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Abstract 
Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in 

spatial databases. To this end, this paper has three main contributions. First,  a new clustering method called CLARANS, 

whose aim is to identify spatial structures that may be present in the data. Experimental results indicate that, when 

compared with existing clustering methods, CLARANS is very efficient and effective. Second, investigate how 

CLARANS can handle not only points objects, but also polygon objects efficiently. One of the methods considered, 

called the IR-approximation, is very efficient in clustering convex and nonconvex polygon objects. Third, building on top 

of CLARANS, develop two spatial data mining algorithms that aim to discover relationships between spatial and 

nonspatial attributes. Both algorithms can discover knowledge that is difficult to find with existing spatial data mining 

algorithms. 

 

Index Terms:-Spatial data mining, clustering algorithms, randomized search, computational geometry. 

 

1. Introduction 
Data mining in general is the search for hidden patterns that may exist in large databases. Spatial data mining in 

particular is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. 

Because of the huge amounts (usually, terabytes) of spatial data that may be obtained from satellite images, medical 

equipments, video cameras, etc., it is costly and often unrealistic for users to examine spatial data in detail. Spatial data 

mining aims to automate such aknowledge discovery process. Thus, it plays an important role in 

1. extracting interesting spatial patterns and features, 

2. capturing intrinsic relationships between spatial and nonspatial data, 

3. presenting data regularity concisely and at higher conceptual levels, and 

4. helping to reorganize spatial databases to accommodate data semantics, as well as to achieve better performance. 

Cluster Analysis is a branch of statistics that, in the past  three decades, has been intensely studied and successfully 

applied to many applications. To the spatial data mining task at hand, the attractiveness of cluster analysis is its ability to 

find structures or clusters directly from the given data, without relying on any hierarchies. However, cluster analysis has 

been applied rather unsuccessfully in the past to general data mining and machine learning. The complaints are that 

cluster analysis algorithms are ineffective and inefficient. Indeed, for cluster analysis to work effectively, there are the 

following key issues: 

Whether there exists a natural notion of similarities among the “objects” to be clustered. For spatial data mining, 

our approach here is to apply cluster analysis only on the spatial attributes. If these attributes correspond to point objects, 

natura lnotions of similarities exist (e.g., Euclidean or Manhattan distances). However, if the attributes correspond to 

polygon objects, the situation is more complicated. More specifically, the similarity (or distance) between two polygon 

objects may be defined in many ways, some better than others. But, more accurate distance measurements may require 

more effort to compute. The main question then is for the kind of spatial clustering under consideration, which 

measurement achieves the best balance. 

Whether clustering a large number of objects can be efficiently carried out. Traditional cluster analysis algorithms 

are not designed for large data sets, with say more than 1,000 objects. 

 In addressing these issues, the authors  reported  in this paper: 

The development of CLARANS, which aims to use randomized search to facilitate the clustering of a large number 

of objects and 

A study on the efficiency and effectiveness of three different approaches to calculate the similarities between 

polygon objects. They are the approach that calculates the exact separation distance between two polygons, the approach 

that overestimates the exact distance by using the minimum distance between vertices, and the approach that 

underestimates the exact distance by using the separation istance between the isothetic rectangles of the polygons. 

CLARANS is more efficient than the existing algorithms PAM and CLARA, both of  whichmotivate the 

development of CLARANS; Calculating the similarity between   two polygons by using the separation distance between 

the isothetic rectangles of the polygons is the most efficient and effective approach. 

 

2. Clustering Algorithms Based on Partitioning 
2.1 Overview 

Cluster analysis has been widely applied to many areas such as medicine (classification of diseases), Chemistry 

(grouping of compounds), social studies (classification of statistical findings), etc.   Its main goal is to identify structures 
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or clusters present in the data. Existing clustering algorithms can be classified into two main categories: hierarchical 

methods and partitioning methods. 

Hierarchical methods are either agglomerative or divisive. Given n objects to be clustered, agglomerative methods 

begin with n clusters (i.e., all objects are apart). In each step, two clusters are chosen and merged. This process continues 

until all objects are clustered into one group. On the other hand, divisive methods begin by putting all objects in one 

cluster. In each step, a cluster is chosen and split up into two. This process continues until n clusters are produced. While 

hierarchical methods have been successfully applied to many biological applications (e.g., for producing taxonomies of 

animals and plants ), they are known to suffer from the weakness that they can never undo what was done previously. 

Once an agglomerative method merges two objects, these objects will always be in one cluster. And once a divisive 

method separates two objects, these objects will never be regrouped into the same cluster. 

In contrast, given the number k of partitions to be found,  a partitioning  method  tries to find the best k partitions of 

the n objects. It is very often the case that the k clusters found by a partitioning method are of higher quality (i.e., more 

similar) than the k clusters produced by a hierarchical method. Because of this property, developing partitioning methods 

has been one of the main focuses of cluster analysis research. Indeed, many partitioning methods have been developed, 

some based on k-means, some on k-medoid, some on fuzzy analysis, etc. Among them, we have chosen the k-medoid m 

methods, the k-medoid methods are very robust to the existence of outliers (i.e., data points that are very far away from 

the rest of the data points). Second, clusters found by k-medoid methods do not depend on the order in which the objects 

are examined. Furthermore, they are invariant with respect to translations and orthogonal transformations of data points. 

Last but not least, experiments have shown thatthe k-medoid methods described below can handle very large data sets 

quite efficiently.  For a more detailed comparison of k-medoid methods with other   partitioning methods. In the 

remainder of this section, the authors present the two best-known k-medoid methods on which our algorithm is based. 

 

2.2 PAM  
PAM (Partitioning Around Medoids) was developed by Kaufman and Rousseeuw . To find k clusters, PAM’s 

approach is to determine a representative object for each cluster. This representative object, called a medoid, is meant to 

be the most centrally located object within the cluster. 

Once the medoids have been selected, each nonselected object is grouped with the medoid to which it is the most 

similar. More precisely, if Oj is a nonselected object and Om is a (selected) medoid, we say that Oj belongs to the cluster 

represented by Om if d(Oj,Om) =  minOed(Oj;Oe), where the notation minOe denotes the minimum over all medoids Oe 

and the notation d(O1,O2) denotes the dissimilarity or distance between objects O1 and O2. All the dissimilarity values 

are given as inputs to PAM. Finally, the quality of a clustering (i.e., the combined quality of the chosen medoids) is 

measured by the average dissimilarity between an object and the medoid of its cluster. To find the k medoids, PAM 

begins with an arbitrary selection of k objects. Then, in each step, a swap between a selected object Om and a 

nonselected object Op is made, as long as such a swap would result in an improvement of the quality of the clustering. 

 

Algorithm PAM 

1. Select k representative objects arbitrarily. 

2. Compute TCmp for all pairs of objects Om,Op where Om is currently selected, and Op is not. 

3. Select the pair Om,Op which corresponds to minOm,Op TCmp. If the minimum TCmp is negative, replace Om with 

Op, and go back to Step 2. 

4. Otherwise, for each  nonselected object, find the most  similar representative object. Halt. 

Experimental results show that PAM works satisfactorily for small data sets (e.g., 100 objects in 5 clusters ). But, it 

is not efficient in dealing with medium and large data sets. This is not too surprising if we perform a complexity analysis 

on PAM. In Steps 2 and 3, there are altogether k(n - k) pairs of Om;Op. For each pair, computing TCmp requires the 

examination of  (n-k)  nonselected objects. 

Thus, Steps 2 and 3 combined is of O(k(n-k)
2
). And this is the complexity of only one iteration. Thus, it is obvious 

that  PAM becomes too costly for large values of n and k. This analysis motivates the development of CLARA. 

 

2.3 CLARA 

Designed by Kaufman and Rousseeuw to handle large data sets, CLARA (Clustering LARge Applications) relies on 

sampling . Instead of finding representative objects for the entire data set, CLARA draws a sample of the data set, applies 

PAM on the sample, and finds the medoids of the sample. The point is that, if the sample is drawn in a sufficiently 

random way, the medoids of the sample would approximate the medoids of the entire data set. To come up with better 

approximations, CLARA draws multiple samples and gives the best clustering as the output. Here, for accuracy, the 

quality of a clustering is measured based on the average dissimilarity of all objects in the entire data set, and not only of 

those objects in the samples. Experiments reported in  indicate that five samples of size 40 þ 2k give satisfactory results. 

Algorithm CLARA 

1. For i = 1 to 5, repeat the following steps: 

2. Draw a sample of 40 + 2k objects randomly from  the entire data set and call Algorithm PAM to  find k medoids of the 

sample. 

3. For each object Oj in the entire data set, determine which of the k medoids is the most similar to Oj. 

4. Calculate the average dissimilarity of the clustering obtained in the previous step. If this value is lessthan the current 

minimum, use this value as the current minimum, and retain the k medoids found inStep 2 as the best set of medoids 

obtained so far. 

5. Return to Step 1 to start the next iteration. 

Complementary to PAM, CLARA performs satisfactorily for large data sets (e.g., 1,000 objects in 10 clusters).Each  

iteration of PAM is of O(k(n _ k)2). But, for CLARA, by applying PAM just to the samples, each iteration is of O(k(40 + 

k)
2
 + k(n – k)).This explains why CLARA is more efficient than PAM for large values of n. 
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3. Clustering Algorithm Based On Randomized Search 
CLARANS (Clustering Large Applications based on RANdomized  Search). first give a graph-theoretic framework 

within which we can compare PAM and CLARA, and motivate the development of CLARANS. Then, after describing 

the details of the algorithm, we will present experimental results showing how to fine tune CLARANS and that 

CLARANS outperforms CLARA and PAM in terms of both efficiency and effectiveness. 

 

3.1 CLARANS 

Many of the aforementioned techniques require some tree or grid structures to facilitate the 

clustering.Consequently, these techniques do not scale up well with increasing dimensionality of the datasets.While it is 

true that the material discussed in this paper is predominantly 2D, the CLARANS algorithm works the same way for 

higher dimensional datasets. Because CLARANS is based on randomized search and does not use any auxiliary structure, 

CLARANS is much less affected by increasing dimensionality. 

Many of the aforementioned techniques assume that the distance function is Euclidean. CLARANS, being a local 

search technique, makes no requirement on the nature of the distance function. 

Many of the aforementioned techniques deal with point objects; CLARANS is more general and supports polygonal 

objects. A considerable portionof this paper is dedicated to handling polygonal objects effectively. 

CLARANS is a main-memory clustering technique, while many of the aforementioned techniques are designed for out-

of-core clustering applications. We conclude that whenever extensive I/O operations are involved, CLARANS is not as 

efficient as the others. CLARANS still has considerable applicability.  

Consider the 2D objects. Each object is represented by two real numbers, occupying a total of 16 bytes. Clustering 

1,000,000 objects would require slightly more than 16 Mbytes of main memory. This is an amount easily affordable by a 

personal computer, let alone computers for data mining. The point here is that, given the very low cost of RAM, main-

memory clustering algorithms, such as CLARANS, are not completely dominated by out-of-core algorithms for many 

applications. Finally, on a similar note, although some newly developed clustering methods may find clusters “natural” to 

the human eye and good for certain applications, there are still many applications, such as delivery services, to which 

partitioning-based clustering, such as CLARANS, is more appropriate. 

 

3.2 Algorithm CLARANS 

1. Input parameters numlocal and maxneighbor. Initialize i to 1, and mincost to a large number. 

2. Set current to an arbitrary node in Gn;k  

3. Set j to 1. 

4. Consider a random neighbor S of current, and based on 5, calculate the cost differential of the two nodes. 

5. If S has a lower cost, set current to S, and go to Step 3. 

6. Otherwise, increment j by 1. If j  maxneighbor, go to Step 4. 

7. Otherwise, when j > maxneighbor, compare the cost of current with mincost. If the former is less than  mincost, set 

mincost to the cost of current and set bestnode to current. 

8. Increment i by 1. If i > numlocal, output bestnode and halt. Otherwise, go to Step 2. 

Steps 3 to 6 above search for nodes with progressively lower costs. But, if the current node has already been 

compared with the maximum number of the neighbors of the node (specified by maxneighbor) and is still of the lowest 

cost, the current node is declared to be a “local” minimum. Then, in Step 7, the cost of this local minimum is compared 

with the lowest cost obtained so far. The lower of the two costs above is stored in mincost. Algorithm CLARANS then 

repeats to search for other local minima, until numlocal of them have been found. 

  CLARANS has two parameters: the maximum number of  neighbours examined (maxneighbor) and the number of 

local minima obtained (numlocal). The higher the value of maxneighbor, the closer is CLARANS to PAM, and the 

longer is each search of a local minima. But,the quality of such a local minima is higher and fewer local minima needs to 

be obtained. Like many applications of randomized search , we rely on experiments to determine the appropriate values 

of these parameters. 

 

3.3 CLARANS versus PAM 

 
Fig.1 Efficiency: CLARANS versus PAM 

For large and medium data sets, it is obvious that CLARANS, while producing clusterings of very comparable 

quality, is much more efficient than PAM. 

For small datasets like here,  both algorithms to data sets with 40, 60, 80, and 100 points in five clusters. Fig shows 

the runtime taken by both algorithms. Note that, for all those data sets, the clusterings produced by both algorithms are of 

the same quality (i.e. same average distance). Thus, the difference between the two algorithms is determined by their 
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efficiency. It is evident from Fig. that, even for small data sets, CLARANS outperforms PAM significantly. As expected, 

the performance gap between the two algorithms grows, as the dataset increases in size. 

 

 3.4     CLARANS versus CLARA 

 
Fig.2. Relative Quality: Same time for CLARANS and CLARA. 

CLARA is not designed for small data sets. Thus, ran this set of experiments on data sets whose number of objects 

exceeds 100. And the objects were organized in different number of clusters.When  conducted this series of experiments 

running CLARA and CLARANS as presented earlier, CLARANS is always able to find clusterings of better quality than 

those found by CLARA. 

In some cases, CLARA may take much less time than CLARANS. Thus,  wondered whether CLARA would 

produce clusterings of the same quality if it was given the same amount of time. This leads to the next series of 

experiments in which we gave both CLARANS and CLARA the same amount of time.  

Fig.2 shows the quality of the clusterings produced by CLARA, normalized by the corresponding value produced 

by CLARANS. Given the same amount of time, CLARANS clearly outperforms CLARA in all cases.  

The gap between CLARANS and CLARA increases from 4 percent when k, the number of clusters, is five to 20 

percent when k is 20.This widening of the gap as k increases can be best explained by looking at the complexity analyses 

of CLARA and CLARANS. Each iteration of CLARA is of O(k
3
+nk).  

The cost of CLARANS is basically linearly proportional to the number of objects.3 Thus, an increase in k imposes 

a much larger cost on CLARA than on CLARANS. The above complexity comparison also explains why, for a fixed 

number of clusters, the higher the number of objects, the narrower the gap between CLARANS and CLARA .  

For example, when the number of objects is 1,000, the gap is as high as 30 percent. The gap drops to around 20 

percent as the number of object increases to 2,000. Since each iteration of CLARA is of O(k
3
 +nk), the first term k

3 

dominates the second term. Thus, for a fixed k, CLARA is relatively less sensitive to an increase in n.  

Since the cost of CLARANS is roughly linearly proportional to n, an increase in n imposes a larger cost on 

CLARANS than on CLARA. This explains why, for a fixed k, the gap narrows as the number of objects increases. 

Nonetheless, the bottom-line shown in Fig.  is that CLARANS beats CLARA in all cases. Presented experimental 

evidence showing that CLARANS is more efficient than PAM and CLARA for small and large data sets. As authors 

stated, experimental results for medium data sets (not included here) lead to the same conclusion. 

 

4. Clustering Convex Polygon Objects 
4.1 Need 

Each object is represented as a point, in which case standard distance metrics such as the Manhattan distance and 

the Euclidean distance can be used to calculate the distance between two objects/points. However, in practice, numerous 

spatial objects that we may want to cluster are polygonal in nature, e.g., shopping malls, parks. The central question then 

is how to calculate the distance between two polygon objects efficiently and effectively for clustering purposes. One 

obvious way to approximate polygon objects is to represent each object by a representative point, such as the centroid of 

the object.However, in general, the objects being clustered may have widely varied sizes and shapes. For instance, a 

typical house in Vancouver may have a lot size of 200 square meters and a rectangular shape, whereas Stanley Park in 

Vancouver has a size of about 500,000 square meters and an irregular shape that hugs the shoreline. Simply representing 

each of these objects by its centroid, or any single point, would easily produce clusterings of poor quality. 

CLARANS (and for that matter, CLARA and PAM) can be augmented to allow convex polygon objects—in their 

entireties—to be clustered. The key question is how to efficiently compute the distance between two polygons. There are 

three different approaches.  

The first one is based on computing the exact separation distance between two convex polygon objects.  

The second approach uses the minimum distance between vertices to approximate the exact separation distance.  

The third approach approximates by using the separation distance between isothetic rectangles. We analyze the pros and 

cons, and complexities of these approaches. Last but not least, we propose a performance optimization that is based on 

memoizing the computed distances. At the end of this section, we will give experimental results evaluating the usefulness 

of these ideas. 
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4.2 Calculating the Exact Separation Distance between point and line 

In coordinate geometry, the distance between a point P and a line L is defined as the minimum distance, in this case 

the perpendicular distance, between the point and the line, i.e.,min {d(P,Q)|Q is a point on L}. Thus, given two polygons 

A;B, it is natural for us to define the distance between these two polygons to be the minimum distance between any pair 

of points in A,B, i.e., min {d(P;Q)| P,Q are points in A,B respectively}. This distance is exactly the same as the minimum 

distance between any pair of points on the boundaries of A,B. This is called the separation distance  between the two 

polygons  

 

Distance between two convex polygons  
Determine whether A and B have any intersection. This can be done in O(log n + log m) time where n,m denotes 

the number of vertices A and B  (A vertix of a polygon is the intersection point between two edges of the polygon.)  

If the two polygons intersect, then the separation distance is zero. Otherwise, we compute the separation distance 

between the two boundaries. This again can be done in O(log n + log m) time. 

 

4.3 MV-approximation 
One way to approximate the exact separation distance between two polygons is to find the minimum distance 

between the vertices of the polygons, i.e., min{d(P,Q) |P, are vertices of A,B respectively}.this approximation is called as  

the MV-approximation. Obviously, the MV-approximation requires a time complexity of O(n*m). 

 

4.4 Comparison 

 
Fig3.(a) MV-approximation versus Seperation Distance versus Centroid Distance 

                 (b) Centroid versus separation distance 

Fig.3(a) shows a simple example demonstrating that the separation distance between two polygons need not be 

equal to the minimum distance between vertices. However, it is easy to see that the separation distance cannot exceed the 

minimum distance between vertices. Thus, the MV-approximation always overestimates the actual separation distance. 

From the point of view of clustering objects by their MV-approximations, the key question is whether such 

overestimations would affect the (quality of the) clusterings. 

In Fig. b, B is closer to C than to A based on their exact separation distances. Whereas the centroid distance 

between A and B is fairly close to the  between B and C is many times higher than the actual separation distance between 

B and C. Infact, by their centroid distances, B is closer to A than to C, thus reversing the ordering induced by their 

separation distances. In general, if a collection of objects has widely varied sizes and shapes, the centroid distance 

approximation would produce poor clusterings (relative to the clusterings produced by using the separation distances). 

On the other hand, for the example shown in Fig.b, the MV-approximation preserves the ordering that B is closer to C 

than to A. Certainly, an approximation is an approximation and it is not hard to construct situations where the MV-

approximation can be inaccurate. However, by trying the approximation on numerous polygon objects that can be found 

in real maps, we have verified that the MV-approximation is reasonable and is much less susceptible to variations in sizes 

and shapes than the centroid distance approximation.  

 

4.5 IR-approximation 

Another way to approximate the exact separation distance between two polygons A,B is to  

1) compute isothetic rectangles IA, IB and  

2) Calculate the separation distance between IA and IB. Given a polygon A, the isothetic rectangle IA is the smallest 

rectangle that contains A, and whose edges are parallel to either the x- or the 

y-xes.Hereafter,  refer to this approximation to the exact separation distance as the IR-approximation. 

IR-approximation (and the MV-approximation) as a performance optimization to computing the exact separation 

distance. Actually, there is another advantage being offered by the IR-approximation 

(and the MV-approximation). That is, it does not require the original polygon to be convex. As described above, the 

definition of the isothetic rectangle of a polygon applies equally well to convex and  nonconvex polygons. Thus, when 

integrated with the IR-approximation, CLARANS can be used to cluster any polygons.  

 

5.  Performance Evaluation 
5.1 Efficiency 

Exact Distance versus IR-Approximation versus MV-Approximation 
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In this series of experiments done by authors, used polygons with different numbers of vertices and recorded the 

average amount of runtime needed to calculate the exact separation distance, its IR-approximation, and its MV-

approximation for one pair of polygons. Fig. 6 shows the results with the runtimes recorded in milliseconds. 

The IR-approximation approach is the clear winner in that it always outperforms the exact separation distance 

approach, that it beats the MV-approximation approach by a wide margin when the number of vertices is high, and that, 

even when the number of vertices is small, it delivers a performance competitive with that of the MV-approximation 

approach. Recall from Section 4.4 that two steps are needed to compute the IR-approximation. The first step is to 

compute the isothetic rectangles, which has a complexity of O(n). The second step is to compute the separation distance  

 
Fig. 4 Efficiency of the approximates 

between the isothetic rectangles, which has a complexity of O(1). The flatness of the curve for the IR-approximation in 

Fig. 4 clearly shows that the second step dominates the first one. Thus, as a whole, the IR-approximation does not vary as 

the number of vertices increases. In contrast, both the exact separation distance and the MV-approximation require higher 

runtimes as the number of vertices increases. When the number of vertices is less than 20, calculating the exact 

separation distance takes more time than the MV-approximation does. But, the reverse is true when the number of 

vertices exceeds 20. In other words, the runtime for the MV-approximation grows faster than that for computing the 

exact separation distance. 

  

5.2Clustering Efficiency 

Exact Distance versus IR-approximation versus MV-approximation The two approximations relative to the exact 

distance approach. 

 
 

Fig.5 clustering efficiency of the approximations (a) 10-sided polygons (b) 4-to-20 Sided polygons. 

Fig. 5 shows the times needed by CLARANS to cluster a varying number of polygons that have 10 edges and a 

varying number of polygons that have between 4 to 20 edges. 

In both cases, the IR-approximation and the MV-approximation considerably outperform the exact separation 

distance approach. In particular, the IR-approximation is always the most efficient, requiring only about 30 percent to 40 

percent the time needed by the exact distance approach. Other sets of polygons that we experimented with, including 

some that have varying densities, also give the same conclusion. Thus, given the fact that the IR-approximation is 

capable of delivering clusterings that are of almost identical quality to those produced by the exact approach, the IR-

approximation is the definite choice for CLARANS. Other experiments that authors conducted indicate that same 

conclusion can be drawn if PAM and CLARA were to use to cluster polygon objects. 
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5.3 Effectiveness of Memoizing Computed Distances 

While the graphs in Fig. 5 identify the IR-approximation approach as the clear winner, the performance results of 

the approximation is disappointing. For example, it takes about 1,000 seconds to cluster 100 polygons. Recall from Fig. 4 

that the IR-approximation for one pair of polygons takes two to three milliseconds. For 100 polygons, there are 

100*100/2 =5,000 pairs of polygons. These 5,000 distances take a total of 10 to 15 seconds to compute. 

 
Fig.6 Clustering efficiency with distance memoization 

Thus, what is happening is that the distance between each pair of polygons iscomputed on the average 60 to 100 

times. This argues very strongly why computed distances should be memoized as a performance optimization. Fig. 6 

shows the results of applying memoization to the same set of polygons used in Fig. 5b. Indeed, with memoization, the 

time taken to cluster 100 polygons with the IR-approximation drops to about 10 seconds, as estimated above. Similar 

performance gains are obtained if either the exact separation distance or the MV-approximation are used.                            

 

6. Conclusion 
In this paper, presented a clustering algorithm called CLARANS which is based on randomized search. For small 

data sets, CLARANS is a few times faster than PAM. The performance gap for larger data sets is even larger. When 

compared with CLARA, CLARANS has the advantage that the search space is not localized to a specific subgraph 

chosen a priori, as in the case of CLARA.Consequently, when given the same amount of runtime,CLARANS can 

produce clusterings that are of much better quality than those generated by CLARA.Polygon objects can be clustered by 

CLARANS. The authors  proposed three different ways to compute the distance between two polygons.Complexity and 

experimental results indicate that the IR-approximation is a few times faster than the method that computes the exact 

separation distance. Furthermore,experimental results show that despite the much smaller runtime, the IR-approximation 

is able to find clusterings that are of quality almost as good as those produced by using the exact separation distances.The 

IR-approximation can give ignificant efficiency gain ,but without loss of effectiveness. Spatial Dominant Clarans, 

assumes that items to be clustered contain both spatial and non-spatial components. It first clusters the spatial 

components using clarans and then examines the non-spatial attributes within each cluster to derive a description of that 

cluster.Non- Spatial Dominant Clarans , first looks at the non spatial attributes. By performing a generalization on these 

attributes, a set of representative tuples, one representing each cluster, can be found. Then the algorithm determines 

which spatial objects go with which representative  tuple to finish the clustereing process. 
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