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Abstract

In this paper, we establish some sufficient conditions for the oscil-
lations of all solutions of the second order nonlinear neutral advanced
functional difference equations

∆[r(n)∆(x(n) + p(n)x(n+ τ))] + q(n)f(x(n+ σ)) = 0; n ≥ n0, (∗)

where
∑

∞

n=n0

1
r(n) = ∞ or

∑

∞

n=n0

1
r(n) < ∞, and 0 ≤ p(n) ≤ p0 < ∞,

τ is an integer, and σ is a positive integer. The results proved here
improve some known results in the literature.
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1 Introduction

In this paper we consider the following second order nonlinear neutral advanced
functional difference equations of the form:

∆[r(n)∆(x(n) + p(n)x(n + τ))] + q(n)f(x(n+ σ)) = 0; n ≥ n0, (1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n+1)−x(n).
The following conditions are assumed to be hold throughout the paper:

(a) {r(n)}∞n=n0
is a sequence of positive real numbers;

(b) {p(n)}∞n=n0
is a sequence of nonnegative real numbers with the property

that 0 ≤ p(n) ≤ p0 < ∞;

(c) {q(n)}∞n=n0
is a sequence of nonnegative real numbers and q(n) is not

identically zero for large values of n;

(d) f(u)
u

≥ k > 0 for u 6= 0, k is a constant;

and

(e) τ is an integer and σ is a positive integer.

We shall consider the following two cases,

∞
∑

n=n0

1

r(n)
= ∞ (2)

and
∞
∑

n=n0

1

r(n)
< ∞. (3)

We note that second order neutral functional difference equations have ap-
plications in problems dealing with vibrating masses attached to a elastic ball
and in some variational problems. In recent years there has been an increasing
interest in obtaining sufficient conditions for the oscillation or nonoscillation
of solutions for different classes of difference equations, we refer to the books
[1,2,7] and the papers [6,13]. Also the oscillatory of behavior of neutral func-
tional difference equations has been the subject of intensive study, see, for
example, [3-5,8-12,14].

In [12], Zhang et al. established that every solution of the equation

∆[a(n)∆(x(n)− px(n− τ))] + f(n, x(σ(n))) = 0; n ≥ n0 (4)
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is either oscillatory or eventually

|x(n)| ≤ p |x(n− τ)|

if
∞
∑

s=n

q(s)
m
∑

i=0

pi = ∞,

where
f(n, u)

u
≥ q(n) > 0 for u 6= 0.

In [3], Budincevic established that every solution of the equation

∆[a(n)∆(x(n) + px(n− n0))] + q(n)f(x(n−m0)) = 0 (5)

is either oscillatory or else x(n) → 0 as n → ∞.
In [7], Murugesan et al. established that every solution of the equation (1)

is oscillatory if τ > 0, 0 ≤ p(n) ≤ p0 < ∞ and atleast one of the first order
advanced difference inequalities

∆w(n)−
1

1 + p0
Q1(n)w(n+ σ) ≥ 0; (6)

∆w(n)−
1

1 + p0
Q2(n)w(n+ σ) ≥ 0 (7)

has no positive solution.
In this paper our aim is to obtain sufficient conditions for oscillation of all

solutions of the equation (1) under the condition

∞
∑

n=n0

1

r(n)
= ∞

or
∞
∑

n=n0

1

r(n)
< ∞.

Let n0 be a fixed nonnegative integer. By a solution of (1) we mean a nontrival
real sequence {x(n)} which is defined for n ≥ n0 and satisfies the equation (1)
for n ≥ n0. A solution {x(n)} of (1) is said to be oscillatory if for every positive
integer N > 0, there exists an n ≥ N such that x(n)x(n + 1) ≤ 0, otherwise
{x(n)} is said to be nonoscillatory. Equation (1) is said to be oscillatory if all
its solutions are oscillatory.

In the sequel, for the sake of convenience, when we write a functional
inequality without specifying its domain of validity we assume that it holds
for all sufficiently large n.
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2 Main Results

In this section, we establish some new oscillation criteria for (1). For the sake
of convenience, we define the following notations

Q(n) : = min {q(n), q(n+ τ)} ,

(∆ρ(n))+ = max {0,∆ρ(n)} ,

R(n) =
n−1
∑

s=n0

1

r(s)
,

and

δ(n) =
∞
∑

s=n

1

r(s)
.

Theorem 2.1 Assume that (2) holds and τ > 0. Moreover suppose that
there exists a positive real valued sequence {ρ(n)}∞n=n0

such that

lim sup
n→∞

n
∑

s=n0

[

kρ(s)Q(s)−
((1 + p0)r(s)(∆ρ(s))+)

2

4ρ(s)

]

= ∞. (8)

Then every solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality we may assume
that {x(n)} is an eventually positive solution of (1). Then there exists an
integer n1 ≥ n0 such that x(n) > 0 for all n ≥ n1. Define

z(n) = x(n) + p(n)x(n + τ). (9)

Then z(n) > 0 for all n ≥ n1. From (1), we have

∆(r(n)∆z(n)) ≤ −kq(n)x(n + σ) ≤ 0; n ≥ n1. (10)

Therefore the sequence {r(n)∆z(n)} is nonincreasing. We claim that

∆z(n) > 0 for n ≥ n1. (11)

If not, there exists an integer n2 ≥ n1 such that ∆z(n2) < 0. Then from (10)
we obtain

r(n)∆z(n) ≤ r(n2)∆z(n2), n ≥ n2.

Here

z(n) ≤ z(n2) + r(n2)∆z(n2)
n−1
∑

s=n2

1

r(s)
.
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Letting n → ∞, we get z(n) → −∞. This contradiction proves that ∆z(n) > 0
for n ≥ n1. On the otherhand, using the definition of z(n) and applying (1),
for all sufficiently large values of n,

∆[r(n)∆z(n)] + kq(n)x(n + σ) + p0∆[r(n + τ)∆z(n + τ)]

+p0kq(n + τ)x(n + σ + τ) ≤ 0

∆[r(n)∆z(n)] + p0∆[r(n+ τ)∆z(n + τ)] + kQ(n)z(n + σ) ≤ 0.

Since ∆z(n) > 0, we have z(n + σ) ≥ z(n) and hence

∆[r(n)∆z(n)] + p0∆[r(n + τ)∆z(n + τ)] + kQ(n)z(n) ≤ 0. (12)

Define

w(n) = ρ(n)
r(n)∆z(n)

z(n)
, n ≥ n1. (13)

Clearly w(n) > 0. From (9), we have

r(n+ 1)∆z(n + 1) ≤ r(n)∆z(n).

From (13), we have

∆w(n) = ρ(n)
∆(r(n)∆z(n))

z(n)
−

ρ(n)r(n+ 1)∆z(n + 1)

z(n)z(n + 1)
∆z(n)

+
r(n+ 1)∆z(n + 1)

z(n + 1)
∆ρ(n)

≤ ρ(n)
∆(r(n)∆z(n))

z(n)
−

ρ(n)w2(n + 1)

ρ2(n+ 1)r(n)
+

w(n+ 1)

ρ(n + 1)
∆ρ(n)

≤ ρ(n)
∆(r(n)∆z(n))

z(n)
−

ρ(n)w2(n + 1)

ρ2(n+ 1)r(n)
+

(∆ρ(n))+
ρ(n + 1)

w(n+ 1).

(14)
Similarly, we define

v(n) = ρ(n)
r(n+ τ)∆z(n + τ)

z(n)
, n ≥ n1. (15)

From (9) we have r(n+ τ + 1)∆z(n + τ + 1) ≤ r(n)∆z(n).
Using this in (15), we have
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∆v(n) ≤ ρ(n)
∆(r(n+ τ)∆z(n + τ))

z(n)
−

ρ(n)v2(n+ 1)

ρ2(n+ 1)r(n)
+

∆ρ(n)

ρ(n + 1)
v(n+ 1)

≤ ρ(n)
∆(r(n + τ)∆z(n + τ))

z(n)
−

ρ(n)v2(n + 1)

ρ2(n+ 1)r(n)
+

(∆ρ(n))+
ρ(n + 1)

v(n+ 1). (16)

It follows from (14) and (16) that

∆w(n) + p0∆v(n) ≤ ρ(n)
∆[r(n)∆z(n)]

z(n)
+ p0ρ(n)

∆[r(n + τ)∆z(n + τ)]

z(n)

−
ρ(n)w2(n + 1)

ρ2(n+ 1)r(n)
+

(∆ρ(n))+
ρ(n + 1)

w(n+ 1)− p0
ρ(n)v2(n+ 1)

ρ2(n + 1)r(n)

+p0
(∆ρ(n))+
ρ(n + 1)

v(n+ 1).

In view of (12)and the above ineqality, we obatin

∆w(n) + p0∆v(n) ≤ −kρ(n)Q(n)−
ρ(n)w2(n+ 1)

ρ2(n + 1)r(n)
+

(∆ρ(n))+
ρ(n+ 1)

w(n+ 1)

−p0
ρ(n)v2(n+ 1)

ρ2(n+ 1)r(n)
+ p0

(∆ρ(n))+
ρ(n+ 1)

v(n+ 1)

≤ −kρ(n)Q(n) +
(1 + p0)r(n)(∆(ρ(n)+)

2

4ρ(n)
.

Summing the above inequality from n, to n− 1, we have

w(n)+p0v(n) ≤ w(n1)+p0v(n1)−
n−1
∑

s=n1

[

kρ(s)Q(s)−
(1 + p0)r(s)((∆ρ(s))+)

2

4ρ(s)

]

,

which follows that

n−1
∑

s=n1

[

kρ(s)Q(s)−
(1 + p0)r(s)((∆ρ(s))+)

2

4ρ(s)

]

≤ w(n1) + p0v(n1),

which contradicts (8). This completes the proof. Choosing ρ(n) = R(n + σ).
By Theorem 2.1 we have the following results.

Corollary 2.2 Assume that (2) holds and τ > 0. If

lim sup
n→∞

n
∑

s=n0

[

kR(s+ σ)Q(s)−
(1 + p0)

4r(s)R(s+ σ)

]

= ∞, (17)

then every solution of (1) is oscillatory.
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Corollary 2.3 Assume that (2) holds and τ > 0. If

lim inf
n→∞

1

lnR(n + σ)

n−1
∑

s=n0

R(s+ σ)Q(s) >
1 + p0

4k
, (18)

then every solution of (1) is oscillatory.

Proof. From (18), there exists a ǫ > 0 such that for all large n,

1

lnR(n + σ)

n−1
∑

s=n0

R(s+ σ)Q(s) >
1 + p0

4k
+ ǫ,

it follows that

n−1
∑

s=n0

R(s+ σ)Q(s)−
(

1 + p0

4k

)

lnR(s+ σ) ≥ ǫ lnR(n+ σ),

that is

n−1
∑

s=n0

[

R(s+ σ)Q(s)−
1 + p0

4kr(s)R(s+ σ)

]

≥ ǫ lnR(n+σ)+
(

1 + p0

4k

)

lnR(n0+σ).

(19)
Now, it is obvious that (19) implies (17) and the assertion of Corollary 2.3.
follows from Corollary 2.2.

Corollary 2.4 Assume that (2) holds and τ > 0. If

lim inf
n→∞

[Q(n)R2(n+ σ)r(n)] >
1 + p0

4k
, (20)

then every solution of (1) is oscillatory.

Proof. It is easy to verify that (20) yields the existence ǫ > 0 such that
for all large n,

Q(n)R2(n + σ)r(n) ≥
1 + p0

4k
+ ǫ.

Multiplying by 1
R(n+σ)r(n)

on both sides of the above inequality, we have

R(s+ σ)Q(s)−
1 + p0

4kr(s)R(s+ σ)
≥

ǫ

R(s+ σ)r(s)

which implies that (17) holds. Therefore by Corollary 2.2. every solution of
(1) is oscillatory.
Next, choosing ρ(n) = n. By Theorem 2.1 we have the following result.
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Corollary 2.5 Assume that (2) holds and τ > 0. If

lim sup
n→∞

n
∑

s=n0

[

ksQ(s)−
(1 + p0)r(s)

4s

]

= ∞, (21)

then every solution of (1) is oscillatory.

Theorem 2.6 Assume that (3) holds τ > 0, and σ ≤ τ . Suppose also that
there exists a positive real valued sequence {ρ(n)}∞n=n0

such that (8) holds, and

lim sup
n→∞

n
∑

s=n0

[

kδ(s+ 1)Q(s− τ)−
(1 + p0)δ(s)

4r(s)δ2(s+ 1)

]

= ∞. (22)

Then every solution of (1) is oscillatory.

Proof. Assume that contrary. Without loss of generality; we may suppose
that {x(n)} is an eventually positive solution of (1) Then there exists an integer
n1 ≥ n0 such that x(n + σ − τ) > 0 for all n ≥ n1. From (1), {r(n)∆z(n)}
is nonincreasing eventually, where z(n) is defined by (9). Consequently, it is
easy to conclude that there exists two possible cases of the sign of ∆z(n), that
is , ∆z(n) > 0 or ∆z(n) < 0 eventually. If ∆z(n) > 0 eventually, then we
are back of the case of Theorem 2.1, and we can get a contradiction to (8). If
∆z(n) < 0, n ≥ n2 ≥ n1 then we define the sequence {v(n)} by

v(n) =
r(n)∆z(n)

z(n)
, n ≥ n3 = n2 + τ. (23)

Clearly v(n) < 0. Noting that {r(n)∆z(n)} is nonincreasing, we get

r(s)∆z(s) ≤ r(n)∆z(n), s ≥ n ≥ n3.

Dividing the above by r(s) and summing it from n to l − 1, we obtain

z(l) ≤ z(n) + r(n)∆z(n)
l−1
∑

s=n

1

r(s)
, l ≥ n ≥ n3.

Letting l → ∞ in the above inequality, we see that

0 ≤ z(n) + r(n)∆z(n)δ(n), n ≥ n3.

Therefore,
r(n)∆z(n)

z(n)
δ(n) ≥ −1, n ≥ n3.

From (23), we have
−1 ≤ v(n)δ(n) ≤ 0, n ≥ n3. (24)
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Similarly, we introduce the sequence {w(n)} where

w(n) =
r(n− τ)∆z(n − τ)

z(n)
, n ≥ n3. (25)

Obviously w(n) < 0. Noting that {r(n)∆z(n)} is nonincreasing, we have
r(n− τ)∆z(n − τ) ≥ r(n)∆z(n). Then w(n) ≥ v(n). From (24), we have

−1 ≤ w(n)δ(n) ≤ 0, n ≥ n3. (26)

From (24) and (25), we have

∆v(n) =
∆(r(n)∆z(n)

z(n)
−

v2(n)

r(n)
, (27)

and

∆w(n) =
∆(r(n− τ)∆z(n − τ))

z(n)
−

w2(n)

r(n)
. (28)

In view of (27) and (28), we obtain,

∆w(n) + p0∆v(n) ≤
∆(r(n− τ)∆z(n − τ))

z(n)

+p0
∆(r(n)∆z(n))

∆z(n)
−

w2(n)

r(n)
−

v2(n)

r(n)
. (29)

On the otherhand, proceed as in the proof of Theorem 2.1, we have

∆(r(n− τ)∆z(n − τ)) + p0∆(r(n)∆z(n)) ≤ −kQ(n− τ)z(n).

Using the above inequality in (29), we have

∆w(n) + p0∆v(n) ≤ −kQ(n− τ)−
w2(n)

r(n)
−

v2(n)

r(n)
. (30)

Multiplying (30) by δ(n+ 1) and summing from n3 to n− 1, we have

δ(n)w(n) − δ(n3 + 1)w(n3) +
n−1
∑

s=n3

w(s)

r(s)
+

n−1
∑

s=n3

w2(s)

r(s)
δ(s+ 1)

+ p0δ(n)v(n)− p0δ(n3 + 1)v(n3) + p0

n−1
∑

s=n3

v(s)

r(s)

+ p0

n−1
∑

s=n3

v2(s)

r(s)
δ(s+ 1) + k

n−1
∑

s=n3

Q(s− τ)δ(s + 1) ≤ 0.
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From the above inequality, we have

δ(n)w(n) − δ(n3 + 1)w(n3) + p0δ(n)v(n)− p0δ(n3 + 1)v(n3)

+ k
n−1
∑

s=n3

δ(s+ 1)Q(s− τ)−
(1 + p0)

4

n−1
∑

s=n3

δ(s)

r(s)δ2(s+ 1)
≤ 0.

Thus, it follows from the above inequality that

δ(n)w(n) + p0δ(n)v(n) +
n−1
∑

s=n3

[

kδ(s+ 1)Q(s− τ)−
(1 + p0)δ(s)

4r(s)δ2(s+ 1)

]

≤ δ(n3 + 1)w(n3) + p0δ(n3 + 1)v(n3).

By (24) and (26), we get a contradiction with (22) and this completes the
proof.

Corollary 2.7 Assume that (3) holds, τ > 0 and σ ≤ τ . Furthermore that
one of conditions (17), (18), (20) and (21) holds and one has (22). Then every
solution of (1) is oscillatory.

Theorem 2.8 Assume that (3) holds, τ > 0, and σ ≤ τ . Further more
suppose that there exists a positive real valued sequence {ρ(n)}∞n=n0

such that
(8) holds, and

lim sup
n→∞

n
∑

s=n0

δ2(s+ 1)Q(s− τ) = ∞. (31)

then every solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality, we assume that
{x(n)} is an eventually positive solution of (1). Then there exists an integer
n1 ≥ n0 such that x(n − τ) > 0 for all n ≥ n1. By (1), {r(n)∆z(n)} is
nonincreasing, eventually where z(n) is defined by (9). Consequently, it is
easy to conclude that there exist two possible cases of the sign of {∆z(n)},
that is ∆z(n) > 0 or ∆z(n) < 0 eventually. If ∆z(n) < 0, n ≥ n2 ≥ n1, then
we define w(n) and v(n) as in Theorem 2.6. Then proceed as in the proof of
Theorem 2.6, we obtain (24), (26) and (30). Multiplying (30) by δ2(n + 1),
and summing from n3 to n− 1, where n3 ≥ n2 + τ , we get

δ2(n)w(n) − δ2(n3 + 1)w(n3 + 1) + 2
n−1
∑

s=n3

w(s)δ(s+ 1)

r(s+ 1)
+ p0δ

2(n)v(n)

− p0δ
2(n3 + 1)v(n3) + 2

n−1
∑

s=n3

v(s)δ(s+ 1)

r(s+ 1)
+

n−1
∑

s=n3

w2(s)δ2(s+ 1)

r(s)
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+ p0

n−1
∑

s=n3

v2(s)

r(s)
δ2(s + 1) + k

n−1
∑

s=n3

Q(s− τ)δ2(s+ 1) ≤ 0. (32)

It follows from (3) and (24) that

∣

∣

∣

∣

∣

∞
∑

s=n3

w(s)δ(s+ 1)

r(s+ 1)

∣

∣

∣

∣

∣

≤
∞
∑

s=n3

|w(s)δ(s+ 1)|

r(s+ 1)
≤

∞
∑

s=n3

1

r(s+ 1)
< ∞,

n−1
∑

s=n3

w2(s)δ2(s+ 1)

r(s)
≤

∞
∑

s=n3

1

r(s)
< ∞.

In view of (26), we have

∣

∣

∣

∣

∣

∞
∑

s=n3

v(s)δ(s+ 1)

r(s+ 1)

∣

∣

∣

∣

∣

≤
∞
∑

s=n3

|v(s)δ(s+ 1)|

r(s+ 1)
≤

∞
∑

s=n3

1

r(s+ 1)
< ∞,

∞
∑

s=n3

v2(s)δ2(s+ 1)

r(s)
≤

∞
∑

s=n3

1

r(s)
< ∞.

From (32), we get

lim sup
n→∞

n
∑

s=n0

δ2(s+ 1)Q(s− τ) < ∞,

which is a contradiction with (31). This completes the proof.

Corollary 2.9 Assume that (3) holds, τ > 0 and σ ≤ τ . Suppose also that
one of conditions (17), (18), (20) and (21) holds, and one has (31). Then
every solution of (1) is oscillatory.

Theorem 2.10 Assume that (2) holds and τ < 0. Moreover suppose that
there exists a positive real valued sequence {ρ(n)}∞n=n0

such that

lim sup
n→∞

n
∑

s=n0

[

kρ(s)Q(s)−
(1 + p0)r(s+ τ)(∆ρ(s)+)

2

4ρ(s)

]

= ∞. (33)

Then every solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality we may assume
that {x(n)} is an eventually positive solution of (1). Then there exists an
integer n1 ≥ n0 such that x(n − τ) > 0 for all n ≥ n1. Define z(n) by (9).
Similar to the proof of Theorem 2.1, there exists an integer n2 ≥ n1 such that
∆z(n + τ) > 0 for n ≥ n2 and

∆[r(n)∆z(n)]+p0[r(n+ τ)∆z(n+ τ)]+kQ(n)z(n+ τ) ≤ 0 forn ≥ n2. (34)
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Define the sequence {w(n)} by

w(n) = ρ(n)
r(n)∆z(n)

z(n + τ)
, n ≥ n2. (35)

Then w(n) > 0. By (10) we get

r(n+ 1)∆z(n + 1) ≤ r(n+ τ)∆z(n + τ),

and

∆w(n) ≤ ρ(n)
∆(r(n)∆z(n))

z(n + τ)
−

ρ(n)w2(n+ 1)

ρ2(n + 1)r(n+ τ)
+

w(n+ 1)

ρ(n + 1)
∆ρ(n)

≤ ρ(n)
∆(r(n)∆z(n))

z(n + τ)
−

ρ(n)w2(n+ 1)

ρ2(n + 1)r(n+ τ)
+

w(n+ 1)

ρ(n + 1)
(∆ρ(n))+ (36)

Again define the sequence {v(n)} by

v(n) = ρ(n)
r(n + τ)∆z(n + τ)

z(n + τ)
, n ≥ n2. (37)

The rest of the proof is similar to that of Theorem 2.1 and so is omitted. This
completes the proof.

Choosing ρ(n) = R(n + τ). By Theorem 2.10 we have the following oscil-
lation criteria.

Corollary 2.11 Assume that (2) holds and τ < 0. If

lim sup
n→∞

n
∑

s=n0

[

kR(s+ τ)Q(s)−
1 + p0

4r(s+ τ)R(s+ τ)

]

= ∞, (38)

then every solution of (1) is oscillatory.

Corollary 2.12 Assume that (2) holds and τ < 0. If

lim inf
n→∞

1

lnR(n+ τ)

n−1
∑

s=n0

R(s+ τ)Q(s) >
1 + p0

4k
, (39)

then every solution of (1) is oscillatory.

Proof. By Corollary 2.11, the proof is similar to that of Corollary 2.3, we
omit the details.

Corollary 2.13 Assume that (2) holds and τ < 0. If

lim inf
n→∞

[Q(n)R2(n+ τ)r(n + τ)] >
1 + p0

4k
, (40)

then every solution of (1) is oscillatory.
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Proof. By Corollary 2.11, the proof is similar to that of Corollary 2.4, and
so the proof is omitted.

Next, we choosing ρ(n) = n. From Theorem 2.4, we have the following
result.

Corollary 2.14 Assume that (2) holds and τ < 0. If

lim sup
n→∞

n
∑

s=n0

[

ksQ(s)−
(1 + p0)r(s+ τ)

4s

]

= ∞, (41)

then every solution of (1) is oscillatory.

Next, we will give the following results under the case when (3) and σ ≤ τ .

Theorem 2.15 Assume that (3) holds, τ < 0, and σ ≤ −τ . Further,
suppose that there exists a positive real valued sequence {ρ(n)}∞n=n0

such that
(33) holds. Suppose also that one of the following holds:

lim sup
n→∞

n
∑

s=n0

[

kδ(s+ 1)Q(s+ τ)−
(1 + p0)δ(s)

4r(s)δ2(s+ 1)

]

= ∞, (42)

lim sup
n→∞

n
∑

s=n0

δ2(s+ 1)Q(s+ τ) = ∞. (43)

Then every solution of (1) is oscillatory.

Proof. Assume the contrary. Without loss of generality, we may assume
that {x(n)} is an eventually positive solution of (1). Then there exists an
integer n1 ≥ n0 such that x(n) > 0 for all n ≥ n1. From (1), {r(n)∆z(n)}
is nonincreasing eventually where z(n) is defined by (9). Consequently it is
easy to conclude that there exist two possible cases of sign of {∆z(n)}. That
is ∆z(n) > 0 or ∆z(n) < 0 eventually. If ∆z(n) > 0 eventually, then we are
back of the case of Theorem 2.10 and we can get a contradiction to (33). If
∆z(n) < 0 eventually, then there exists an integer n2 ≥ n1 such that ∆z(n) < 0
for all n ≥ n2.

Define the sequence {w(n)} and {v(n)} as follows:

w(n) =
r(n+ τ)∆z(n + τ)

z(n)
for n ≥ n3 = n2 + 2τ

and

v(n) =
r(n+ 2τ)∆z(n + 2τ)

z(n)
for n ≥ n3 = n2 + 2τ.

The rest of the proof can be proceed as in Theorem 2.6 of Theorem 2.8. We
can obtain a contradiction to (42) or (43) respectively. The proof is complete.
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3 Examples

Example 3.1 Consider the second order neutral advanced difference equa-
tion

∆[(n+ τ)∆(x(n) + p(n)x(n+ τ))] +
λ

n
f(x(n+ σ)) = 0, n = 1, 2, 3, .... (44)

where r(n) = n+τ , τ and σ are positive integers, ρ(n) = n+τ , f(x) = x(1+x2),
0 ≤ p(n) ≤ p0 < ∞, q(n) = λ

n
and λ > 0. Let k = 1. Then

lim sup
n→∞

n
∑

s=1

kρ(s)Q(s)−
(1 + p0)r(s)((∆ρ(s))+)

2

4ρ(s)

= lim sup
n→∞

n
∑

s=1

[

λ−
(1 + p0)

4

]

= ∞,

for λ > 1+p0
4

. Hence, by Theorem 2.1, every solution of (44) is oscillatory for
λ > 1+p0

4
.

Example 3.2 Consider the following second order neutral advanced differ-
ence equation

∆[(n− τ)∆(x(n) + p(n)x(n + τ))] + q(n)f(x(n+ σ)) = 0, n ≥ 1, (45)

where r(n) = n− τ , q(n) = λ
n
, 0 ≤ p(n) ≤ p0 < ∞, τ is a negative integer, σ

is a positive integer, and f(x) = x(1 + x2) and λ > 0. It is easy to see that

lim sup
n→∞

n
∑

s=1

[

ksQ(s)−
(1 + p0)r(s+ τ)

4s

]

= lim sup
n→∞

n
∑

s=1

[

λ−
1 + p0

4

]

= ∞,

for λ > 1+p0
4

. Hence, by Corollary 2.14, every solution of (45) is oscillatory.

Example 3.3 Consider the following second order neutral advanced differ-
ence equation

∆[en(x(n) + p(n)x(n + 2))] + e2nf(x(n + 1)) = 0, n ≥ 1, (46)

where 0 ≤ p(n) ≤ p0 < ∞, f(x) = x(1 + x2), r(n) = en, q(n) = e2n. It is easy
to see that

∞
∑

n=1

1

r(n)
< ∞.
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Choose k = 1. Then

lim sup
n→∞

n
∑

s=1

δ2(s+ 1)Q(s− 2)

= lim sup
n→∞

n
∑

s=1

1

e2n(e− 1)2
e2(n−2)

= ∞.

Also

lim inf
n→∞

[Q(n)R2(n+ 1)r(n)] = lim inf
n→∞



e2n
(

en − 1

en(e− 1)

)2

en



 >
1 + p0

4

Then by Corollary 2.9 every solution of (46) is oscillatory.
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