-symmetric derivatives of higher order:

$$
\widetilde{D}_{q}^{0}[f](x)=f(x), \widetilde{D}_{q}^{n}[f](x)=\widetilde{D}_{q} \widetilde{D}_{q}^{n-1}[f](x), n \in \mathbb{N}^{+} .
$$

By the definition of the q-symmetric derivative, for any constant k, we have

$$
\widetilde{D}_{q}(k t)=k, \widetilde{D}_{q}\left(k t^{2}\right)=k\left(q+q^{-1}\right) t .
$$

The q-symmetric difference operator has the following properties.

Lemma 2.2 [9] Let f and g be q-differentiable on I, let $\alpha, \beta \in \mathbb{R}$ and $t \in I^{q}$. One has

1. $\widetilde{D}_{q}[f] \equiv 0$ iff f is constant on I;
2. $\widetilde{D}_{q}[\alpha f+\beta g](t)=\alpha \widetilde{D}_{q}[f](t)+\beta \widetilde{D}_{q}[g](t)$;
3. $\widetilde{D}_{q}[f g](t)=\widetilde{D}_{q}[f](t) g(q t)+f\left(q^{-1} t\right) \widetilde{D}_{q}[g](t)$;
4. $\widetilde{D}_{q}\left[\frac{f}{g}\right](t)=\frac{\widetilde{D}_{q}[f](t) g\left(q^{-1} t\right)-f\left(q^{-1} t\right) \widetilde{D}_{q}[g](t)}{g(q t) g\left(q^{-1} t\right)}$, if $g(q t) g\left(q^{-1} t\right) \neq 0$.

Definition 2.3 [9] Let $a, b \in I$ and $a<b$. For $f: I \rightarrow \mathbb{R}$ and for $q \in(0,1)$ the q-symmetric integral of f from a to b is given by

$$
\int_{a}^{b} f(t) \widetilde{d}_{q} t=\int_{0}^{b} f(t) \widetilde{d}_{q} t-\int_{0}^{a} f(t) \widetilde{d}_{q} t
$$

where

$$
\begin{aligned}
\widetilde{I}_{q, 0}[f](x):=\int_{0}^{x} f(t) \widetilde{d}_{q} t & =\left(q^{-1}-q\right) x \sum_{k=0}^{\infty} q^{2 k+1} f\left(x q^{2 k+1}\right) \\
& =\left(1-q^{2}\right) x \sum_{k=0}^{\infty} q^{2 k} f\left(x q^{2 k+1}\right), x \in I,
\end{aligned}
$$

provided that the series converges at $x=a$ and $x=b$. In that case, f is called q-symmetric integrable on $[a, b]$. We say that f is q-integrable on I if it is q-integrable on $[a, b]$ for all $a, b \in I$.

As for q-symmetric derivatives, we can define an operator $\widetilde{I}_{q, 0}^{n}$ by

$$
\widetilde{I}_{q, 0}^{0}[f](x)=f(x), I_{q, 0}^{n}[f](x)=\widetilde{I}_{q, 0} \widetilde{I}_{q, 0}^{n-1}[f](x), n \in \mathbb{N}^{+} .
$$

For operators defined in this manner, the following is valid:

$$
\widetilde{D}_{q} \widetilde{I}_{q, 0}[f](x)=f(x), \widetilde{I}_{q, 0} \widetilde{D}_{q}[f](x)=f(x)-f(0) .
$$

By the definition of the q-symmetric integral, for any constant k, we have

$$
\widetilde{I}_{q, 0}(k)=\int_{0}^{x} k \widetilde{d}_{q} t=k x, \widetilde{I}_{q, 0}(k x)=\int_{0}^{x} k t \widetilde{d}_{q} t=\frac{k q}{1+q^{2}} x^{2} .
$$

On this basis, we have

$$
\begin{equation*}
\widetilde{I}_{q, 0}^{3} \widetilde{D}_{q}^{3}[f](x)=f(x)+c_{0}+c_{1} x+c_{2} x^{2} . \tag{2}
\end{equation*}
$$

Lemma 2.4 [9] Let $a, b \in I, a<b$ and $f: I \rightarrow \mathbb{R}$ continuous at 0. Then for $s \in[a, b]$ the sequence $\left(f\left(q^{2 n+1} s\right)\right)_{n \in \mathbb{N}}$ converges uniformly to $f(0)$ on I.

Corollary 2.5 [9] If $f: I \rightarrow \mathbb{R}$ is continuous at 0 , then for $s \in[a, b]$ the series $\sum_{n=0}^{+\infty} q^{2 n} f\left(q^{2 n+1} s\right)$ is uniformly convergent on I, and, consequently, f is q-symmetric integrable on $[a, b]$.

Lemma 2.6 [9] Let $f, g: I \rightarrow \mathbb{R}$ be q-symmetric integrable on I, $a, b, c \in I$ and $\alpha, \beta \in \mathbb{R}$. Then

1. $\int_{a}^{a} f(t) \widetilde{d}_{q} t=0$;
2. $\int_{a}^{b} f(t) \widetilde{d}_{q} t=-\int_{b}^{a} f(t) \widetilde{d}_{q} t$;
3. $\int_{a}^{b} f(t) \widetilde{d}_{q} t=\int_{a}^{c} f(t) \widetilde{d}_{q} t+\int_{c}^{b} f(t) \widetilde{d}_{q} t$;
4. $\int_{a}^{b}(\alpha f+\beta g)(t) \widetilde{d}_{q} t=\alpha \int_{a}^{b} f(t) \widetilde{d}_{q} t+\beta \int_{a}^{b} g(t) \widetilde{d}_{q} t$;
5. Suppose that $f(t) \geq 0, \forall t \in\left\{q^{2 n+1} c: n \in \mathbb{N}_{0}\right\} \cup\{0\}$. If $c \geq 0$, then

$$
\int_{0}^{c} f(t) \widetilde{d}_{q} t \geq 0
$$

In general it is not true that if f is a positive function on $[a, b]$, then

$$
\int_{a}^{b} f(t) \tilde{d}_{q} t \geq 0
$$

Lemma 2.7 $\widetilde{I}_{q, 0}^{3}[f](x)=\frac{q}{1+q^{2}} \int_{0}^{q^{2} x}\left(x-q^{-1} t\right)(x-q t) f(t) \widetilde{d}_{q} t$.
Proof By Definition 2.3, we have

$$
\begin{aligned}
\widetilde{I}_{q, 0}^{2}[f](x) & =\widetilde{I}_{q, 0}\left[\left(1-q^{2}\right) x \sum_{n=0}^{\infty} q^{2 n} f\left(x q^{2 n+1}\right)\right] \\
& =\left(1-q^{2}\right)^{2} x^{2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} q^{2 m} q^{2 n+2 m+1} f\left(x q^{2 n+2 m+2}\right) \\
& =\left(1-q^{2}\right)^{2} x^{2} \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} q^{2 m} q^{2 k+1} f\left(x q^{2 k+2}\right) \\
& =\left(1-q^{2}\right)^{2} x^{2} \sum_{k=0}^{\infty} \sum_{m=0}^{k} q^{2 m} q^{2 k+1} f\left(x q^{2 k+2}\right) \\
& =\left(1-q^{2}\right)^{2} x^{2} \sum_{k=0}^{\infty} \frac{1-q^{2 k+2}}{1-q^{2}} q^{2 k+1} f\left(x q^{2 k+2}\right) \\
& =q\left(1-q^{2}\right) x \sum_{k=0}^{\infty}\left(x-q^{2 k+2} x\right) q^{2 k} f\left(x q^{2 k+2}\right) \\
& =\int_{0}^{q x}(x-t) f(t) \widetilde{d}_{q} t,
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{I}_{q, 0}^{3}[f](x) & =\widetilde{I}_{q, 0} \widetilde{I}_{q, 0}^{2}[f](x) \\
& =q\left(1-q^{2}\right)^{2} x^{3} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} q^{2 k+2 n+2} q^{2 k}\left(q^{2 k}-q^{2 n+2 k+2}\right) f\left(x q^{2 n+2 k+3}\right) \\
& =q\left(1-q^{2}\right)^{2} x^{3} \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} q^{2 k} q^{2 n+2}\left(q^{2 k}-q^{2 n+2}\right) f\left(x q^{2 n+3}\right) \\
& =q\left(1-q^{2}\right)^{2} x^{3} \sum_{n=0}^{\infty} \sum_{k=0}^{n} q^{2 k} q^{2 n+2}\left(q^{2 k}-q^{2 n+2}\right) f\left(x q^{2 n+3}\right) \\
& =q\left(1-q^{2}\right)^{2} x^{3} \sum_{n=0}^{\infty}\left(\frac{1-q^{4 n+4}}{1-q^{4}}-\frac{1-q^{2 n+2}}{1-q^{2}} q^{2 n+2}\right) q^{2 n+2} f\left(q^{2} x q^{2 n+1}\right) \\
& =q^{2} x\left(1-q^{2}\right) q \sum_{n=0}^{\infty} \frac{\left(x-q^{2 n+2} x\right)\left(x-q^{2 n+4} x\right)}{1+q^{2}} q^{2 n} f\left(q^{2} x q^{2 n+1}\right) \\
& =\frac{q}{1+q^{2}} \int_{0}^{q^{2} x}\left(x-q^{-1} t\right)(x-q t) f(t) \widetilde{d}_{q} t .
\end{aligned}
$$

The proof is complete.
Lemma 2.8 [11] Let X be a Banach space, and let $P \subset X$ be a cone in X. Assume Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let $S: P \rightarrow P$ be a completely continuous operator such that, either
(i) $\|S w\| \leq\|w\|, w \in P \cap \Omega_{1},\|S w\| \geq\|w\|, w \in P \cap \Omega_{2}$, or
(ii) $\|S w\| \geq\|w\|, w \in P \cap \Omega_{1},\|S w\| \leq\|w\|, w \in P \cap \Omega_{2}$.

Then S has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3 Green function and related lemmas

Let $E=C[0,1], C^{+}[0,1]=\{u \in C[0,1]: u(t) \geq 0, t \in[0,1]\}$, then E is a Banach space with norm $\|u\|=\max _{0 \leq t \leq 1}|u(t)|$.

Lemma 3.1 Let $0<\eta<1,0<\alpha<1$. Suppose that $h(t):[0,1] \rightarrow[0,+\infty)$ is continuous function, $0<\int_{0}^{1} h(s) \widetilde{d}_{q} s<\infty$, then the boundary value problem

$$
\left\{\begin{array}{c}
\widetilde{D}_{q}^{3}[u](t)=-h(t), t \in(0,1) ; \tag{3}\\
u(0)=\alpha u(\eta), \widetilde{D}_{q}[u](0)=\widetilde{D}_{q}^{2}[u](1)=0
\end{array}\right.
$$

has the unique solution

$$
u(t)=\int_{0}^{1} G(t, s) h(s) \widetilde{d}_{q} s
$$

where

$$
\begin{equation*}
G(t, s)=K(t, s)+\frac{\alpha}{1-\alpha} K(\eta, s) \tag{4}
\end{equation*}
$$

is corresponding Greens function, and

$$
K(t, s)=\frac{1}{q+q^{-1}}\left\{\begin{array}{cl}
t^{2}, & 0 \leq q^{2} t \leq s \leq 1, \tag{5}\\
t^{2}-\left(t-q^{-1} s\right)(t-q s), & 0 \leq s \leq q^{2} t<1 .
\end{array}\right.
$$

Proof By (2), we have

$$
\begin{equation*}
u(t)=-\widetilde{I}_{q, 0}^{3} h(t)+C_{0}+C_{1} t+C_{2} t^{2} . \tag{6}
\end{equation*}
$$

By $\widetilde{D}_{q}[u](0)=0$, it follows that $C_{1}=0$, from

$$
\widetilde{D}_{q}^{2}[u](1)=-\int_{0}^{1} h(s) \widetilde{d}_{q} s+C_{2}\left(q+q^{-1}\right)=0
$$

we get that $C_{2}=\frac{1}{q+q^{-1}} \int_{0}^{1} h(s) \widetilde{d}_{q} s$. thanks to $u(0)=\alpha u(\eta)$, in view of Lemma 2.7, we have

$$
C_{0}=-\frac{\alpha}{q+q^{-1}} \int_{0}^{q^{2} \eta}\left(\eta-q^{-1} s\right)(\eta-q s) h(s) \widetilde{d}_{q} s+\alpha C_{0}+\frac{\alpha \eta^{2}}{q+q^{-1}} \int_{0}^{1} h(s) \widetilde{d}_{q} s,
$$

it follows that

$$
C_{0}=-\frac{\alpha}{(1-\alpha)\left(q+q^{-1}\right)} \int_{0}^{q^{2} \eta}\left(\eta-q^{-1} s\right)(\eta-q s) h(s) \widetilde{d}_{q} s+\frac{\alpha \eta^{2}}{(1-\alpha)\left(q+q^{-1}\right)} \int_{0}^{1} h(s) \widetilde{d}_{q} s .
$$

Thus, substituting C_{0}, C_{2} into (6), we have

$$
\begin{aligned}
u(t) & =-\frac{1}{q+q^{-1}} \int_{0}^{q^{2} t}\left(t-q^{-1} s\right)(t-q s) h(s) \widetilde{d}_{q} s \\
& -\frac{\alpha}{(1-\alpha)\left(q+q^{-1}\right)} \int_{0}^{q^{2} \eta}\left(\eta-q^{-1} s\right)(\eta-q s) h(s) \widetilde{d}_{q} s \\
& +\frac{\alpha \eta^{2}}{(1-\alpha)\left(q+q^{-1}\right)} \int_{0}^{1} h(s) \widetilde{d}_{q} s+\frac{t^{2}}{q+q^{-1}} \int_{0}^{1} h(s) \widetilde{d}_{q} s \\
& =\frac{1}{q+q^{-1}}\left[\int_{0}^{1} t^{2} h(s) \widetilde{d}_{q} s-\int_{0}^{q^{2} t}\left(t-q^{-1} s\right)(t-q s) h(s) \widetilde{d}_{q} s\right] \\
& +\frac{\alpha}{(1-\alpha)\left(q+q^{-1}\right)}\left[\int_{0}^{1} \eta^{2} h(s) \widetilde{d}_{q} s-\int_{0}^{q^{2} \eta}\left(\eta-q^{-1} s\right)(\eta-q s) h(s) \widetilde{d}_{q} s\right] . \\
& =\int_{0}^{1} K(t, s) h(s) \widetilde{d}_{q} s+\frac{\alpha}{1-\alpha} \int_{0}^{1} K(\eta, s) h(s) \widetilde{d}_{q} s
\end{aligned}
$$

where $K(t, s)$ is given by (5). The proof is complete.

Lemma 3.2 Let $0<\eta<1,0<\alpha<1$, for $G(t, s)$ be given as (4), then we obtain the following results:
(i) $0 \leq G(t, s), \quad 0 \leq t, s \leq 1$;
(ii) $p(t) M(s) \leq G(t, s) \leq M(s), \quad 0 \leq t, s \leq 1$,
where

$$
\begin{align*}
M(s) & =\frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)}\left(1+\frac{\alpha q^{2} \eta}{1-\alpha}\right) \tag{7}\\
p(t) & =\frac{4 q^{4} t^{2}(1-\alpha)}{\left(q+q^{-1}\right)^{2}\left(1-\alpha+\alpha q^{2} \eta\right)} \tag{8}
\end{align*}
$$

Proof When $0 \leq s \leq q^{2} t<1$, from (5), we have

$$
\left(q+q^{-1}\right) K(t, s)=\left(q+q^{-1}\right) t s-s^{2}=\frac{s\left(q^{2} t+t-q s\right)}{q} \geq \frac{s(s+t-q s)}{q} \geq 0
$$

When $0 \leq q^{2} t \leq s \leq 1$, in view of (4) and (5), $G(t, s) \geq 0$ is easily checked.
So

$$
G(t, s) \geq 0,0 \leq t, s \leq 1
$$

Next we will show that $G(t, s) \leq M(s), 0 \leq t, s \leq 1$.
In fact, when $s \leq q^{2} t$, for all $0 \leq t, s \leq 1$, it follows from (5) that

$$
\begin{aligned}
K(t, s) & =\frac{s}{q+q^{-1}}\left[\left(q+q^{-1}\right) t-s\right] \leq \frac{s}{q+q^{-1}}\left[\left(q+q^{-1}\right)-s\right] \leq \frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)} \\
K(t, s) & =\frac{1}{q+q^{-1}}\left[\left(q+q^{-1}\right) t s-s^{2}\right] \\
& =\frac{1}{q+q^{-1}}\left[t^{2} s^{2}-t^{2} s^{2}+\left(q+q^{-1}\right) t^{2} s-\left(q+q^{-1}\right) t^{2} s+\left(q+q^{-1}\right) t s-s^{2}\right] \\
& =\frac{t^{2}}{q+q^{-1}}\left[\left(q+q^{-1}\right) s-s^{2}\right]+\frac{s(1-t)}{q+q^{-1}}\left[\left(q+q^{-1}\right) t-s-t s\right],
\end{aligned}
$$

thanks to

$$
\left(q+q^{-1}\right) t-s-t s=\frac{q^{2} t+t-q s-q t s}{q} \geq \frac{s+t-q s-q t s}{q}=\frac{s(1-q)+t(1-q s)}{q} \geq 0
$$

and $\left(q+q^{-1}\right)^{2}>4$, we have

$$
K(t, s) \geq \frac{t^{2}}{q+q^{-1}}\left[\left(q+q^{-1}\right) s-s^{2}\right] \geq \frac{4 t^{2}\left[\left(q+q^{-1}\right) s-s^{2}\right]}{\left(q+q^{-1}\right)^{3}} .
$$

When $q^{2} t \leq s$, for all $0 \leq t, s \leq 1$, by (5) we have

$$
K(t, s)=\frac{t^{2}}{q+q^{-1}} \leq \frac{1}{q+q^{-1}} \frac{s^{2}}{q^{4}} \leq \frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)} .
$$

Thanks to $\frac{4\left[\left(q+q^{-1}\right) s-s^{2}\right]}{\left(q+q^{-1}\right)^{2}}<1$, we have

$$
K(t, s)=\frac{t^{2}}{q+q^{-1}} \geq \frac{4 t^{2}\left[\left(q+q^{-1}\right) s-s^{2}\right]}{\left(q+q^{-1}\right)^{3}}
$$

Comprehensive the above content, we get

$$
\begin{align*}
& K(t, s) \leq \frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)}, 0 \leq t, s \leq 1 \tag{9}\\
& K(t, s) \geq \frac{4 t^{2}\left[\left(q+q^{-1}\right) s-s^{2}\right]}{\left(q+q^{-1}\right)^{3}}, 0 \leq t, s \leq 1 \tag{10}
\end{align*}
$$

On the other hand, by (5), we have

$$
K(\eta, s)=\frac{1}{q+q^{-1}}\left\{\begin{array}{cl}
\eta^{2}, & 0 \leq q^{2} \eta \leq s \leq 1, \\
\eta^{2}-\left(\eta-q^{-1} s\right)(\eta-q s), & 0 \leq s \leq q^{2} \eta<1
\end{array}\right.
$$

If $q^{2} \eta \leq s$, for $0 \leq \eta, s \leq 1$, we have

$$
\frac{q^{4}\left(q+q^{-1}\right) K(\eta, s)}{s\left(q+q^{-1}-s\right)}=\frac{q^{4} \eta^{2}}{s\left(q+q^{-1}-s\right)} \leq \frac{q^{4} \eta^{2}}{\left(q+q^{-1}-1\right) s} \leq \frac{q^{2} \eta}{q+q^{-1}-1}<q^{2} \eta .
$$

If $s \leq q^{2} \eta$, for $0 \leq \eta, s \leq 1$, in view of $\frac{\left(q+q^{-1}\right) \eta-s}{q+q^{-1}-s}<\eta$, we have

$$
\frac{q^{4}\left(q+q^{-1}\right) K(\eta, s)}{s\left(q+q^{-1}-s\right)}=\frac{q^{4}\left[\left(q+q^{-1}\right) \eta-s\right]}{q+q^{-1}-s}<q^{4} \eta \leq q^{2} \eta .
$$

So we obtain that

$$
\begin{equation*}
K(\eta, s) \leq \frac{q^{2} \eta s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)}, 0 \leq \eta, s \leq 1 . \tag{11}
\end{equation*}
$$

From (10), it follows that

$$
\begin{equation*}
K(\eta, s) \geq \frac{4 \eta^{2}\left[\left(q+q^{-1}\right) s-s^{2}\right]}{\left(q+q^{-1}\right)^{3}}, 0 \leq \eta, s \leq 1 \tag{12}
\end{equation*}
$$

Hence, by (4), (9) and (11), we get

$$
\begin{aligned}
G(t, s) & \leq \frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)}+\frac{\alpha}{1-\alpha} \cdot \frac{q^{2} \eta s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)} \\
& =\frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)}\left(1+\frac{\alpha q^{2} \eta}{1-\alpha}\right) \\
& =M(s) .
\end{aligned}
$$

So $G(t, s) \leq M(s), 0 \leq t, s \leq 1$.
The end, by (4), (10) and (12), for $0 \leq t, s \leq 1$, we have

$$
\begin{aligned}
G(t, s) & \geq \frac{4 t^{2}\left[\left(q+q^{-1}\right) s-s^{2}\right]}{\left(q+q^{-1}\right)^{3}} \\
& =\frac{4 q^{4} t^{2}(1-\alpha)}{\left(q+q^{-1}\right)^{2}\left(1-\alpha+\alpha q^{2} \eta\right)} \frac{s\left(q+q^{-1}-s\right)}{q^{4}\left(q+q^{-1}\right)}\left(1+\frac{\alpha q^{2} \eta}{1-\alpha}\right) \\
& =p(t) M(s) .
\end{aligned}
$$

The proof is complete.
Choose a cone K in E as follows:

$$
K=\left\{u \in C^{+}[0,1]: u(t) \geq p(t)\|u\|, t \in[0,1]\right\} .
$$

Suppose that u is a positive solution of the boundary value problem (1), then

$$
u(t)=\lambda \int_{0}^{1} G(t, s) g(s) f(u(s)) \tilde{d}_{q} s, t \in[0,1] .
$$

Define an operator $A: C^{+}[0,1] \rightarrow C^{+}[0,1]$ by

$$
A u(t)=\lambda \int_{0}^{1} G(t, s) g(s) f(u(s)) \tilde{d}_{q} s .
$$

By the definition of operator A, a positive solution of the boundary value problem (1) is equivalent to a nonzero fixed point of A.

In view of the nonnegativeness of $G(t, s), g(t)$ and $f(u)$, it is clear that $A u(t) \geq 0, t \in[0,1], A: K \rightarrow C^{+}[0,1]$ is continuous for $u \in K$. Combining with Lemma 3.2, we have

$$
\|A u\|=\max _{0 \leq t \leq 1}|A u(t)|=\max _{0 \leq t \leq 1} \lambda \int_{0}^{1} G(t, s) g(s) f(u(s)) \widetilde{d}_{q} s \leq \lambda \int_{0}^{1} M(s) g(s) f(u(s)) \widetilde{d}_{q} s .
$$

On the other hand,

$$
A u(t) \geq \lambda p(t) \int_{0}^{1} M(s) g(s) f(u(s)) \widetilde{d}_{q} s \geq p(t)\|A u\| .
$$

Thus, we have $A(K) \subset K$.
Lemma 3.3 Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold, then the operator $A: K \rightarrow K$ is completely continuous.

Proof It is clear that the operator $A: K \rightarrow K$ is continuous.
Let $\Omega \subset K$ be bounded, i.e., there exists a positive constant $M_{1}>0$ such that $\|u\| \leq M_{1}$ for all $u \in \Omega$. Let $L=\max _{\|u\| \leq M_{1}}|f(u(t))|+1$. Then for $u \in \Omega$, from Lemma 3. 2, we have

$$
|A u(t)| \leq \lambda \int_{0}^{1}|G(t, s) g(s) f(u(s))| \widetilde{d}_{q} s \leq \lambda L \int_{0}^{1} M(s) g(s) \widetilde{d}_{q} s
$$

Hence, $A(\Omega)$ is bounded.
Now we show that A map bounded sets into equicontinuous sets of K. Let $t_{1}, t_{2} \in[0,1]$, with $t_{1}<t_{2}, u \in \Omega$, where Ω is bounded set of K. Then we obtain

$$
\begin{aligned}
& \left|A u\left(t_{2}\right)-A u\left(t_{1}\right)\right| \\
= & \left.\frac{\lambda}{q+q^{-1}} \right\rvert\, \int_{0}^{1} t_{2}^{2} g(s) f(u(s)) \widetilde{d}_{q} s-\int_{0}^{q^{2} t_{2}}\left(t_{2}-q^{-1} s\right)\left(t_{2}-q s\right) g(s) f(u(s)) \widetilde{d}_{q} s \\
- & \int_{0}^{1} t_{1}^{2} g(s) f(u(s)) \widetilde{d}_{q} s+\int_{0}^{q^{2} t_{1}}\left(t_{1}-q^{-1} s\right)\left(t_{1}-q s\right) g(s) f(u(s)) \widetilde{d}_{q} s \mid \\
\leq & \frac{\lambda L}{q+q^{-1}}\left[\left|t_{2}^{2}-t_{1}^{2}\right| \int_{0}^{1} g(s) \widetilde{d}_{q} s+\int_{q^{2} t_{1}}^{q^{2} t_{2}}\left(t_{2}-q^{-1} s\right)\left(t_{2}-q s\right) g(s) \widetilde{d}_{q} s\right. \\
+ & \left.\int_{0}^{q^{2} t_{1}}\left|\left(t_{2}-q^{-1} s\right)\left(t_{2}-q s\right)-\left(t_{1}-q^{-1} s\right)\left(t_{1}-q s\right)\right| g(s) \widetilde{d}_{q} s\right] \\
= & \frac{\lambda L}{q+q^{-1}}\left[\left(t_{2}^{2}-t_{1}^{2}\right) \int_{0}^{1} g(s) \widetilde{d}_{q} s+\left(t_{2}^{2}-t_{1}^{2}\right) \int_{0}^{q^{2} t_{1}} g(s) \widetilde{d}_{q} s\right. \\
+ & \left.\left(t_{2}-t_{1}\right) \int_{0}^{q^{2} t_{1}} s\left(q+q^{-1}\right) g(s) \widetilde{d}_{q} s+\int_{q^{2} t_{1}}^{q^{2} t_{2}}\left(t_{2}-q^{-1} s\right)\left(t_{2}-q s\right) g(s) \widetilde{d}_{q} s\right] .
\end{aligned}
$$

Obviously the right side of the obove inequality tends to zero independently of $u \in \Omega$ as $t_{2}-t_{1} \rightarrow 0$. Therefore it follows by the Arzelá-Ascoli theorem that $A: K \rightarrow K$ is a completely continuous mapping. The proof is complete.

4 Main results

In this section, we state and prove our main results. To be convenient, we introduce the following notations:

$$
\begin{gathered}
F_{0}=\lim _{u \rightarrow 0^{+}} \sup \frac{f(u)}{u} ; F_{\infty}=\lim _{u \rightarrow+\infty} \sup \frac{f(u)}{u} ; f_{0}=\lim _{u \rightarrow 0^{+}} \inf \frac{f(u)}{u} ; f_{\infty}=\lim _{u \rightarrow+\infty} \inf \frac{f(u)}{u} . \\
N_{1}=\int_{0}^{1} M(s) g(s) \widetilde{d}_{q} s ; N_{2}=\int_{0}^{1} p(s) M(s) g(s) \widetilde{d}_{q} s .
\end{gathered}
$$

Theorem 4.1 If there exists $\rho \in(0,1)$ such that $p(\rho) f_{\infty} N_{2}>F_{0} N_{1}$ holds, then for each

$$
\begin{equation*}
\lambda \in\left(\left(p(\rho) f_{\infty} N_{2}\right)^{-1},\left(F_{0} N_{1}\right)^{-1}\right) \tag{13}
\end{equation*}
$$

the boundary value problem (1) has at least one positive solution. Here we impose $\left(p(\rho) f_{\infty} N_{2}\right)^{-1}=0$ if $f_{\infty}=+\infty$ and $\left(F_{0} N_{1}\right)^{-1}=+\infty$ if $F_{0}=0$.

Proof Let λ satisfy (13) and $\varepsilon>0$ be such that

$$
\begin{equation*}
\left(p(\rho)\left(f_{\infty}-\varepsilon\right) N_{2}\right)^{-1} \leq \lambda \leq\left(\left(F_{0}+\varepsilon\right) N_{1}\right)^{-1} \tag{14}
\end{equation*}
$$

By the definition of F_{0}, we see that there exists $r_{1}>0$ such that

$$
\begin{equation*}
f(u) \leq\left(F_{0}+\varepsilon\right) u, 0<u \leq r_{1} . \tag{15}
\end{equation*}
$$

So if $u \in K$ with $\|u\|=r_{1}$, then by (14) and (15), we have

$$
\|A u\| \leq \lambda \int_{0}^{1} M(s) g(s)\left(F_{0}+\varepsilon\right) r_{1} \widetilde{d}_{q} s \leq \lambda\left(F_{0}+\varepsilon\right) r_{1} N_{1} \leq r_{1}=\|u\|
$$

Hence, if we choose $\Omega_{1}=\left\{u \in C^{+}[0,1]:\|u\|<r_{1}\right\}$, then

$$
\begin{equation*}
\|A u\| \leq\|u\|, u \in K \cap \partial \Omega_{1} \tag{16}
\end{equation*}
$$

Let $r_{3}>0$ be such that

$$
\begin{equation*}
f(u) \geq\left(f_{\infty}-\varepsilon\right) u, u \geq r_{3} . \tag{17}
\end{equation*}
$$

If $u \in K$ with $\|u\|=r_{2}=\max \left\{2 r_{1}, r_{3}\right\}$, then by (14) and (17), we have

$$
\begin{aligned}
\|A u\| & \geq \lambda \int_{0}^{1} G(\rho, s) g(s) f(u(s)) \widetilde{d}_{q} s \geq \lambda \int_{0}^{1} p(\rho) M(s) g(s)\left(f_{\infty}-\varepsilon\right) u(s) \widetilde{d}_{q} s \\
& \geq \lambda p(\rho)\left(f_{\infty}-\varepsilon\right)\|u\| \int_{0}^{1} p(s) M(s) g(s) \widetilde{d}_{q} s \\
& =\lambda p(\rho)\left(f_{\infty}-\varepsilon\right)\|u\| N_{2} \geq\|u\| .
\end{aligned}
$$

Thus, if we set $\Omega_{2}=\left\{u \in C^{+}[0,1]:\|u\|<r_{2}\right\}$, then

$$
\begin{equation*}
\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{2} \tag{18}
\end{equation*}
$$

Now, from (16), (18) and Lemma 2.8, we guarantee that A has a fix point $u \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r_{1} \leq\|u\| \leq r_{2}$, and clearly u is a positive solution of (1). The proof is complete.

Theorem 4.2 If there exists $\rho \in(0,1)$ such that $p(\rho) f_{0} N_{2}>F_{\infty} N_{1}$ holds, then for each

$$
\begin{equation*}
\lambda \in\left(\left(p(\rho) f_{0} N_{2}\right)^{-1},\left(F_{\infty} N_{1}\right)^{-1}\right), \tag{19}
\end{equation*}
$$

the boundary value problem (1) has at least one positive solution. Here we impose $\left(p(\rho) f_{0} N_{2}\right)^{-1}=0$ if $f_{0}=+\infty$ and $\left(F_{\infty} N_{1}\right)^{-1}=+\infty$ if $F_{\infty}=0$.

Proof Let λ satisfy (19) and $\varepsilon>0$ be such that

$$
\begin{equation*}
\left(p(\rho)\left(f_{0}-\varepsilon\right) N_{2}\right)^{-1} \leq \lambda \leq\left(\left(F_{\infty}+\varepsilon\right) N_{1}\right)^{-1} . \tag{20}
\end{equation*}
$$

From the definition of f_{0}, we see that there exists $r_{1}>0$ such that

$$
f(u) \geq\left(f_{0}-\varepsilon\right) u, 0<u \leq r_{1} .
$$

Further, if $u \in K$ with $\|u\|=r_{1}$, then similar to the second part of Theorem 4.1, we can obtain that $\|A u\| \geq\|u\|$. Thus, if we choose $\Omega_{1}=\left\{u \in C^{+}[0,1]\right.$: $\left.\|u\|<r_{1}\right\}$, then

$$
\begin{equation*}
\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{1} . \tag{21}
\end{equation*}
$$

Next, we may choose $R_{1}>0$ such that

$$
\begin{equation*}
f(u) \leq\left(F_{\infty}+\varepsilon\right) u, u \geq R_{1} . \tag{22}
\end{equation*}
$$

We consider two cases:
Case 1. Suppose f is bounded. Then there exists some $M_{2}>0$, such that

$$
f(u) \leq M_{2}, u \in(0,+\infty) .
$$

We define $r_{3}=\max \left\{2 r_{1}, \lambda M_{2} N_{1}\right\}$, and $u \in K$ with $\|u\|=r_{3}$, then

$$
\|A u\| \leq \lambda \int_{0}^{1} M(s) g(s) f(u(s)) \widetilde{d}_{q} s \leq \lambda M_{2} \int_{0}^{1} M(s) g(s) \widetilde{d}_{q} s=\lambda M_{2} N_{1} \leq r_{3}=\|u\| .
$$

Hence,

$$
\begin{equation*}
\|A u\| \leq\|u\|, u \in K_{r_{3}}=\left\{u \in K:\|u\| \leq r_{3}\right\} . \tag{23}
\end{equation*}
$$

Case 2. Suppose f is unbounded. Then there exists some $r_{4}>\max \left\{2 r_{1}, R_{1}\right\}$, such that

$$
\begin{equation*}
f(u) \leq f\left(r_{4}\right), 0<u \leq r_{4} . \tag{24}
\end{equation*}
$$

Let $u \in K$ with $\|u\|=r_{4}$. Then by (20) and (22), we have

$$
\begin{aligned}
\|A u\| & \leq \lambda \int_{0}^{1} M(s) g(s) f(u(s)) \widetilde{d}_{q} s \leq \lambda \int_{0}^{1} M(s) g(s)\left(F_{\infty}+\varepsilon\right)\|u\| \widetilde{d}_{q} s \\
& =\lambda\left(F_{\infty}+\varepsilon\right)\|u\| N_{1} \leq\|u\| .
\end{aligned}
$$

Thus, (23) is also true.
In both Cases 1 and 2, if we set $\Omega_{2}=\left\{u \in C^{+}[0,1]:\|u\|<r_{2}=\right.$ $\left.\max \left\{r_{3}, r_{4}\right\}\right\}$, then

$$
\begin{equation*}
\|A u\| \leq \mid u \|, u \in K \cap \partial \Omega_{2} \tag{25}
\end{equation*}
$$

Now that we obtain (21) and (25), it follows from Lemma 2.8 that A has a fixed-point $u \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r_{1} \leq\|u\| \leq r_{2}$, and it is clear u is a positive solution of (1). The proof is complete.

Theorem 4.3 Suppose there exist $\rho \in(0,1), r_{2}>r_{1}$ such that $p(\rho)>\frac{r_{1}}{r_{2}}$, and f satisfy

$$
\max _{0 \leq u \leq r_{2}} f(u) \leq \frac{r_{2}}{\lambda N_{1}}, \min _{p(\rho) r_{1} \leq u \leq r_{1}} f(u) \geq \frac{r_{1}}{\lambda p(\rho) N_{2}} .
$$

Then the boundary value problem (1) has a positive solution $u \in K$ with $r_{1} \leq$ $\|u\| \leq r_{2}$.

Proof choose $\Omega_{1}=\left\{u \in C^{+}[0,1]:\|u\|<r_{1}\right\}$, then for $u \in K \cap \partial \Omega_{1}$, we have

$$
\begin{aligned}
\|A u\| & \geq \lambda \int_{0}^{1} G(\rho, s) g(s) f(u(s)) \widetilde{d}_{q} s \\
& \geq \lambda p(\rho) \int_{0}^{1} M(s) g(s) f(u(s)) \widetilde{d}_{q} s \\
& \geq \lambda p(\rho) \int_{0}^{1} p(s) M(s) g(s) \min _{p(\rho) r_{1} \leq u \leq r_{1}} f(u(s)) \widetilde{d}_{q} s \\
& \geq \lambda p(\rho) N_{2} \frac{r_{1}}{p(\rho) \lambda N_{2}}=r_{1}=\|u\| .
\end{aligned}
$$

On the other hand, choose $\Omega_{2}=\left\{u \in C^{+}[0,1]:\|u\|<r_{2}\right\}$, then for $u \in$ $K \cap \partial \Omega_{2}$, we have

$$
\begin{aligned}
\|A u\| & \leq \lambda \int_{0}^{1} M(s) g(s) f(u(s)) \widetilde{d}_{q} s \leq \lambda \int_{0}^{1} M(s) g(s) \max _{0 \leq u \leq r_{2}} f(u(s)) \widetilde{d}_{q} s \\
& \leq \lambda N_{1} \frac{r_{2}}{\lambda N_{1}}=r_{2}=\|u\| .
\end{aligned}
$$

Thus, by Lemma 2.8, the boundary value problem (1) has a positive solution $u \in K$ with $r_{1} \leq\|u\| \leq r_{2}$. The proof is complete.

For the reminder of the paper, we will need the following condition.
$\left(H_{4}\right) \sup _{r>0} \min _{u \in(p(\rho) r, r)} f(u)>0$, where $\rho \in(0,1)$.
Denote

$$
\begin{gather*}
\lambda_{1}=\sup _{r>0} \frac{r}{N_{1} \max _{0 \leq u \leq r} f(u)}, \tag{26}\\
\lambda_{2}=\inf _{r>0} \frac{r}{p(\rho) N_{2} \min _{p(\rho) r \leq u \leq r} f(u)} . \tag{27}
\end{gather*}
$$

In view of the continuity of $f(u)$ and $\left(H_{4}\right)$, we have $0<\lambda_{1} \leq+\infty$ and $0 \leq \lambda_{2}<+\infty$.

Theorem 4.4 Assume $\left(H_{4}\right)$ holds. If $f_{0}=+\infty$ and $f_{\infty}=+\infty$, then the boundary value problem (1) has at least two positive solutions for each $\lambda \in\left(0, \lambda_{1}\right)$.

Proof Define

$$
a(r)=\frac{r}{N_{1} \max _{0 \leq u \leq r} f(u)} .
$$

By the continuity of $f(u), f_{0}=+\infty$ and $f_{\infty}=+\infty$, we have that $a(r)$: $(0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\lim _{r \rightarrow 0} a(r)=\lim _{r \rightarrow+\infty} a(r)=0
$$

By (26), there exists $r_{0} \in(0,+\infty)$, such that $a\left(r_{0}\right)=\sup _{r>0} a(r)=\lambda_{1}$, then for $\lambda \in\left(0, \lambda_{1}\right)$, there exist constants $m_{1}, m_{2}\left(0<m_{1}<r_{0}<m_{2}<+\infty\right)$ with

$$
a\left(m_{1}\right)=a\left(m_{2}\right)=\lambda .
$$

Thus,

$$
\begin{align*}
& f(u) \leq \frac{m_{1}}{\lambda N_{1}}, u \in\left[0, m_{1}\right] \tag{28}\\
& f(u) \leq \frac{m_{2}}{\lambda N_{1}}, u \in\left[0, m_{2}\right] . \tag{29}
\end{align*}
$$

On the other hand, applying the conditions $f_{0}=+\infty$ and $f_{\infty}=+\infty$, there exist constants $n_{1}, n_{2}\left(0<n_{1}<m_{1}<r_{0}<m_{2}<n_{2}<+\infty\right)$ with

$$
\begin{equation*}
\frac{f(u)}{u} \geq \frac{1}{p^{2}(\rho) \lambda N_{2}}, u \in\left(0, n_{1}\right) \bigcup\left(p(\rho) n_{2},+\infty\right) \tag{30}
\end{equation*}
$$

then

$$
\begin{array}{r}
\min _{p(\rho) n_{1} \leq u \leq n_{1}} f(u) \geq \frac{n_{1}}{\lambda p(\rho) N_{2}}, \\
\min _{p(\rho) n_{2} \leq u \leq n_{2}} f(u) \geq \frac{n_{2}}{\lambda p(\rho) N_{2}} . \tag{32}
\end{array}
$$

By (28) and(31), (29) and (32), combining with Theorem 4.3, we can complete the proof.

Corollary 4.5 Assume (H_{4}) holds. If $f_{0}=+\infty$ or $f_{\infty}=+\infty$, then the boundary value problem (1) has at least one positive solution for each $\lambda \in$ $\left(0, \lambda_{1}\right)$.

Theorem 4.6 Assume $\left(H_{4}\right)$ holds. If $f_{0}=0$ and $f_{\infty}=0$, then for each $\lambda \in$ $\left(\lambda_{2},+\infty\right)$ the boundary value problem (1) has at least two positive solutions.

Proof Define

$$
b(r)=\frac{r}{p(\rho) N_{2} \min _{p(\rho) r \leq u \leq r} f(u)} .
$$

By the continuity of $f(u), f_{0}=0$ and $f_{\infty}=0$, we easily see that $b(r)$: $(0,+\infty) \rightarrow(0,+\infty)$ is continuous and

$$
\lim _{r \rightarrow 0} b(r)=\lim _{r \rightarrow+\infty} b(r)=+\infty
$$

By (27), there exists $r_{0} \in(0,+\infty)$, such that $b\left(r_{0}\right)=\inf _{r>0} b(r)=\lambda_{2}$. For $\lambda \in\left(\lambda_{2},+\infty\right)$, there exist constants $n_{3}, n_{4}\left(0<n_{3}<r_{0}<n_{4}<+\infty\right)$ with

$$
b\left(n_{3}\right)=b\left(n_{4}\right)=\lambda .
$$

Therefore,

$$
\begin{aligned}
& f(u) \geq \frac{n_{3}}{\lambda p(\rho) N_{2}}, u \in\left[p(\rho) n_{3}, n_{3}\right] \\
& f(u) \geq \frac{n_{4}}{\lambda p(\rho) N_{2}}, u \in\left[p(\rho) n_{4}, n_{4}\right] .
\end{aligned}
$$

On the other hand, using $f_{0}=0$, we know that there exists a constants $m_{3}\left(0<m_{3}<n_{3}\right)$ with

$$
\begin{gather*}
\frac{f(u)}{u} \leq \frac{1}{\lambda N_{1}}, u \in\left(0, m_{3}\right), \\
\max _{0 \leq u \leq m_{3}} f(u) \leq \frac{m_{3}}{\lambda N_{1}} \tag{33}
\end{gather*}
$$

In view of $f_{\infty}=0$, there exists a constant $m_{4} \in\left(n_{4},+\infty\right)$, such that

$$
\frac{f(u)}{u} \leq \frac{1}{\lambda N_{1}}, u \in\left(m_{4},+\infty\right)
$$

Let $M_{3}=\max _{0 \leq u \leq m_{4}} f(u)$ and $m_{4} \geq \lambda N_{1} M_{3}$. It is easily seen that

$$
\begin{equation*}
\max _{0 \leq u \leq m_{4}} f(u) \leq \frac{m_{4}}{\lambda N_{1}} . \tag{34}
\end{equation*}
$$

By (33), (34) and Theorem 4.3, we can complete the proof.
Corollary 4.7 Assume (H_{4}) holds. If $f_{0}=0$ or $f_{\infty}=0$, then for each $\lambda \in\left(\lambda_{2},+\infty\right)$ the boundary value problem (1) has at least one positive solution.

By the above theorems, we can obtain the following results.
Corollary 4.8 Assume (H_{4}) holds. If $f_{0}=+\infty, f_{\infty}=l$, or if $f_{0}=l, f_{\infty}=$ $+\infty$, then for any $\lambda \in\left(0,\left(l N_{1}\right)^{-1}\right)$ the boundary value problem (1) has at least one positive solution.

Corollary 4.9 Assume (H_{4}) holds. If $f_{0}=0, f_{\infty}=l$, or if $f_{0}=l, f_{\infty}=0$, then for any $\lambda \in\left(\left(p(\rho) l N_{2}\right)^{-1},+\infty\right)$ the boundary value problem (1) has at least one positive solution.

5 Nonexistence

In this section, we give some sufficient conditions for the nonexistence of positive solution to the problem (1).

Theorem 5.1 Assume (H_{4}) holds. If $F_{0}<+\infty$ and $F_{\infty}<+\infty$, then there exists a constant $\lambda_{0}>0$ such that for all $\lambda \in\left(0, \lambda_{0}\right)$, the boundary value problem (1) has no positive solution.

Proof Since $F_{0}<+\infty$ and $F_{\infty}<+\infty$, there exist positive numbers l_{1}, l_{2}, r_{1} and r_{2}, such that $r_{1}<r_{2}$ and

$$
\begin{gathered}
f(u) \leq l_{1} u, u \in\left[0, r_{1}\right], \\
f(u) \leq l_{2} u, u \in\left[r_{2},+\infty\right)
\end{gathered}
$$

Let $M_{4}=\max \left\{l_{1}, l_{2}, \max _{r_{1} \leq u \leq r_{2}}\left\{\frac{f(u)}{u}\right\}\right\}$. Then we have

$$
f(u) \leq M_{4} u, u \in[0,+\infty)
$$

Assume $v(t)$ is a positive solution of (1). We will show that this leads to a contradiction for $0<\lambda<\lambda_{0}:=\left(M_{4} N_{1}\right)^{-1}$. Since $A v(t)=v(t)$, for $t \in[0,1]$,

$$
\begin{gathered}
\|v\|=\|A v\| \leq \lambda \int_{0}^{1} M(s) g(s) f(v(s)) \widetilde{d}_{q} s \\
\leq \lambda M_{4}\|v\| \int_{0}^{1} M(s) g(s) \widetilde{d}_{q} s \\
<\lambda_{0} M_{4}\|v\| \int_{0}^{1} M(s) g(s) \widetilde{d}_{q} s=\|v\|
\end{gathered}
$$

which is a contradiction. Therefore, (1) has no positive solution. The proof is complete.

Theorem 5.2 Assume (H_{4}) holds. If $f_{0}>0$ and $f_{\infty}>0$, then there exists a constant $\lambda_{0}>0$ such that for all $\lambda \in\left(\lambda_{0},+\infty\right)$, the boundary value problem (1) has no positive solution.

Proof By $f_{0}>0$ and $f_{\infty}>0$, we know that there exist positive numbers l_{3}, l_{4}, r_{3} and r_{4}, such that $r_{3}<r_{4}$ and

$$
\begin{gathered}
f(u) \geq l_{3} u, u \in\left[0, r_{3}\right] \\
f(u) \geq l_{4} u, u \in\left[r_{4},+\infty\right)
\end{gathered}
$$

Let $M_{5}=\min \left\{l_{3}, l_{4}, \min _{r_{3} \leq u \leq r_{4}}\left\{\frac{f(u)}{u}\right\}\right\}>0$. Then we get

$$
f(u) \geq M_{5} u, u \in[0,+\infty)
$$

Assume $v(t)$ is a positive solution of (1). We will show that this leads to a contradiction for $\lambda>\lambda_{0}:=\left(p(\rho) M_{5} N_{2}\right)^{-1}$. Since $\operatorname{Av}(t)=v(t)$, for $t \in[0,1]$,

$$
\begin{aligned}
\|v\| & =\|A v\| \geq \lambda \int_{0}^{1} G(\rho, s) g(s) f(v(s)) \widetilde{d}_{q} s \\
& \geq p(\rho) \lambda \int_{0}^{1} M(s) g(s) f(v(s)) \widetilde{d}_{q} s \\
& \geq p(\rho) \lambda M_{5}\|v\| \int_{0}^{1} p(s) M(s) g(s) \widetilde{d}_{q} s \\
& >p(\rho) \lambda M_{5}\|v\| N_{2}=\|v\|,
\end{aligned}
$$

which is a contradiction. Thus, (1) has no positive solution. The proof is complete.

Acknowledgments. This paper was supported by General Research Project of the Education Department of Jilin Province in 2015(No.36), and the Natural Science Foundation of China (11161049).

References

[1] A. Strominger, Information in black hole radiation, Phys. Rev. Lett. 71(1993),3743-3746.
[2] D. Youm, q-deformed conformal quantum mechanics, Phys. Rev. D 62(2000).
[3] A. Lavagno, P.N. Swamy, q-deformed structures and nonextensive statistics: a comparative study, Phys. A 305(1-2)(2002),310-315.
[4] G. Boole, Calculus of Finite Differences, Chelsea Publishing Company, New York, 1957.
[5] T. Ernst, The different tongues of q-calculus, Proc. Est. Acad. Sci. 57(2)(2008),8199.
[6] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002, Universitext.
[7] R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, in: Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
[8] A. Lavagno, G. Gervino, Quantum mechanics in q-deformed calculus, J. Phys.: Conf. Ser. 174(2009).
[9] Artur M.C. Brito da Cruz, Natália Martins, The q-symmetric variational calculus, Computers and Mathematics with Applications, 64(2012),22412250.
[10] Li Wang, Chengmin Hou, Application of differential transformation method to nonlinear q-symmetric damped systems, Mathematica Aeterna, 5(3)(2015),503-514.
[11] Yige Zhao, Shurong Sun, Zhenlai Han, Qiuping Li, Positive solutions to boundary value problems of nonlinear fractional differential equations, Abstract and Applied Analysis, 2011(2011), 16 pages.

