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Oscillation of Fractional Nonlinear Difference Equations

S.Lourdu Marian

Rajiv Gandhi College of Engineering, Chennai - 105

M. Reni Sagayaraj, A.George Maria Selvam

Sacred Heart College, Tirupattur - 635 601, S.India

M.Paul Loganathan

Department of Mathematics, Dravidian University, Kuppam

Abstract

The oscillation criteria for forced nonlinear fractional difference equa-
tion of the form

∆αx(t) + f1(t, x(t+ α)) =v(t) + f2(t, x(t+ α)), t ∈ N0, 0 < α ≤ 1,

∆α−1x(t)|t=0 =x0,

where ∆α denotes the Riemann-Liouville like discrete fractional differ-
ence operator of order α is presented.
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1 Introduction

In this paper, we present the oscillatory behavior of forced nonlinear fractional
difference equation of the form

∆αx(t) + f1(t, x(t + α)) =v(t) + f2(t, x(t + α)), t ∈ N0, 0 < α ≤ 1,

∆α−1x(t)|t=0 =x0,
(1)

where ∆α is a Riemann-Liouville like discrete fractional difference, fi : [0,+∞)×
R → R, i = 1, 2 and v are continuous with respect to t and x,Na = {a, a +
1, a+ 2, . . .}.

Fractional differential equations have received considerable attention during
recent years, because these equations are proved valuable tools for modeling
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of many phenomena in various fields. Fractional calculus finds its significant
applications in the fields of viscoelasticity, capacitor theory, electrical circuits,
electro-analytical chemistry, neurology, diffusion, control theory and statistics
see [14], [15] and [16].

A rigorous theory of fractional differential equations has been started quite
recently, see books [12], [13], and [15]. However, very little progress has been
made to develop the theory of fractional difference equations see [7, 8, 9, 11].
In particular, nothing is known regarding the oscillatory behavior of (1) up to
now. The study of Oscillation of fractional differential equations is initiated
in [5, 17]. Motivated by [17] , we study the oscillation of fractional difference
equations (1).

2 Definitions and Basic Lemmas

In this section, we introduce preliminary results of discrete fractional calculus.

Definition 2.1 (see [2]) Let ν > 0. The ν-th fractional sum f is defined
by

∆−νf(t) =
1

Γ(ν)

t−ν
∑

s=0

(t− s− 1)(ν−1)f(s),

where f is defined for s = a mod (1) and ∆−νf is defined for t = (a + ν)

mod (1), and t(ν) = Γ(t+1)
Γ(t−ν+1)

. The fractional sum ∆−νf maps functions defined
on Na to functions defined on Na+v.

Definition 2.2 (see [2]) Let µ > 0 and m− 1 < µ < m, where m denotes
a positive integer, m = ⌈µ⌉. Set ν = m − µ. The µ-th fractional difference is
defined as

∆µf(t) = ∆m−νf(t) = ∆m∆−νf(t).

Theorem 2.3 (see [3]) Let f be a real-value function defined on Na and
µ, ν > 0, then the following equalities hold:

∆−ν [∆−µf(t)] = ∆−(µ+ν)f(t) = ∆−µ[∆−νf(t)];

∆−ν∆f(t) = ∆∆−νf(t)−
(t− a)(ν−1)

Γ(ν)
f(a).

Lemma 2.4 (see [2]) Let µ 6= 1 and assume µ + ν + 1 is not a positive
integer, then

∆−νt(µ) =
Γ(µ+ 1)

Γ(µ+ ν + 1)
t(µ+ν).
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In order to discuss our results in Section 3, Now we state the following lemma
[10] .

Lemma 2.5 For X ≥ 0 and Y > 0, we have

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0, λ > 1 (2)

and
Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0, λ < 1, (3)

where equality holds if and only if X = Y .

Lemma 2.6 (see [2]) The equivalent fractional Taylor’s difference formula
of (1) is

x(t) =
x0

Γ(α)
t(α−1)+

1

Γ(α)

t−α
∑

s=0

(t−s−1)(α−1)[v(s)+f2(s, x(s+α))−f1(s, x(s+α))], t ∈ Nα.

(4)

Proof: Apply the ∆−α operator to each side of (1), we obtain

∆−α∆αx(t) = ∆−α[v(t) + f2(t, x(t+ α))− f1(t, x(t + α))] (5)

Apply Theorem (2.3) to the left-hand side of (5),

∆−α∆αx(t) =∆−α∆∆−(1−α)x(t)

=∆∆−α∆−(1−α)x(t)−
t(α−1)

Γ(α)
x0

=x(t)−
x0

Γ(α)
t(α−1).

Now, we apply Definition (2.1) to the right of (5) for t ∈ Na, which yields (4)
. This completes the proof.

3 Main Results

We consider the following conditions:

xfi(t, x) > 0 (i = 1, 2), x 6= 0, t ≥ t0 (6)

and

|f1(t, x)| ≥ |p1(t)| |x|
β and |f2(t, x)| ≤ |p2(t)| |x|

γ , x 6= 0, t ≥ t0, (7)

where p1, p2 ∈ C([t0,∞), R+) and β, γ > 0 are real numbers.
Now we prove first theorem when f2 = 0.
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Theorem 3.1 Suppose that condition (6) hold. If

lim
t→∞

inf t(1−α)

t−α
∑

s=0

(t− s− 1)(α−1)v(s) = −∞, (8)

and

lim
t→∞

sup t(1−α)
t−α
∑

s=0

(t− s− 1)(α−1)v(s) = ∞, (9)

then every solution of equation (1) is oscillatory.

Proof: Let x(t) be a nonoscillatory solution of equation (1) with f2 = 0.
Suppose that T > t0 is large enough that x(t) > 0 for t ≥ T .
Let F (t) = v(t) + f2(t, x(t + α))− f1(t, x(t + α)), then we see from (4) that

x(t) ≤
x0

Γ(α)
t(α−1)+

1

Γ(α)

T−1
∑

s=0

(t−s−1)(α−1) |F (s)|+
1

Γ(α)

t−α
∑

s=T

(t−s−1)(α−1)v(s), t ≥ T,

Γ(α)t(1−α)x(t) ≤ x0+t(1−α)

T−1
∑

s=0

(t−s−1)(α−1) |F (s)|+t(1−α)

t−α
∑

s=T

(t−s−1)(α−1)v(s), t ≥ T,

and hence

Γ(α)t(1−α)x(t) ≤ C(T ) + t(1−α)

t−α
∑

s=T

(t− s− 1)(α−1)v(s), t ≥ T, (10)

where

C(T ) = x0 +
T−1
∑

s=0

(

T

T − s− 1

)(1−α)

|F (s)|

and
lim
t→∞

C(t) = M < ∞, t ≥ T.

Taking the limit inferior of both sides of inequality (10) as t → ∞, we get a
contradiction to condition (8). This completes the proof of the theorem. Next
we have the following results.

Theorem 3.2 Suppose that conditions (6) and (7) hold with β > 1 and
γ = 1. If

lim
t→∞

inf t(1−α)
t−α
∑

s=0

(t− s− 1)(α−1) [v(s) +Hβ(s)] = −∞, (11)

and

lim
t→∞

sup t(1−α)

t−α
∑

s=0

(t− s− 1)(α−1) [v(s) +Hβ(s)] = ∞, (12)
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where
Hβ(s) = (β − 1)ββ/(1−β)p

1/(1−β)
1 (s)p

β/(β−1)
2 (s),

then every solution of equation (1) is oscillatory.

Proof: Let x(t) be a nonoscillatory solution of equation (4), say, x(t) > 0 for
t ≥ T > t0. Using condition (7) in equation (4) with γ = 1 and β > 1 and
t ≥ T , we obtain

Γ(α)t(1−α)x(t) =x0 + t(1−α)
t−α
∑

s=0

(t− s− 1)(α−1) [v(s) + f2(s, x(s+ α))− f1(s, x(s+ α))]

=x0 + t(1−α)
T−1
∑

s=0

(t− s− 1)(α−1) [v(s) + f2(s, x(s+ α))− f1(s, x(s+ α))]

+t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1) [v(s) + f2(s, x(s+ α))− f1(s, x(s+ α))]

≤x0 + t(1−α)

T−1
∑

s=0

(t− s− 1)(α−1) |F (s)|

+t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1) [v(s) + f2(s, x(s+ α))− f1(s, x(s+ α))]

≤C(T ) + t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1)
[

v(s)

+f2(s, x(s+ α))− f1(s, x(s+ α))
]

Γ(α)t(1−α)x(t) ≤ C(T ) + t(1−α)

t−α
∑

s=T

(t− s− 1)(α−1)
[

v(s)

+p2(s)x(s+ α)− p1(s)x
β(s+ α)

]

, t ≥ T.

(13)

We apply (2) in Lemma (2.5) with

λ = β, X = p
1/β
1 x and Y =

(

p2p
−1/β
1 /β

)1/(β−1)

(

p
1/β
1 (t)x(t + α)

)β

+ (β − 1)
(

p2(t)p
−1/β
1 (t)/β

)β/(β−1)

−βp
1/β
1 (t)x(t + α)

(

p2(t)p
−1/β
1 (t)/β

)

≥ 0

p1(t)x
β(t+ α)+(β − 1)ββ/(1−β)p

1/(1−β)
1 (t)p

β/(β−1)
2 (t)− p2(t)x(t + α) ≥ 0

p2(t)x(t + α)− p1(t)x
β(t+ α) ≤ (β − 1)ββ/(1−β)p

1/(1−β)
1 (t)p

β/(β−1)
2 (t), t ≥ T.

(14)
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Using (14) in (13) , we obtain

Γ(α)t(1−α)x(t) ≤C(T ) + t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1)[v(s) +Hβ(s)], t ≥ T.

(15)

Taking the limit inferior of both sides of inequality (15) as t → ∞, we get a
contradiction to condition (11). This completes the proof of the theorem.

Theorem 3.3 Suppose that conditions (6) and (7) hold with β = 1 and
γ < 1. If

lim
t→∞

inf t(1−α)
t−α
∑

s=0

(t− s− 1)(α−1) [v(s) +Hγ(s)] = −∞, (16)

and

lim
t→∞

sup t(1−α)

t−α
∑

s=0

(t− s− 1)(α−1) [v(s) +Hγ(s)] = ∞, (17)

where
Hγ(s) = (1− γ)γγ/(γ−1)p

γ/(γ−1)
1 (s)p

1/(1−γ)
2 (s),

then every solution of equation (1) is oscillatory.

Proof: Let x(t) be a nonoscillatory solution of equation (4), say, x(t) > 0 for
t ≥ T > t0. Using condition (7) in equation (4) with β = 1 and γ < 1, we get

Γ(α)t(1−α)x(t) ≤C(T ) + t(1−α)

t−α
∑

s=T

(t− s− 1)(α−1)[v(s) + p2(s)x
γ(s+ α)− p1(s)x(s+ α)].

(18)

Now we use (3) in Lemma (2.5) with

λ = γ, X = p
1/γ
2 x and Y =

(

p1p
−1/γ
2 /γ

)1/(γ−1)

(

p
1/γ
2 (t)x(t + α)

)γ

−(1− γ)
(

p1(t)p
−1/γ
2 (t)/γ

)γ/(γ−1)

−γp
1/γ
2 (t)x(t+ α)(p1(t)p

−1/γ
2 (t)/γ) ≤ 0

p2(t)x
γ(t + α)− p1(t)x(t + α) ≤ (1− γ)γγ/(1−γ)p

γ/(γ−1)
1 (t)p

1/(1−γ)
2 (t) t ≥ T.

(19)
Using (19) in (18), we obtain

Γ(α)t(1−α)x(t) ≤C(T ) + t(1−α)

t−α
∑

s=T

(t− s− 1)(α−1)[v(s) +Hγ(s)], t ≥ T. (20)
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Taking the limit inferior of both sides of inequality (20) as t → ∞, we get
a contradiction to condition (16). This completes the proof of the theorem.
Finally we present the following more general result.

Theorem 3.4 Suppose that conditions (6) and (7) hold with β > 1 and
γ < 1. If

lim
t→∞

inf t(1−α)

t−α
∑

s=0

(t− s− 1)(α−1) [v(s) +Hβ,γ(s)] = −∞, (21)

and

lim
t→∞

sup t(1−α)

t−α
∑

s=0

(t− s− 1)(α−1) [v(s) +Hβ,γ(s)] = ∞, (22)

where

Hβ,γ(s) = (β−1)ββ/(1−β)ξβ/(β−1)(s)p
1/(1−β)
1 (s)+(1−γ)γγ/(1−γ)ξγ/(γ−1)(s)p

1/(1−γ)
2 (s)

with ξ ∈ C([t0,∞), R+), then every solution of equation (1) is oscillatory.

Proof: Let x(t) be a nonoscillatory solution of equation (1), say, x(t) > 0 for
t ≥ T > t0. Using condition (7) in equation (4), we can write

Γ(α)t(1−α)x(t) ≤C(T ) + t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1)v(s)

+t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1)
[

ξ(s)x(s+ α)− p1(s)x
β(s+ α)

]

+t(1−α)

t−α
∑

s=T

(t− s− 1)(α−1) [p2(s)x
γ(s+ α)− ξ(s)x(s+ α)] , t ≥ T.

(23)

We may bound the terms (ξx−p1x
β) and (p2x

γ −ξx) by using the inequalities
(14) with p2 = ξ, and (19) with p1 = ξ respectively, we get

Γ(α)t(1−α)x(t) ≤C(T ) + t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1)v(s)

+t(1−α)
t−α
∑

s=T

(t− s− 1)(α−1)
[ [

(β − 1)ββ/(1−β)ξβ/(β−1)(s)p
1/(1−β)
1 (s)

]

+
[

(1− γ)γγ/(1−γ)ξγ/(γ−1)(s)p
1/(1−γ)
2 (s)

] ]

Γ(α)t1−αx(t) ≤ C(T ) + t(1−α)

t−α
∑

s=T

(t− s− 1)(α−1) [v(s) +Hβ,γ(s)] , t ≥ T. (24)
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Taking the limit inferior of both sides of inequality (24) as t → ∞, we get
a contradiction to condition (21). This completes the proof of the theorem.
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