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Abstract

In this paper, we study the existence and the nonexistence of positive

solutions for boundary value problems of the third-order q-symmetric

difference equations with parameter. By using the properties of the

Green function and Guo-Krasnoselskii fixed point theorem on cones,

we prove the existence of positive solutions to this equation when the

parameter belongs to different interval. And by apagoge, we prove the

nonexistence of positive solutions to this equation when the parameter

belongs to different interval.
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1 Introduction

In recent years, Quantum calculus is a very interesting field in mathemat-
ics. As calculus without limits, quantum calculus plays an important role in
several fields of physics such as cosmic strings and black holes [1], conformal
quantum mechanics [2], nuclear and high energy physics [3]. For details, We
can refer the reader to [4-7].

Quantum calculus has two types: the q-calculus and the h-calculus. The
q-symmetriqc quantum calculus is a type of the q-calculus . In the q-symmetric
quantum calculus, for a fixed q ∈ (0, 1) and t 6= 0 the q-symmetric derivative
of a function f at point t is defined by

f(qt)− f(q−1t)

(q − q−1)t
.

The q-symmetric quantum calculus has proven to be useful in several fields,
in particular in quantum mechanics [8]. As noticed in [8], the q-symmetric
derivative let the q-exponential function have unique properties.
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In 2012,Artur M.C. Brito da Cruz [9] has introduced a wealth of knowledge
about q-symmetric variational calculus, which laid a good foundation to the
continue study.

In 2015, Li Wang and Chengmin Hou[10] studied the application of differ-
ential transformation method to nonlinear q-symmetric damped systems. At
present, the research about the existence of positive solutions for boundary
value problems of the q-symmetric difference equations are scarce.

In this paper we investigate the existence of solutions for the following
boundary value problem of the third-order q-symmetric difference equations
with parameter:

{
D̃3

q [u](t) = −λg(t)f(u(t)), t ∈ (0, 1);

u(0) = αu(η), D̃q[u](0) = D̃2
q [u](1) = 0,

(1)

where 0 < q < 1, 0 < η < 1, 0 < α < 1, and λ is a positive parameter.
Throughout this paper, we assume that the following conditions are satisfied:
(H1)f : [0,∞) → [0,∞) is continuous;
(H2)g ∈ C([0, 1], [0,∞)) is increasing, and is not identically zero on any subin-
terval of [0, 1];

(H3)0 <
∫ 1

0
g(s)d̃qs < ∞.

2 Preliminary notes

For the convenience of the reader, we give some background materials from
q-symmetric calculus theory to facilitate analysis of problem (1).

Let q ∈ (0, 1) and let I be an interval (bounded or unbounded) of R con-
taining 0. We will denote by Iq the set Iq := qI := {qx : x ∈ I}. Note that
Iq ⊆ I.

Definition 2.1 [9] Let f be a real function defined on I. The q-symmetric
difference operator of f is defined by

D̃q[f ](x) =
f(qx)− f(q−1x)

(q − q−1)x
, t ∈ Iq \ {0},

and D̃q[f ](0) := f ′(0), provided f is differentiable at 0. We usually call D̃q[f ]
the q-symmetric derivative of f .

The q-symmetric derivatives of higher order:

D̃0
q [f ](x) = f(x), D̃n

q [f ](x) = D̃qD̃
n−1
q [f ](x), n ∈ N

+.

By the definition of the q-symmetric derivative, for any constant k, we have

D̃q(kt) = k, D̃q(kt
2) = k(q + q−1)t.

The q-symmetric difference operator has the following properties.
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Lemma 2.2 [9] Let f and g be q-differentiable on I, let α, β ∈ R and t ∈ Iq.
One has

1.D̃q[f ] ≡ 0 iff f is constant on I;

2.D̃q[αf + βg](t) = αD̃q[f ](t) + βD̃q[g](t);

3.D̃q[fg](t) = D̃q[f ](t)g(qt) + f(q−1t)D̃q[g](t);

4.D̃q[
f

g
](t) = D̃q[f ](t)g(q−1t)−f(q−1t)D̃q [g](t)

g(qt)g(q−1t)
, if g(qt)g(q−1t) 6= 0.

Definition 2.3 [9] Let a, b ∈ I and a < b. For f : I → R and for q ∈ (0, 1)
the q-symmetric integral of f from a to b is given by

∫ b

a

f(t)d̃qt =

∫ b

0

f(t)d̃qt−

∫ a

0

f(t)d̃qt,

where

Ĩq,0[f ](x) :=

∫ x

0

f(t)d̃qt = (q−1 − q)x
∞∑

k=0

q2k+1f(xq2k+1)

= (1− q2)x
∞∑

k=0

q2kf(xq2k+1), x ∈ I,

provided that the series converges at x = a and x = b. In that case, f is called
q-symmetric integrable on [a, b]. We say that f is q-integrable on I if it is
q-integrable on [a, b] for all a, b ∈ I.

As for q-symmetric derivatives, we can define an operator Ĩnq,0 by

Ĩ0q,0[f ](x) = f(x), Inq,0[f ](x) = Ĩq,0Ĩ
n−1
q,0 [f ](x), n ∈ N

+.

For operators defined in this manner, the following is valid:

D̃q Ĩq,0[f ](x) = f(x), Ĩq,0D̃q[f ](x) = f(x)− f(0).

By the definition of the q-symmetric integral, for any constant k, we have

Ĩq,0(k) =

∫ x

0

kd̃qt = kx, Ĩq,0(kx) =

∫ x

0

ktd̃qt =
kq

1 + q2
x2.

On this basis, we have

Ĩ3q,0D̃
3
q [f ](x) = f(x) + c0 + c1x+ c2x

2. (2)

Lemma 2.4 [9] Let a, b ∈ I, a < b and f : I → R continuous at 0. Then
for s ∈ [a, b] the sequence (f(q2n+1s))n∈N converges uniformly to f(0) on I.
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Corollary 2.5 [9] If f : I → R is continuous at 0, then for s ∈ [a, b] the
series

∑+∞
n=0 q

2nf(q2n+1s) is uniformly convergent on I, and, consequently, f
is q-symmetric integrable on [a, b].

Lemma 2.6 [9] Let f, g : I → R be q-symmetric integrable on I, a, b, c ∈ I

and α, β ∈ R. Then
1.
∫ a

a
f(t)d̃qt = 0;

2.
∫ b

a
f(t)d̃qt = −

∫ a

b
f(t)d̃qt;

3.
∫ b

a
f(t)d̃qt =

∫ c

a
f(t)d̃qt+

∫ b

c
f(t)d̃qt;

4.
∫ b

a
(αf + βg)(t)d̃qt = α

∫ b

a
f(t)d̃qt+ β

∫ b

a
g(t)d̃qt;

5. Suppose that f(t) ≥ 0, ∀t ∈ {q2n+1c : n ∈ N0} ∪ {0}. If c ≥ 0, then

∫ c

0

f(t)d̃qt ≥ 0,

In general it is not true that if f is a positive function on [a, b], then

∫ b

a

f(t)d̃qt ≥ 0.

Lemma 2.7 Ĩ3q,0[f ](x) =
q

1+q2

∫ q2x

0
(x− q−1t)(x− qt)f(t)d̃qt.

Proof By Definition 2.3, we have

Ĩ2q,0[f ](x) = Ĩq,0[(1− q2)x
∞∑

n=0

q2nf(xq2n+1)]

= (1− q2)2x2
∞∑

m=0

∞∑

n=0

q2mq2n+2m+1f(xq2n+2m+2)

= (1− q2)2x2
∞∑

m=0

∞∑

k=m

q2mq2k+1f(xq2k+2)

= (1− q2)2x2
∞∑

k=0

k∑

m=0

q2mq2k+1f(xq2k+2)

= (1− q2)2x2
∞∑

k=0

1− q2k+2

1− q2
q2k+1f(xq2k+2)

= q(1− q2)x

∞∑

k=0

(x− q2k+2x)q2kf(xq2k+2)

=

∫ qx

0

(x− t)f(t)d̃qt,
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and

Ĩ3q,0[f ](x) = Ĩq,0Ĩ
2
q,0[f ](x)

= q(1− q2)2x3

∞∑

k=0

∞∑

n=0

q2k+2n+2q2k(q2k − q2n+2k+2)f(xq2n+2k+3)

= q(1− q2)2x3
∞∑

k=0

∞∑

n=k

q2kq2n+2(q2k − q2n+2)f(xq2n+3)

= q(1− q2)2x3
∞∑

n=0

n∑

k=0

q2kq2n+2(q2k − q2n+2)f(xq2n+3)

= q(1− q2)2x3

∞∑

n=0

(
1− q4n+4

1− q4
−

1− q2n+2

1− q2
q2n+2)q2n+2f(q2xq2n+1)

= q2x(1 − q2)q

∞∑

n=0

(x− q2n+2x)(x− q2n+4x)

1 + q2
q2nf(q2xq2n+1)

=
q

1 + q2

∫ q2x

0

(x− q−1t)(x− qt)f(t)d̃qt.

The proof is complete.

Lemma 2.8 [11] Let X be a Banach space, and let P ⊂ X be a cone in
X. Assume Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let
S : P → P be a completely continuous operator such that, either
(i) ‖ Sw ‖≤‖ w ‖, w ∈ P ∩ Ω1, ‖ Sw ‖≥‖ w ‖, w ∈ P ∩ Ω2, or
(ii) ‖ Sw ‖≥‖ w ‖, w ∈ P ∩ Ω1, ‖ Sw ‖≤‖ w ‖, w ∈ P ∩ Ω2.
Then S has a fixed point in P ∩ (Ω2 \ Ω1).

3 Green function and related lemmas

Let E = C[0, 1], C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}, then E is a
Banach space with norm ‖u‖ = max0≤t≤1 |u(t)|.

Lemma 3.1 Let 0 < η < 1, 0 < α < 1. Suppose that h(t) : [0, 1] → [0,+∞)

is continuous function, 0 <
∫ 1

0
h(s)d̃qs < ∞, then the boundary value problem

{
D̃3

q [u](t) = −h(t), t ∈ (0, 1);

u(0) = αu(η), D̃q[u](0) = D̃2
q [u](1) = 0

(3)

has the unique solution

u(t) =

∫ 1

0

G(t, s)h(s)d̃qs.
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where
G(t, s) = K(t, s) +

α

1− α
K(η, s) (4)

is corresponding Greens function, and

K(t, s) =
1

q + q−1

{
t2, 0 ≤ q2t ≤ s ≤ 1,

t2 − (t− q−1s)(t− qs), 0 ≤ s ≤ q2t < 1.
(5)

Proof By (2), we have

u(t) = −Ĩ3q,0h(t) + C0 + C1t + C2t
2. (6)

By D̃q[u](0) = 0, it follows that C1 = 0, from

D̃2
q [u](1) = −

∫ 1

0

h(s)d̃qs+ C2(q + q−1) = 0,

we get that C2 =
1

q+q−1

∫ 1

0
h(s)d̃qs. thanks to u(0) = αu(η), in view of Lemma

2.7, we have

C0 = −
α

q + q−1

∫ q2η

0

(η − q−1s)(η − qs)h(s)d̃qs+ αC0 +
αη2

q + q−1

∫ 1

0

h(s)d̃qs,

it follows that

C0 = −
α

(1− α)(q + q−1)

∫ q2η

0

(η−q−1s)(η−qs)h(s)d̃qs+
αη2

(1− α)(q + q−1)

∫ 1

0

h(s)d̃qs.

Thus, substituting C0, C2 into (6), we have

u(t) = −
1

q + q−1

∫ q2t

0

(t− q−1s)(t− qs)h(s)d̃qs

−
α

(1− α)(q + q−1)

∫ q2η

0

(η − q−1s)(η − qs)h(s)d̃qs

+
αη2

(1− α)(q + q−1)

∫ 1

0

h(s)d̃qs+
t2

q + q−1

∫ 1

0

h(s)d̃qs

=
1

q + q−1
[

∫ 1

0

t2h(s)d̃qs−

∫ q2t

0

(t− q−1s)(t− qs)h(s)d̃qs]

+
α

(1− α)(q + q−1)
[

∫ 1

0

η2h(s)d̃qs−

∫ q2η

0

(η − q−1s)(η − qs)h(s)d̃qs].

=

∫ 1

0

K(t, s)h(s)d̃qs+
α

1− α

∫ 1

0

K(η, s)h(s)d̃qs,

where K(t, s) is given by (5). The proof is complete.
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Lemma 3.2 Let 0 < η < 1, 0 < α < 1, for G(t, s) be given as (4), then we
obtain the following results:

(i) 0 ≤ G(t, s), 0 ≤ t, s ≤ 1;
(ii) p(t)M(s) ≤ G(t, s) ≤ M(s), 0 ≤ t, s ≤ 1,

where

M(s) =
s(q + q−1 − s)

q4(q + q−1)
(1 +

αq2η

1− α
), (7)

p(t) =
4q4t2(1− α)

(q + q−1)2(1− α + αq2η)
. (8)

Proof When 0 ≤ s ≤ q2t < 1, from (5), we have

(q + q−1)K(t, s) = (q + q−1)ts− s2 =
s(q2t+ t− qs)

q
≥

s(s+ t− qs)

q
≥ 0.

When 0 ≤ q2t ≤ s ≤ 1, in view of (4) and (5), G(t, s) ≥ 0 is easily checked.
So

G(t, s) ≥ 0, 0 ≤ t, s ≤ 1.

Next we will show that G(t, s) ≤ M(s), 0 ≤ t, s ≤ 1.
In fact, when s ≤ q2t, for all 0 ≤ t, s ≤ 1, it follows from (5) that

K(t, s) =
s

q + q−1
[(q + q−1)t− s] ≤

s

q + q−1
[(q + q−1)− s] ≤

s(q + q−1 − s)

q4(q + q−1)
;

K(t, s) =
1

q + q−1
[(q + q−1)ts− s2]

=
1

q + q−1
[t2s2 − t2s2 + (q + q−1)t2s− (q + q−1)t2s+ (q + q−1)ts− s2]

=
t2

q + q−1
[(q + q−1)s− s2] +

s(1− t)

q + q−1
[(q + q−1)t− s− ts],

thanks to

(q+q−1)t−s−ts =
q2t+ t− qs− qts

q
≥

s+ t− qs− qts

q
=

s(1− q) + t(1− qs)

q
≥ 0,

and (q + q−1)2 > 4, we have

K(t, s) ≥
t2

q + q−1
[(q + q−1)s− s2] ≥

4t2[(q + q−1)s− s2]

(q + q−1)3
.
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When q2t ≤ s, for all 0 ≤ t, s ≤ 1, by (5) we have

K(t, s) =
t2

q + q−1
≤

1

q + q−1

s2

q4
≤

s(q + q−1 − s)

q4(q + q−1)
.

Thanks to 4[(q+q−1)s−s2]
(q+q−1)2

< 1, we have

K(t, s) =
t2

q + q−1
≥

4t2[(q + q−1)s− s2]

(q + q−1)3
.

Comprehensive the above content, we get

K(t, s) ≤
s(q + q−1 − s)

q4(q + q−1)
, 0 ≤ t, s ≤ 1; (9)

K(t, s) ≥
4t2[(q + q−1)s− s2]

(q + q−1)3
, 0 ≤ t, s ≤ 1. (10)

On the other hand, by (5), we have

K(η, s) =
1

q + q−1

{
η2, 0 ≤ q2η ≤ s ≤ 1,

η2 − (η − q−1s)(η − qs), 0 ≤ s ≤ q2η < 1.

If q2η ≤ s, for 0 ≤ η, s ≤ 1, we have

q4(q + q−1)K(η, s)

s(q + q−1 − s)
=

q4η2

s(q + q−1 − s)
≤

q4η2

(q + q−1 − 1)s
≤

q2η

q + q−1 − 1
< q2η.

If s ≤ q2η, for 0 ≤ η, s ≤ 1, in view of (q+q−1)η−s

q+q−1−s
< η, we have

q4(q + q−1)K(η, s)

s(q + q−1 − s)
=

q4[(q + q−1)η − s]

q + q−1 − s
< q4η ≤ q2η.

So we obtain that

K(η, s) ≤
q2ηs(q + q−1 − s)

q4(q + q−1)
, 0 ≤ η, s ≤ 1. (11)

From (10), it follows that

K(η, s) ≥
4η2[(q + q−1)s− s2]

(q + q−1)3
, 0 ≤ η, s ≤ 1. (12)

Hence, by (4), (9) and (11), we get

G(t, s) ≤
s(q + q−1 − s)

q4(q + q−1)
+

α

1− α
·
q2ηs(q + q−1 − s)

q4(q + q−1)

=
s(q + q−1 − s)

q4(q + q−1)
(1 +

αq2η

1− α
)

= M(s).
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So G(t, s) ≤ M(s), 0 ≤ t, s ≤ 1.
The end, by (4), (10) and (12), for 0 ≤ t, s ≤ 1, we have

G(t, s) ≥
4t2[(q + q−1)s− s2]

(q + q−1)3

=
4q4t2(1− α)

(q + q−1)2(1− α + αq2η)

s(q + q−1 − s)

q4(q + q−1)
(1 +

αq2η

1− α
)

= p(t)M(s).

The proof is complete.

Choose a cone K in E as follows:

K = {u ∈ C+[0, 1] : u(t) ≥ p(t)‖u‖, t ∈ [0, 1]}.

Suppose that u is a positive solution of the boundary value problem (1), then

u(t) = λ

∫ 1

0

G(t, s)g(s)f(u(s))d̃qs, t ∈ [0, 1].

Define an operator A : C+[0, 1] → C+[0, 1] by

Au(t) = λ

∫ 1

0

G(t, s)g(s)f(u(s))d̃qs.

By the definition of operator A, a positive solution of the boundary value
problem (1) is equivalent to a nonzero fixed point of A.

In view of the nonnegativeness of G(t, s), g(t) and f(u), it is clear that
Au(t) ≥ 0, t ∈ [0, 1], A : K → C+[0, 1] is continuous for u ∈ K. Combining
with Lemma 3.2, we have

‖Au‖ = max
0≤t≤1

|Au(t)| = max
0≤t≤1

λ

∫ 1

0

G(t, s)g(s)f(u(s))d̃qs ≤ λ

∫ 1

0

M(s)g(s)f(u(s))d̃qs.

On the other hand,

Au(t) ≥ λp(t)

∫ 1

0

M(s)g(s)f(u(s))d̃qs ≥ p(t)‖Au‖.

Thus, we have A(K) ⊂ K.

Lemma 3.3 Assume that (H1)− (H3) hold, then the operator A : K → K

is completely continuous.
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Proof It is clear that the operator A : K → K is continuous.
Let Ω ⊂ K be bounded, i.e., there exists a positive constant M1 > 0 such

that ‖u‖ ≤ M1 for all u ∈ Ω. Let L = max‖u‖≤M1
| f(u(t)) | +1 . Then for

u ∈ Ω, from Lemma 3. 2, we have

| Au(t) |≤ λ

∫ 1

0

| G(t, s)g(s)f(u(s)) | d̃qs ≤ λL

∫ 1

0

M(s)g(s)d̃qs.

Hence, A(Ω) is bounded.
Now we show that A map bounded sets into equicontinuous sets of K. Let

t1, t2 ∈ [0, 1], with t1 < t2, u ∈ Ω, where Ω is bounded set of K. Then we
obtain

| Au(t2)− Au(t1) |

=
λ

q + q−1
|

∫ 1

0

t22g(s)f(u(s))d̃qs−

∫ q2t2

0

(t2 − q−1s)(t2 − qs)g(s)f(u(s))d̃qs

−

∫ 1

0

t21g(s)f(u(s))d̃qs+

∫ q2t1

0

(t1 − q−1s)(t1 − qs)g(s)f(u(s))d̃qs |

≤
λL

q + q−1
[| t22 − t21 |

∫ 1

0

g(s)d̃qs+

∫ q2t2

q2t1

(t2 − q−1s)(t2 − qs)g(s)d̃qs

+

∫ q2t1

0

| (t2 − q−1s)(t2 − qs)− (t1 − q−1s)(t1 − qs) | g(s)d̃qs]

=
λL

q + q−1
[(t22 − t21)

∫ 1

0

g(s)d̃qs+ (t22 − t21)

∫ q2t1

0

g(s)d̃qs

+ (t2 − t1)

∫ q2t1

0

s(q + q−1)g(s)d̃qs+

∫ q2t2

q2t1

(t2 − q−1s)(t2 − qs)g(s)d̃qs].

Obviously the right side of the obove inequality tends to zero independently of
u ∈ Ω as t2 − t1 → 0. Therefore it follows by the Arzelá-Ascoli theorem that
A : K → K is a completely continuous mapping. The proof is complete.

4 Main results

In this section, we state and prove our main results. To be convenient, we
introduce the following notations:

F0 = lim
u→0+

sup
f(u)

u
;F∞ = lim

u→+∞
sup

f(u)

u
; f0 = lim

u→0+
inf

f(u)

u
; f∞ = lim

u→+∞
inf

f(u)

u
.

N1 =

∫ 1

0

M(s)g(s)d̃qs;N2 =

∫ 1

0

p(s)M(s)g(s)d̃qs.
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Theorem 4.1 If there exists ρ ∈ (0, 1) such that p(ρ)f∞N2 > F0N1 holds,
then for each

λ ∈ ((p(ρ)f∞N2)
−1, (F0N1)

−1), (13)

the boundary value problem (1) has at least one positive solution. Here we
impose (p(ρ)f∞N2)

−1 = 0 if f∞ = +∞ and (F0N1)
−1 = +∞ if F0 = 0.

Proof Let λ satisfy (13) and ε > 0 be such that

(p(ρ)(f∞ − ε)N2)
−1 ≤ λ ≤ ((F0 + ε)N1)

−1. (14)

By the definition of F0, we see that there exists r1 > 0 such that

f(u) ≤ (F0 + ε)u, 0 < u ≤ r1. (15)

So if u ∈ K with ‖u‖ = r1, then by (14) and (15), we have

‖Au‖ ≤ λ

∫ 1

0

M(s)g(s)(F0 + ε)r1d̃qs ≤ λ(F0 + ε)r1N1 ≤ r1 = ‖u‖.

Hence, if we choose Ω1 = {u ∈ C+[0, 1] : ‖u‖ < r1}, then

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1. (16)

Let r3 > 0 be such that

f(u) ≥ (f∞ − ε)u, u ≥ r3. (17)

If u ∈ K with ‖u‖ = r2 = max{2r1, r3}, then by (14) and (17), we have

‖Au‖ ≥ λ

∫ 1

0

G(ρ, s)g(s)f(u(s))d̃qs ≥ λ

∫ 1

0

p(ρ)M(s)g(s)(f∞ − ε)u(s)d̃qs

≥ λp(ρ)(f∞ − ε)‖u‖

∫ 1

0

p(s)M(s)g(s)d̃qs

= λp(ρ)(f∞ − ε)‖u‖N2 ≥ ‖u‖.

Thus, if we set Ω2 = {u ∈ C+[0, 1] : ‖u‖ < r2}, then

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. (18)

Now, from (16), (18) and Lemma 2.8, we guarantee that A has a fix point
u ∈ K ∩ (Ω2 \ Ω1) with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution of
(1). The proof is complete.

Theorem 4.2 If there exists ρ ∈ (0, 1) such that p(ρ)f0N2 > F∞N1 holds,
then for each

λ ∈ ((p(ρ)f0N2)
−1, (F∞N1)

−1), (19)

the boundary value problem (1) has at least one positive solution. Here we
impose (p(ρ)f0N2)

−1 = 0 if f0 = +∞ and (F∞N1)
−1 = +∞ if F∞ = 0.
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Proof Let λ satisfy (19) and ε > 0 be such that

(p(ρ)(f0 − ε)N2)
−1 ≤ λ ≤ ((F∞ + ε)N1)

−1. (20)

From the definition of f0, we see that there exists r1 > 0 such that

f(u) ≥ (f0 − ε)u, 0 < u ≤ r1.

Further, if u ∈ K with ‖u‖ = r1, then similar to the second part of Theorem
4.1, we can obtain that ‖Au‖ ≥ ‖u‖. Thus, if we choose Ω1 = {u ∈ C+[0, 1] :
‖u‖ < r1}, then

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1. (21)

Next, we may choose R1 > 0 such that

f(u) ≤ (F∞ + ε)u, u ≥ R1. (22)

We consider two cases:
Case 1. Suppose f is bounded. Then there exists some M2 > 0, such that

f(u) ≤ M2, u ∈ (0,+∞).

We define r3 = max{2r1, λM2N1}, and u ∈ K with ‖u‖ = r3, then

‖Au‖ ≤ λ

∫ 1

0

M(s)g(s)f(u(s))d̃qs ≤ λM2

∫ 1

0

M(s)g(s)d̃qs = λM2N1 ≤ r3 = ‖u‖.

Hence,
‖Au‖ ≤ ‖u‖, u ∈ Kr3 = {u ∈ K : ‖u‖ ≤ r3}. (23)

Case 2. Suppose f is unbounded. Then there exists some r4 > max{2r1, R1},
such that

f(u) ≤ f(r4), 0 < u ≤ r4. (24)

Let u ∈ K with ‖u‖ = r4. Then by (20) and (22), we have

‖Au‖ ≤ λ

∫ 1

0

M(s)g(s)f(u(s))d̃qs ≤ λ

∫ 1

0

M(s)g(s)(F∞ + ε)‖u‖d̃qs

= λ(F∞ + ε)‖u‖N1 ≤ ‖u‖.

Thus, (23) is also true.
In both Cases 1 and 2, if we set Ω2 = {u ∈ C+[0, 1] : ‖u‖ < r2 =

max{r3, r4}}, then
‖Au‖ ≤ |u‖, u ∈ K ∩ ∂Ω2. (25)

Now that we obtain (21) and (25), it follows from Lemma 2.8 that A has a
fixed-point u ∈ K ∩ (Ω2 \Ω1) with r1 ≤ ‖u‖ ≤ r2, and it is clear u is a positive
solution of (1). The proof is complete.
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Theorem 4.3 Suppose there exist ρ ∈ (0, 1), r2 > r1 such that p(ρ) > r1
r2
,

and f satisfy

max
0≤u≤r2

f(u) ≤
r2

λN1
, min
p(ρ)r1≤u≤r1

f(u) ≥
r1

λp(ρ)N2
.

Then the boundary value problem (1) has a positive solution u ∈ K with r1 ≤
‖u‖ ≤ r2.

Proof choose Ω1 = {u ∈ C+[0, 1] : ‖u‖ < r1}, then for u ∈ K ∩ ∂Ω1, we
have

‖Au‖ ≥ λ

∫ 1

0

G(ρ, s)g(s)f(u(s))d̃qs

≥ λp(ρ)

∫ 1

0

M(s)g(s)f(u(s))d̃qs

≥ λp(ρ)

∫ 1

0

p(s)M(s)g(s) min
p(ρ)r1≤u≤r1

f(u(s))d̃qs

≥ λp(ρ)N2
r1

p(ρ)λN2
= r1 = ‖u‖.

On the other hand, choose Ω2 = {u ∈ C+[0, 1] : ‖u‖ < r2}, then for u ∈
K ∩ ∂Ω2, we have

‖Au‖ ≤ λ

∫ 1

0

M(s)g(s)f(u(s))d̃qs ≤ λ

∫ 1

0

M(s)g(s) max
0≤u≤r2

f(u(s))d̃qs

≤ λN1
r2

λN1
= r2 = ‖u‖.

Thus, by Lemma 2.8, the boundary value problem (1) has a positive solution
u ∈ K with r1 ≤ ‖u‖ ≤ r2. The proof is complete.

For the reminder of the paper, we will need the following condition.
(H4) supr>0minu∈(p(ρ)r,r) f(u) > 0, where ρ ∈ (0, 1).
Denote

λ1 = sup
r>0

r

N1max0≤u≤r f(u)
, (26)

λ2 = inf
r>0

r

p(ρ)N2minp(ρ)r≤u≤r f(u)
. (27)

In view of the continuity of f(u) and (H4), we have 0 < λ1 ≤ +∞ and
0 ≤ λ2 < +∞.

Theorem 4.4 Assume (H4) holds. If f0 = +∞ and f∞ = +∞, then
the boundary value problem (1) has at least two positive solutions for each
λ ∈ (0, λ1).
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Proof Define
a(r) =

r

N1max0≤u≤r f(u)
.

By the continuity of f(u), f0 = +∞ and f∞ = +∞, we have that a(r) :
(0,+∞) → (0,+∞) is continuous and

lim
r→0

a(r) = lim
r→+∞

a(r) = 0.

By (26), there exists r0 ∈ (0,+∞), such that a(r0) = supr>0 a(r) = λ1, then
for λ ∈ (0, λ1), there exist constants m1, m2(0 < m1 < r0 < m2 < +∞) with

a(m1) = a(m2) = λ.

Thus,

f(u) ≤
m1

λN1
, u ∈ [0, m1], (28)

f(u) ≤
m2

λN1
, u ∈ [0, m2]. (29)

On the other hand, applying the conditions f0 = +∞ and f∞ = +∞, there
exist constants n1, n2(0 < n1 < m1 < r0 < m2 < n2 < +∞) with

f(u)

u
≥

1

p2(ρ)λN2
, u ∈ (0, n1)

⋃
(p(ρ)n2,+∞), (30)

then
min

p(ρ)n1≤u≤n1

f(u) ≥
n1

λp(ρ)N2
, (31)

min
p(ρ)n2≤u≤n2

f(u) ≥
n2

λp(ρ)N2
. (32)

By (28) and(31), (29) and (32), combining with Theorem 4.3, we can complete
the proof.

Corollary 4.5 Assume (H4) holds. If f0 = +∞ or f∞ = +∞, then the
boundary value problem (1) has at least one positive solution for each λ ∈
(0, λ1).

Theorem 4.6 Assume (H4) holds. If f0 = 0 and f∞ = 0, then for each λ ∈
(λ2,+∞) the boundary value problem (1) has at least two positive solutions.

Proof Define
b(r) =

r

p(ρ)N2minp(ρ)r≤u≤r f(u)
.

By the continuity of f(u), f0 = 0 and f∞ = 0, we easily see that b(r) :
(0,+∞) → (0,+∞) is continuous and

lim
r→0

b(r) = lim
r→+∞

b(r) = +∞.
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By (27), there exists r0 ∈ (0,+∞), such that b(r0) = infr>0 b(r) = λ2. For
λ ∈ (λ2,+∞), there exist constants n3, n4(0 < n3 < r0 < n4 < +∞) with

b(n3) = b(n4) = λ.

Therefore,

f(u) ≥
n3

λp(ρ)N2
, u ∈ [p(ρ)n3, n3],

f(u) ≥
n4

λp(ρ)N2
, u ∈ [p(ρ)n4, n4].

On the other hand, using f0 = 0, we know that there exists a constants
m3(0 < m3 < n3) with

f(u)

u
≤

1

λN1
, u ∈ (0, m3),

max
0≤u≤m3

f(u) ≤
m3

λN1

. (33)

In view of f∞ = 0, there exists a constant m4 ∈ (n4,+∞), such that

f(u)

u
≤

1

λN1
, u ∈ (m4,+∞).

Let M3 = max0≤u≤m4
f(u) and m4 ≥ λN1M3. It is easily seen that

max
0≤u≤m4

f(u) ≤
m4

λN1
. (34)

By (33), (34) and Theorem 4.3, we can complete the proof.

Corollary 4.7 Assume (H4) holds. If f0 = 0 or f∞ = 0, then for each
λ ∈ (λ2,+∞) the boundary value problem (1) has at least one positive solution.

By the above theorems, we can obtain the following results.

Corollary 4.8 Assume (H4) holds. If f0 = +∞, f∞ = l, or if f0 = l, f∞ =
+∞, then for any λ ∈ (0, (lN1)

−1) the boundary value problem (1) has at least
one positive solution.

Corollary 4.9 Assume (H4) holds. If f0 = 0, f∞ = l, or if f0 = l, f∞ = 0,
then for any λ ∈ ((p(ρ)lN2)

−1,+∞) the boundary value problem (1) has at
least one positive solution.
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5 Nonexistence

In this section, we give some sufficient conditions for the nonexistence of
positive solution to the problem (1).

Theorem 5.1 Assume (H4) holds. If F0 < +∞ and F∞ < +∞, then there
exists a constant λ0 > 0 such that for all λ ∈ (0, λ0), the boundary value
problem (1) has no positive solution.

Proof Since F0 < +∞ and F∞ < +∞, there exist positive numbers l1, l2, r1
and r2, such that r1 < r2 and

f(u) ≤ l1u, u ∈ [0, r1],

f(u) ≤ l2u, u ∈ [r2,+∞).

Let M4 = max{l1, l2,maxr1≤u≤r2{
f(u)
u
}}. Then we have

f(u) ≤ M4u, u ∈ [0,+∞).

Assume v(t) is a positive solution of (1). We will show that this leads to a
contradiction for 0 < λ < λ0 := (M4N1)

−1. Since Av(t) = v(t), for t ∈ [0, 1],

‖v‖ = ‖Av‖ ≤ λ
∫ 1

0
M(s)g(s)f(v(s))d̃qs

≤ λM4‖v‖
∫ 1

0
M(s)g(s)d̃qs

< λ0M4‖v‖
∫ 1

0
M(s)g(s)d̃qs = ‖v‖,

which is a contradiction. Therefore, (1) has no positive solution. The proof is
complete.

Theorem 5.2 Assume (H4) holds. If f0 > 0 and f∞ > 0, then there exists
a constant λ0 > 0 such that for all λ ∈ (λ0,+∞), the boundary value problem
(1) has no positive solution.

Proof By f0 > 0 and f∞ > 0, we know that there exist positive numbers
l3, l4, r3 and r4, such that r3 < r4 and

f(u) ≥ l3u, u ∈ [0, r3],

f(u) ≥ l4u, u ∈ [r4,+∞).

Let M5 = min{l3, l4,minr3≤u≤r4{
f(u)
u
}} > 0. Then we get

f(u) ≥ M5u, u ∈ [0,+∞).
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Assume v(t) is a positive solution of (1). We will show that this leads to a
contradiction for λ > λ0 := (p(ρ)M5N2)

−1. Since Av(t) = v(t), for t ∈ [0, 1],

‖v‖ = ‖Av‖ ≥ λ

∫ 1

0

G(ρ, s)g(s)f(v(s))d̃qs

≥ p(ρ)λ

∫ 1

0

M(s)g(s)f(v(s))d̃qs

≥ p(ρ)λM5‖v‖

∫ 1

0

p(s)M(s)g(s)d̃qs

> p(ρ)λM5‖v‖N2 = ‖v‖,

which is a contradiction. Thus, (1) has no positive solution. The proof is
complete.
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