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Abstract

By making use of frequency measures, in this paper we consider

the positive frequency of sequences, which is produced by a class of

neutral difference equations. The last example shows that our results

are feasible.
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1 Introduction

To start with, we introduce some symbols as follows. Let Z[a,∞) denote the
integer set {a, a+ 1, a+ 2, . . .} and Z[a, b] the set {a, a+ 1, a+ 2, . . . , b}. For
any two sets A and B, their union, intersection, difference will be denoted by
A + B, A · B and A − B, respectively. For a sequence {x(n)}n≥a and a real
number r, we denote the set {n ∈ Z[a,∞) : x(n) ≥ r} by (x ≥ r). Others such
as (x > r), (x < r) etc, can be defined accordingly. Specially, when x(n) 6= 0
for all n, we denote the set {n ∈ Z[a,∞) : 1

x(n)
< r} by (x−1 < r). For the set

(x > r) (or others) of integers, the notation |(x > r)| indicates the number of
elements in (x > r), and (x > r)(n) will denote the set {k ∈ (x > r) : k ≤ n}.

Recall that in 1951, Niven [2] had introduced the concept of asymptotic
density to study the properties of sequences of positive integers. In 2003 or
so, Cheng et al. [1, Chapter 2] extended the idea of asymptotic density and
introduced the concept of frequency measures to deal with the more general se-
quences of real numbers (or real vectors [3]). Precisely speaking, for a sequence
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{x(n)}n≥a of real numbers, we call the number ω1 defined by

ω1 = lim sup
n→∞

|(x ≤ r)(n)|

n

the upper frequency measure of x ≤ r, and the number ω2 defined by

ω2 = lim inf
n→∞

|(x ≤ r)(n)|

n

the lower frequency measure of x ≤ r. If ω1 = ω2, then the common limit will
be called the frequency measure of x ≤ r. The frequency measure of x < r

(or x ≥ r, and so on) can be defined similarly. As usual, we denote the upper
frequency measure of x ≤ r by µ∗(x ≤ r) and the lower frequency measure of
x ≤ r by µ∗(x ≤ r).

We note that the frequency measures can be used to consider the properties
of consequences, including oscillation and stability, see, e.g., the papers [3, 4,
5, 6] and their references. In the present paper we will impose the frequency
measures to estimate the positive frequency of sequences, which stems from
the following neutral difference equation

△(x(n) + c(n)x(n− k)) + f(n, x(n− l)) = 0, n ∈ N, (1)

where N stands for the set of nonnegative integers, k ≥ 1 and l ≥ 0 are integer,
c maps N into R and f : N× R → R.

Let ρ = max{k, l}. A sequence {x(n)}n≥−ρ ({x(n)} for short) is said to be
a solution of (1) if it renders (1) into an identity for all n ∈ N. The existence
of solutions of (1) is clear. Indeed, for the given initial values {x(−ρ), x(−ρ+
1), . . . , x(0)}, one can readily calculates from (1)

x(1), x(2), x(3), . . .

in a unique manner.
For any integer m, let the set {n +m : n ∈ Ω ⊆ Z[a,∞)} be denoted by

EmΩ. Before entering our main results, we recall some standard conclusions
as follows:

Lemma 1.1 [1, Chapter 2] Let Ω and Γ be subsets of Z[a,∞) Then
(i) µ∗(Ω) + µ∗(Γ)− µ∗(Ω · Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ)− µ∗(Ω · Γ);
(ii) µ∗(Ω) + µ∗(Γ)− µ∗(Ω · Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ)− µ∗(Ω · Γ);
(iii) if µ∗(Ω) + µ∗(Γ) > 1, then Ω · Γ is infinite;
(iv) if n ∈ Z[a,∞)−

∑β

m=α E
mΩ and n−α ≥ a, then n−m ∈ Z[a,∞)−Ω

for m ∈ Z[α, β];

(v) µ∗

(

∑β

m=α E
mΩ
)

≤ (β−α+1)µ∗(Ω) and µ∗

(

∑β

m=αE
mΩ
)

≤ (β−α+

1)µ∗(Ω).
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We remark that Lemma 1.1 (ii) implies that, for the case Ω+ Γ = Z[a,∞)
and Ω · Γ = φ,

µ∗(Ω) + µ∗(Γ) = 1.

Another fact is similar to [4, Lemma 5] (or [5, Lemma 2.5]).

Lemma 1.2 Let As be the subset of Z[a,∞) for s = 1, 2, ..., n. Then it
follows that

µ∗

(

n
∑

s=1

As

)

≤
n
∑

s=1

µ∗ (As)− (n− 1)µ∗

(

n
∏

s=1

As

)

.

2 Main Results

Let {x(n)}n≥−ρ be any solution of (1). In this section we devote to make
estimates for the frequency of x > 0. Note that the symbol ρ defined by

ρ = max{k, l}.

For the sake of convenience, we define

z(n) = x(n) + c(n)x(n− k) and q(n) = c(n− l)p(n) for n ∈ N,

where p verifies that

vf(n, v) ≤ p(n)v2 for all (n, v) ∈ N× R. (A1)

Theorem 2.1 Suppose that assumption (A1) holds. Suppose further that
ω ∈ (0, 1) and

µ∗(p > 0) = ωp, µ∗(c−1 < 1) = ωc, µ∗(q ≥ −1) = ωq,

µ∗

{

(p > 0) · (c−1 < 1) · (q ≥ −1)
}

= ω0

as well as
(2k + 2l + 1)(ωp + ωc + ωq + ω − 2ω0) < 1. (2)

Then any nontrivial solution {x(n)} of (1) has an estimate of positive fre-
quency: ω < µ∗(x > 0) < 1.

Proof. We need only to prove that the frequency of x > 0 is neither
µ∗(x > 0) ≤ ω nor µ∗(x > 0) = 1. Note that Lemma 1.2 amounts to

µ∗

{

2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (q ≥ −1)]

}

≤ (2k + 2l + 1)
{

µ∗(p > 0) + µ∗(c−1 < 1) + µ∗(q ≥ −1)
}

−2µ∗

{

(p > 0) · (c−1 < 1) · (q ≥ −1)
}

. (3)
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(i) In case µ∗(x > 0) ≤ ω, by Lemma 1.1 it follows that

µ∗

{

Z[−ρ,∞)−
2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (q ≥ −1)]

}

+ µ∗

{

Z[−ρ,∞)−

2k+2l
∑

m=0

Em(x > 0)

}

= 2− µ∗

{

2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (q ≥ −1)]

}

− µ∗

{

2k+2l
∑

m=0

Em(x > 0)

}

≥ 2− (2k + 2l + 1)(ωp + ωc + ωq + ω − 2ω0)

> 1,

where we have used the conditions (2)–(3) for the above inequalities.
Now by Lemma 1.1(iii) we obtain an infinite set

{

Z[−ρ,∞)−
2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (q ≥ −1)]

}

·

{

Z[−ρ,∞)−

2k+2l
∑

m=0

Em(x > 0)

}

. (4)

Hence, from Lemma 1.1(iv) and (4) there exists an N satisfying N−(2k+2l) ∈
N so that

p(n) ≤ 0, c−1(n) ≥ 1, q(n) < −1, x(n) ≤ 0 for n ∈ Z[N− (2k+2l), N ]. (5)

Invoking the symbol z(n) = x(n) + c(n)x(n− k) and (5) we have

z(n) ≤ x(n) ≤ 0 for n ∈ Z[N − (k + 2l), N ]. (6)

Note that assumption (A1) and (5) implies that

f(n, x(n− l)) ≥ p(n)x(n− l) for n ∈ Z[N − (2k + l), N ]. (7)

Hence, by (1) it holds that

△z(n) ≤ 0 for n ∈ Z[N − (k + l), N ]. (8)

Now combining (6)–(7) we have

0 = △z(N) + f(N, x(N − l))

≥ △z(N) + p(N)(Z(N − l)− c(N − l)x(N − k − l))

≥ △z(N) + c(N − l)p(N)

(

Z(N − l)

c(N − l)
− z(N − k − l)

)
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≥ △z(N) + c(N − l)p(N) (z(N − l)− z(N − k − l))

≥ △z(N) + c(N − l)p(N)

N−l−1
∑

n=N−k−l

△z(n)

≥ (1 + c(N − l)p(N))
N
∑

n=N−k−l

△z(n),

which, together with (8), infers that

q(N) = c(N − l)p(N) ≥ −1

and conflicts with (5) for q.
(ii) In case µ∗(x > 0) = 1, we have µ∗(x ≤ 0) = 0. In a similar manners as

above we arrive at the infinite set
{

Z[−ρ,∞)−
2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (q ≥ −1)]

}

·

{

Z[−ρ,∞)−
2k+2l
∑

m=0

Em(x ≤ 0)

}

and the relations (5) will be replaced by

p(n) ≤ 0, c−1(n) ≥ 1, q(n) < −1, x(n) > 0 for n ∈ Z[N− (2k+2l), N ]. (9)

Consequently, in a similar discussion as above we will be led to a contradiction
with q(N) < −1 in (9). The proof is complete.

In general, it is difficult to estimate the frequency for the following set

(p > 0) · (c−1 < 1) · (q ≥ −1).

Fortunately, we can amplifies (3) as follows

µ∗

{

2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (q ≥ −1)]

}

≤ (2k + 2l + 1)
{

µ∗(p > 0) + µ∗(c−1 < 1) + µ∗(q ≥ −1)
}

.

In other word, we can choose ω0 = 0 in Theorem 2.1. Hence, the following is
clear.

Corollary 2.2 Suppose that assumption (A1) holds. Suppose further that
ω ∈ (0, 1) and

µ∗(p > 0) = ωp, µ∗(c−1 < 1) = ωc, µ∗(q ≥ −1) = ωq
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as well as
(2k + 2l + 1)(ωp + ωc + ωq + ω) < 1.

Then any nontrivial solution {x(n)} of (1) has an estimate of positive fre-
quency: ω < µ∗(x > 0) < 1.

Theorem 2.3 Suppose that assumption (A1) holds. Suppose further that
ω ∈ (0, 1) and

µ∗(p > 0) = ωp, µ∗(c−1 < 1) = ωc, µ∗[(p > 0) · (c−1 < 1)] = ωpc

as well as
µ∗(q < −1) > (2k + 2l + 1)(ωp + ωc + ω − ωpc).

Then any nontrivial solution {x(n)} of (1) has an estimate of positive fre-
quency: ω < µ∗(x > 0) < 1.

Proof. Suppose to the contrary that µ∗(x > 0) ≤ ω. Then, in view of
Lemma 1.1 we have

1 = µ∗

{

Z[−ρ,∞)−

2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (x > 0)]

}

+ µ∗

{

2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (x > 0)]

}

≤ µ∗

{

Z[−ρ,∞)−
2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (x > 0)]

}

+(2k + 2l + 1)(ωp + ωc + ω − ωpc)

< µ∗

{

Z[−ρ,∞)−
2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (x > 0)]

}

+µ∗(q < −1),

which, with the help of Lemma 1.1(iii), derives that

{

Z[−ρ,∞)−

2k+2l
∑

m=0

Em[(p > 0) + (c−1 < 1) + (x > 0)]

}

· (q < −1)

is infinite. Therefore, there exists an N satisfying N − (2k+2l) ∈ N such that

q(N) < −1

and

p(n) ≤ 0, c−1(n) ≥ 1, x(n) ≤ 0 for n ∈ Z[N − (2k + 2l), N ].
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The remainder is similar to the part in the proof of Theorem 2.1. As thus we
have shown that µ∗(x > 0) ≤ ω is infeasible.

Likewise we can prove that µ∗(x > 0) < 1. The proof is complete.

Next we end up this paper with an example.

Example 2.4 Consider the following equation

∆

(

x(n) +
3

4
x(n− 2)

)

− 3x(n− 1) = 0, n ∈ N. (10)

Then

c(n) =
3

4
, p(n) = −3 and q(n) = −

9

4

and hence,
µ∗(p > 0) = µ∗(c−1 < 1) = µ∗(q ≥ −1) = 0

and
µ∗(q < −1) = 1, µ∗[(p > 0) · (c−1 < 1)] = 0.

Now we take ω = 1
8
. Then, by Corollary 2.2 or Theorem 2.3 we learn that,

any nontrivial solution {x(n)} of (10) has an estimate of positive frequency:
1
8
< µ∗(x > 0) < 1. Indeed,

{

(−1
2
)n
}

n≥−2
is such a solutioon, with frequency

µ∗(x > 0) = 1
2
.
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