Mathematica Aeterna, Vol. 2, 2012, no. 2, 77-88

Ordered (L, e)-filters

Yong Chan Kim and Jung Mi Ko
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea
yck@gwnu.ac.kr; jmko@gwnu.ac.kr

Abstract

We introduce the notion of ordered (L, e)-filters with fuzzy partially order e on complete residuated lattice L. We define the images and preimages of (L, e)-filters using Zadeh image and preimage operators. We study the images and preimages of (L, e)-filters induced by functions. We investigate their properties.

Mathematics Subject Classification: 03E72, 54A40,54B10
Keywords: (L, e)-filters, (L, e)-filter (preserving) maps, the image (preimage) of (L, e)-filters

1 Introduction

Höhle et al. [5,6] introduced the notion of L-filter on a complete quasi-monoidal lattice (including GL-monoid [4]) L instead of a completely distributive lattice ([2-4]) as an extension of fuzzy filters $[1,2]$. The notion of L-filter facilitated to study L-fuzzy topologies [3,5,6], L-fuzzy uniform spaces [5,6] and topological structures [7].

In this paper, we define ordered (L, e)-filters with fuzzy partially order e on complete residuated lattice L and investigate their properties. We consider the Zadeh image operator ϕ_{L} and the Zadeh preimage operator $\phi_{L}^{\overleftarrow{L}}$ in a sense [8]. We investigate the images and preimages of (L, e)-filters induced by functions.

2 Preliminaries

Definition $2.1[5,6,9]$ A triple $(X, \leq, *)$ is called a complete residuated lattice iff it satisfies the following properties:
(L1) $(X, \leq, 1,0)$ is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
(L2) $(X, *, 1)$ is a commutative monoid;
(L3) $*$ is distributive over arbitrary joins, i.e.

$$
\left(\bigvee_{i \in \Gamma} a_{i}\right) * b=\bigvee_{i \in \Gamma}\left(a_{i} * b\right) .
$$

Example $2.2[5,6,9](1)$ Each frame (L, \leq, \wedge) is a complete residuated lattice.
(2) The unit interval with a left-continuous t -norm $t,([0,1], \leq, t)$, is a complete residuated lattice.
(3) Define a binary operation $*$ on $[0,1]$ by $x * y=\max \{0, x+y-1\}$. Then $([0,1], \leq, *)$ is a complete residuated lattice.

Let (L, \leq, \odot) be a complete residuated lattice. A order reversing map ${ }^{c}: L \rightarrow L$ defined by $a^{c}=a \rightarrow 0$ is called a strong negation if $a^{c c}=a$ for each $a \in L$.

In this paper, we assume $\left(L, \leq, \odot,{ }^{c}\right)$ is a complete residuated lattice with a strong negation ${ }^{c}$.

Definition 2.3 [5,6,9] Let X be a set. A function $e_{X}: X \times X \rightarrow L$ is called fuzzy partially order on X if it satisfies the following conditions:
(E1) $e_{X}(x, x)=1$ for all $x \in X$,
(E2) $e_{X}(x, y) \odot e_{X}(y, z) \leq e_{X}(x, z)$, for all $x, y, z \in X$,
(E3) if $e_{X}(x, y)=e_{X}(y, x)=1$, then $x=y$.
The pair $\left(X, e_{X}\right)$ is a fuzzy partially order set (simply, fuzzy poset).
Let $(X, \leq, *)$ be a complete residuated lattice. A fuzzy poset $\left(X, e_{X}\right)$ is a p-fuzzy poset if $e_{X}\left(x_{1}, y_{1}\right) \odot e_{X}\left(x_{2}, y_{2}\right) \leq e_{X}\left(x_{1} * x_{2}, y_{1} * y_{2}\right)$ for each $x_{i}, y_{i} \in X$ and $e_{X}(x, y)=1$ if $x \leq y$.

Lemma 2.4 [5,6,9] For each $x, y, z, x_{i}, y_{i} \in L$, we define $x \rightarrow y=\bigvee\{z \in$ $L \mid x \odot z \leq y\}$. Then the following properties hold.
(1) If $y \leq z,(x \odot y) \leq(x \odot z)$ and $x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(2) $x \odot y \leq x \wedge y \leq x \vee y \leq x \oplus y$.
(3) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$
(4) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\wedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(5) $x \rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right)=\bigvee_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$
(6) $\left(\bigwedge_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigvee_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(7) $\bigwedge_{i \in \Gamma} y_{i}^{c}=\left(\bigvee_{i \in \Gamma} y_{i}\right)^{c}$ and $\bigvee_{i \in \Gamma} y_{i}^{c}=\left(\bigwedge_{i \in \Gamma} y_{i}\right)^{c}$.
(8) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$.
(9) $1 \rightarrow x=x$.
(10) If $x \leq y$, then $x \rightarrow y=1$.
(11) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$.
(12) $\left(x_{1} \rightarrow y_{1}\right) \odot\left(x_{2} \rightarrow y_{2}\right) \leq\left(x_{1} \odot x_{2} \rightarrow y_{1} \odot y_{2}\right)$.

Example 2.5 (1) We define a map $e_{L}: L \times L \rightarrow L e_{L}(x, y)=x \rightarrow y=$ $\bigvee\{z \in L \mid x \odot z \leq y\}$. Then $\left(L, e_{L}\right)$ is a p-fuzzy poset from Lemma 2.4 (10-12).
(2) We define a function $e_{L^{X}}: L^{X} \times L^{X} \rightarrow L$ as $e_{L^{X}}(f, g)=\bigwedge_{x \in X}(f(x) \rightarrow$ $g(x))$. Then $\left(L^{X}, e_{L^{X}}\right)$ is a p-fuzzy poset.
(3) If $\left(X, e_{X}\right)$ is a fuzzy poset and we define a function $e_{X}^{-1}(x, y)=e_{X}(y, x)$, then $\left(X, e_{X}^{-1}\right)$ is a fuzzy poset.

3 Ordered (L, e)-filters

Definition 3.1 Let $(X, \leq, *)$ be a complete residuated lattice and e_{X} a fuzzy poset. A mapping $\mathcal{F}: X \rightarrow L$ is called an ordered $\left(L, e_{X}\right)$-filter (for short, $\left(L, e_{X}\right)$-filter) on X if it satisfies the following conditions:
(F1) $\mathcal{F}(0)=0$ and $\mathcal{F}(1)=1$,
(F2) $\mathcal{F}(x * y) \geq \mathcal{F}(x) \odot \mathcal{F}(y)$, for each $x, y \in X$,
(F3) $\mathcal{F}(x) \odot e_{X}(x, y) \leq \mathcal{F}(y)$.
The pair (X, \mathcal{F}) is called an $\left(L, e_{X}\right)$-filter space.
Let \mathcal{F}_{1} and \mathcal{F}_{2} be (L, e)-filters on X. We say \mathcal{F}_{1} is finer than \mathcal{F}_{2} (or \mathcal{F}_{2} is coarser than \mathcal{F}_{1}) iff $\mathcal{F}_{2} \leq \mathcal{F}_{1}$.

Example 3.2 (1) We define a fuzzy poset $e_{L}(x, y)=x \rightarrow y$ as in Example 2.5(1). Let \mathcal{F} be an $\left(L, e_{L}\right)$-filter on L. By (F3), since $\mathcal{F}(x) \odot e_{X}(x, 0) \leq$ $\mathcal{F}(0)=0$, we have $\mathcal{F}(x) \leq x^{c c}=x$. Also, since $x=\mathcal{F}(1) \odot e_{L}(1, x) \leq \mathcal{F}(x)$, we have $\mathcal{F}(x)=x$.
(2) Since $x \leq y$ iff $e_{X}(x, y)=1$, by (F3), If $x \leq y$, then $\mathcal{F}(x) \leq \mathcal{F}(y)$. Hence the above definition is an extension of Höhle et al. [14,15].
(3) Let $(X, \leq, *)$ be a complete residuated lattice and $\left(X, e_{X}\right)$ a p-fuzzy poset with $e_{X}(1,0)=0$. Then a mapping $\mathcal{F}: X \rightarrow L$ defined by $\mathcal{F}(x)=$ $e_{X}(1, x)$ is an $\left(L, e_{X}\right)$-filter on X because
(F1) $\mathcal{F}(0)=e_{X}(1,0)=0, \mathcal{F}(1)=e_{X}(1,1)=1$,
(F2) $\mathcal{F}(x * y)=e_{X}(1, x * y) \geq e_{X}(1, x) \odot e_{X}(1, y)=\mathcal{F}(x) \odot \mathcal{F}(y)$.
(F3) $\mathcal{F}(x) \odot e_{X}(x, y)=e_{X}(1, x) \odot e_{X}(x, y) \leq e_{X}(1, y)=\mathcal{F}(y)$.
Theorem 3.3 Let $\left(X, e_{X}\right)$ be a p-fuzzy poset. A mapping $\mathcal{F}: X \rightarrow L$ is an $\left(L, e_{X}\right)$-filter on X iff it satisfies the conditions (F1),(F3) and

$$
\mathcal{F}(x \Rightarrow y) \odot \mathcal{F}(x) \leq \mathcal{F}(y)
$$

where $x \Rightarrow y=\bigvee\{z \in X \mid x * z \leq y\}$.
Proof

$$
\begin{aligned}
\mathcal{F}(y) & \geq \mathcal{F}(x *(x \Rightarrow y)) \odot e_{X}(x *(x \Rightarrow y), y) \\
& \geq \mathcal{F}(x *(x \Rightarrow y)) \geq \mathcal{F}(x) \odot \mathcal{F}(x \Rightarrow y)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F}(x * y) & \geq \mathcal{F}(x \Rightarrow(x * y)) \odot \mathcal{F}(x) \\
& \geq \mathcal{F}(y) \odot e_{X}(y, x \Rightarrow(x * y)) \odot \mathcal{F}(x)=\mathcal{F}(x) \odot \mathcal{F}(y) .
\end{aligned}
$$

Theorem 3.4 Let $(X, \leq, *)$ be a complete residuated lattice and $\left(X, e_{X}\right)$ a p-fuzzy poset. If $\mathcal{H}: X \rightarrow L$ is a function satisfying the following condition:
(C) $\mathcal{H}(1)=1$ and for every finite index set K,

$$
\bigvee_{K} \odot_{i \in K} \mathcal{H}\left(x_{i}\right) \odot e_{X}\left(*_{i \in K} x_{i}, 0\right)=0
$$

We define a function $\mathcal{F}_{\mathcal{H}}: L^{X} \rightarrow L$ as

$$
\mathcal{F}_{\mathcal{H}}(x)=\bigvee\left(\odot_{i \in K} \mathcal{H}\left(x_{i}\right)\right) \odot e_{X}\left(*_{i \in K} x_{i}, x\right)
$$

where the \bigvee is taken for every finite set K.
Then:
(1) $\mathcal{F}_{\mathcal{H}}$ is an $\left(L, e_{X}\right)$-filter on X,
(2) if $\mathcal{H} \leq \mathcal{F}$ and \mathcal{F} is an $\left(L, e_{X}\right)$-filter on X, then $\mathcal{F}_{\mathcal{H}} \leq \mathcal{F}$.

Proof. (1) (F1) By the condition (C), $\mathcal{F}_{\mathcal{H}}(1)=1$ and $\mathcal{F}_{\mathcal{H}}(0)=0$.
(F2) For each two finite index sets K and J,

$$
\begin{align*}
& \mathcal{F}_{\mathcal{H}}\left(x_{1}\right) \odot \mathcal{F}_{\mathcal{H}}\left(x_{2}\right) \\
& =\bigvee_{K}\left(\left(\odot_{i \in K} \mathcal{H}\left(y_{i}\right)\right) \odot e_{X}\left(*_{i \in K} y_{i}, x_{1}\right)\right) \\
& \odot \bigvee_{J}\left(\left(\odot_{j \in J} \mathcal{H}\left(z_{j}\right)\right) \odot e_{X}\left(*_{j \in J} z_{j}, x_{2}\right)\right) \\
& \leq \bigvee_{K \cup J}\left(\left(\odot_{i \in K} \mathcal{H}\left(y_{i}\right)\right) \odot\left(\odot_{j \in J} \mathcal{H}\left(z_{j}\right)\right) \odot e_{X}\left(\left(*_{i \in K} y_{i}\right) *\left(*_{j \in J} z_{j}\right), x_{1} * x_{2}\right)\right) \\
& \leq \mathcal{F}_{\mathcal{H}}\left(x_{1} * x_{2}\right) . \tag{F3}
\end{align*}
$$

$\mathcal{F}_{\mathcal{H}}(x) \odot e_{X}(x, y)=\bigvee\left(\odot_{i \in K} \mathcal{H}\left(y_{i}\right)\right) \odot e_{X}\left(*_{i \in K} y_{i}, x\right) \odot e_{X}(x, y) \leq \mathcal{F}_{\mathcal{H}}(y)$.
Thus, $\mathcal{F}_{\mathcal{H}}$ is an $\left(L, e_{X}\right)$-filter on X.
(2) For each finite index set K, we have

$$
\begin{aligned}
& \mathcal{F}(x) \geq \mathcal{F}\left(*_{i \in K} x_{i}\right) \odot e_{X}\left(*_{i \in K} x_{i}, x\right) \\
& \geq \odot_{i \in K} \mathcal{F}\left(x_{i}\right) \odot e_{X}\left(*_{i \in K} x_{i}, x\right) \\
& \geq \odot_{i \in K} \mathcal{H}\left(x_{i}\right) \odot e_{X}\left(*_{i \in K} x_{i}, x\right) .
\end{aligned}
$$

Thus $\mathcal{F}_{\mathcal{H}} \leq \mathcal{F}$.

Definition 3.5 Let (X, \mathcal{F}) and (Y, \mathcal{G}) be two $\left(L, e_{X}\right)$ and $\left(L, e_{Y}\right)$-filter spaces. Then a function $\phi: X \rightarrow Y$ is said to be:
(1) an filter map iff $\mathcal{G}(y) \leq \bigvee_{x \in \phi^{-1}(\{y\})} \mathcal{F}(x)$, for all $y \in Y$,
(2) an filter preserving map iff $\mathcal{F}(x) \leq \mathcal{G}(\phi(x))$ for all $x \in X$.
(3) an ordered preserving map iff $e_{X}(x, y) \leq e_{Y}(\phi(x), \phi(x))$ for all $x, y \in X$.
(4) $\phi^{-1}: Y \rightarrow X$ is an ordered preserving relation iff for all $x, y \in Y$,

$$
e_{Y}(x, y) \leq \bigwedge_{a \in \phi^{-1}(\{x\}), b \in \phi^{-1}(\{y\})} e_{X}(a, b)
$$

Naturally, the composition of filter maps (resp. filter preserving maps) is an filter map (resp. filter preserving map).

Example 3.6 Let $X=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ be a set, $(L=[0,1], \odot)$ complete residuated lattice with $x \odot y=(x+y-1) \vee 0$ and $x \rightarrow y=(1-x+y) \wedge 1$. Define functions $\mathcal{F}_{i}: X \rightarrow[0,1]$ as follows:

$$
\mathcal{F}_{1}(x)=\left\{\begin{array}{l}
1 \text { if } \quad x=1, \\
\frac{1}{2} \text { if } \quad x=\frac{3}{4}, \quad \mathcal{F}_{2}(x)=\left\{\begin{array}{l}
1 \text { if } x=1, \\
0 \text { otherwise },
\end{array} \quad \frac{3}{4} \text { if } x \in\left\{\frac{3}{4}, \frac{1}{2}\right\}\right. \\
0 \text { otherwise }
\end{array}\right.
$$

$e_{0}, e_{1}: X \times X \rightarrow[0,1]$ as follows:

$$
e_{0}(x, y)=\left\{\begin{array}{l}
1 \text { if } x \leq y \\
0 \text { otherwise }
\end{array}\right.
$$

and $e_{1}(x, y)=x \rightarrow y$.
(1) \mathcal{F}_{1} is an $\left(L, e_{0}\right)$-filter but not an $\left(L, e_{1}\right)$-filter because

$$
\frac{1}{2}=\left(\mathcal{F}_{1}(1) \odot e_{1}\left(1, \frac{1}{2}\right)\right) \not \leq \mathcal{F}_{1}\left(\frac{1}{2}\right)=0 .
$$

Since $\mathcal{F}_{1}(x) \odot e_{1}(x, 0)=0$, we obtain $\mathcal{F}_{\mathcal{F}_{1}}(x)=e_{1}(1, x) \vee\left(\frac{1}{2} \odot e_{1}\left(\frac{3}{4}, x\right)\right)=x$.
(2) Since $0=\mathcal{F}_{2}\left(\frac{1}{2} \odot \frac{1}{2}\right) \nsucceq \mathcal{F}_{2}\left(\frac{1}{2}\right) \odot \mathcal{F}_{2}\left(\frac{1}{2}\right)=\frac{1}{2}, \mathcal{F}_{2}$ is neither an $\left(L, e_{0}\right)$-filter nor an $\left(L, e_{1}\right)$-filter. Furthermore, it satisfies the condition(C) of Theorem 3.4 because

$$
\mathcal{F}_{2}\left(\frac{1}{2}\right) \odot \mathcal{F}_{2}\left(\frac{1}{2}\right) \odot e_{i}\left(\frac{1}{2} \odot \frac{1}{2}, 0\right)=\frac{1}{2} \neq 0, i \in\{0,1\} .
$$

(3) Let $X=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ be a set. Define a function $\phi: X \rightarrow Y$ as follows:

$$
\phi(0)=\phi\left(\frac{1}{4}\right)=0, \phi\left(\frac{1}{2}\right)=\phi\left(\frac{3}{4}\right)=\frac{1}{2}, \phi(1)=1 .
$$

Let $\mathcal{G}: Y \rightarrow[0,1]$ be an $\left([0,1], e_{1}\right)$ filter as

$$
\mathcal{G}(y)= \begin{cases}1 \text { if } & y=1, \\ \frac{1}{2} \text { if } & y=\frac{1}{2} \\ 0 & \text { if } \\ \hline\end{cases}
$$

Since \mathcal{F}_{1} and \mathcal{G} are $\left([0,1], e_{0}\right)$ and $\left([0,1], e_{1}\right)$ filters, respectively and $\mathcal{G}(y) \leq$ $\bigvee_{x \in \phi^{-1}(\{y\})} \mathcal{F}_{1}(x)$ and $\mathcal{F}_{1}(x) \leq \mathcal{G}(\phi(x)), \phi$ are filter map and filter preserving map. Since $e_{0}(x, y) \leq e_{1}(\phi(x), \phi(x))$ for all $x, y \in X, \phi:\left(X, e_{0}\right) \rightarrow\left(Y, e_{1}\right)$ is an order preserving map. Since $\frac{3}{4}=e_{1}\left(1, \frac{3}{4}\right) \not \leq e_{1}\left(\phi(1), \phi\left(\frac{3}{4}\right)\right)=\frac{1}{2}$, then $\phi:\left(X, e_{1}\right) \rightarrow\left(Y, e_{1}\right)$ is not an order preserving map. Since $\frac{1}{2}=e_{1}\left(\frac{1}{2}, 0\right) \not \leq$ $e_{1}\left(\phi\left(\frac{3}{4}\right), 0\right)=\frac{1}{4}$, for $\frac{1}{4} \in \phi^{-1}\left(\frac{1}{2}\right), 0 \in \phi^{-1}(0)$, then $\phi^{-1}:\left(Y, e_{1}\right) \rightarrow\left(X, e_{1}\right)$ is not an order preserving relation.

4 The preimages and images of (L, e)-filters

In this section we consider the preimages and images of $\left(L, e_{X}\right)$-filters.
Definition 4.1 Let $\phi: X \rightarrow Y$ be a function, \mathcal{F} an $\left(L, e_{X}\right)$-filter on X and \mathcal{G} an $\left(L, e_{Y}\right)$-filter Y.
(1) The image of \mathcal{F} is a function $\phi_{\vec{L}}(\mathcal{F}): Y \rightarrow L$ defined by

$$
\phi_{L}(\mathcal{F})(y)=\bigvee\left\{\mathcal{F}(x) \mid x=\phi^{-1}(y)\right\} .
$$

(2) The preimage of \mathcal{G} is a function $\phi_{L}^{\overleftarrow{(})}$) : $X \rightarrow L$ defined by

$$
\phi_{L}^{\leftarrow}(\mathcal{G})(x)=\mathcal{G}(\phi(x)) .
$$

(3) Let $\mathcal{H}: X \rightarrow L$ be a function and $x \in X$. We denote

$$
[\mathcal{H}](x)=\bigvee_{y \in X} \mathcal{H}(y) \odot e_{X}(y, x)
$$

Theorem 4.2 Let $(X, \leq, *)$ and (Y, \leq, \star) be complete residuated lattices. Let $\phi: X \rightarrow Y$ be an order preserving function with $\phi(x * y) \geq \phi(x) \star \phi(y)$, $\phi(0)=0$ and $\phi(1)=1, e_{X}, e_{Y}$ p-fuzzy posets and \mathcal{G} an $\left(L, e_{Y}\right)$-filter on Y. Then:
(1) $\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]$ is the coarsest $\left(L, e_{X}\right)$-filter for which $\phi:\left(X,\left[\phi_{L}^{\overleftarrow{(})}(\mathcal{G})\right]\right) \rightarrow(Y, \mathcal{G})$ is a filter map.
(2) If $e_{X}(x, y)=e_{Y}(\phi(x), \phi(y))$ for $x, y \in X$, then $\left[\phi_{L}^{\leftarrow}(\mathcal{G})\right]=\phi_{L}^{\overleftarrow{(G)}}($.

Proof. (1) (F1) is obvious.

$$
\begin{align*}
{\left[\phi_{L}^{\overleftarrow{(G)}}(\mathcal{G})\right](0) } & =\bigvee_{x \in X} \phi_{L}^{\overleftarrow{(})}(\mathcal{G})(x) \odot e_{X}(x, 0) \\
& \leq \bigvee_{x \in X} \mathcal{G}(\phi(x)) \odot e_{Y}(\phi(x), 0) \leq \mathcal{G}(0)=0 \tag{F2}
\end{align*}
$$

```
\(\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]\left(x_{1}\right) \odot\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]\left(x_{2}\right)\)
\(\left.=\bigvee_{z_{1} \in X}\left(\phi_{L}^{\overleftarrow{( })}(\mathcal{G})\left(z_{1}\right) \odot e_{X}\left(z_{1}, x_{1}\right)\right) \odot \bigvee_{z_{2} \in X}\left(\phi_{L}^{\overleftarrow{(G)}}\right)\left(z_{2}\right) \odot e_{X}\left(z_{2}, x_{2}\right)\right)\)
\(=\bigvee_{z_{1} \in X}\left(\mathcal{G}\left(\phi\left(z_{1}\right)\right) \odot e_{X}\left(z_{1}, x_{1}\right)\right) \odot \bigvee_{z_{2} \in X}\left(\mathcal{G}\left(\phi\left(z_{2}\right)\right) \odot e_{X}\left(z_{2}, x_{2}\right)\right)\)
\(\leq \bigvee_{y_{1}, y_{2} \in X}\left(\mathcal{G}\left(\phi\left(z_{1}\right) \star \phi\left(z_{2}\right)\right) \odot e_{X}\left(z_{1} * z_{2}, x_{1} * x_{2}\right)\right)\)
    \(\left(\mathcal{G}\left(\phi\left(z_{1}\right) \star \phi\left(z_{2}\right)\right) \odot e_{Y}\left(\phi\left(z_{1}\right) \star \phi\left(z_{2}\right), \phi\left(z_{1} * z_{2}\right)\right) \leq \mathcal{G}\left(\phi\left(z_{1} * z_{2}\right)\right)\right)\)
\(\leq \bigvee_{y_{1}, y_{2} \in X}\left(\mathcal{G}\left(\phi\left(z_{1} * z_{2}\right)\right) \odot e_{Y}\left(\phi\left(z_{1} * z_{2}\right), \phi\left(x_{1} * x_{2}\right)\right) \leq \mathcal{G}\left(\phi\left(x_{1} * x_{2}\right)\right)\right.\)
\(=\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]\left(x_{1} * x_{2}\right)\).
```

(F3)

$$
\begin{aligned}
& {\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right](x) \odot e_{X}(x, z)} \\
& =\bigvee_{w \in X}\left(\phi_{L}^{\overleftarrow{ }}(\mathcal{G})(w) \odot e_{X}(w, x) \odot e_{X}(x, z)\right) \\
& \leq \bigvee_{w \in X}\left(\phi_{L}^{\overleftarrow{ }}(\mathcal{G})(w) \odot e_{X}(w, z)\right)=\left[\phi_{L}^{\overleftarrow{ }}(\mathcal{G})\right](z) .
\end{aligned}
$$

$$
\bigvee_{x \in \phi^{-1}(\{y\})}\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right](x)=\bigvee_{x \in \phi^{-1}(\{y\})} \bigvee_{z \in X} \phi_{L}^{\overleftarrow{ }}(\mathcal{G})(z) \odot e_{X}(z, x)
$$

$$
\geq \mathrm{V}_{x \in \phi^{-1}(\{y\})} \phi_{L}^{\overleftarrow{ }}(\mathcal{G})(x) \odot e_{X}(x, x)=\mathcal{G}(y)
$$

Let $\phi:(X, \mathcal{F}) \rightarrow(Y, \mathcal{G})$ be a filter map;i.e. $\mathcal{G}(y) \leq \bigvee_{x \in \phi^{-1}(\{y\})} \mathcal{F}(x)$.

$$
\begin{aligned}
{\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right](x) } & =\bigvee_{z \in X} \phi_{L}^{\overleftarrow{L}}(\mathcal{G})(z) \odot e_{X}(z, x) \\
& =\bigvee_{z \in X} \mathcal{G}(\phi(z)) \odot e_{X}(z, x) \\
& \leq \bigvee_{w \in \phi^{-1}(\{\phi(z)\})} \mathcal{F}(w) \odot e_{X}(w, x) \leq \mathcal{F}(x) .
\end{aligned}
$$

(2) It follows from

$$
\begin{aligned}
{\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right](x) } & =\bigvee_{z \in X} \phi_{L}^{\overleftarrow{L}}(\mathcal{G})(z) \odot e_{X}(z, x) \\
& =\bigvee_{z \in X} \mathcal{G}(\phi(z)) \odot e_{Y}(\phi(z), \phi(x)) \\
& =\mathcal{G}(\phi(x))=\phi_{L}^{\overleftarrow{G}}(\mathcal{G})(x) .
\end{aligned}
$$

Example 4.3 Let $X=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ and $Y=\left\{0, \frac{1}{2}, 1\right\}$ be sets, $(L=$ $[0,1], \odot)$ complete residuated lattice as in Example 3.6. Define functions $\mathcal{G}_{1}: Y \rightarrow[0,1], \mathcal{F}_{1}, \mathcal{F}_{2}: X \rightarrow[0,1]$ as follows:

$$
\mathcal{G}_{1}(y)=\left\{\begin{array}{l}
1 \text { if } y=1, \\
\frac{1}{2} \text { if } y=\frac{1}{2}, \\
0 \text { otherwise },
\end{array} \quad \mathcal{F}_{1}(x)=x, \quad \mathcal{F}_{2}(x)=\left\{\begin{array}{l}
1 \text { if } x=1, \\
\frac{1}{2} \text { if } x=\frac{3}{4} \\
0 \text { otherwise }
\end{array}\right.\right.
$$

e_{0}, e_{1} are fuzzy posets on X and Y as follows:

$$
e_{0}(x, y)=\left\{\begin{array}{l}
1 \text { if } x \leq y \\
0 \text { otherwise }
\end{array}\right.
$$

and $e_{1}(x, y)=x \rightarrow y$.
(1) Define a function $\phi: X \rightarrow Y$ as follows:

$$
\phi(0)=\phi\left(\frac{1}{4}\right)=0, \phi\left(\frac{1}{2}\right)=\phi\left(\frac{3}{4}\right)=\frac{1}{2}, \phi(1)=1 .
$$

We have $\phi(x \odot y) \geq \phi(x) \odot \phi(y)$, but not equality as follows:

$$
\frac{1}{2}=\phi\left(\frac{3}{4} \odot \frac{3}{4}\right)>\phi\left(\frac{3}{4}\right) \odot \phi\left(\frac{3}{4}\right)=0
$$

Furthermore, $e_{0}(x, y) \leq e_{0}(\phi(x), \phi(y))$. Then $\left[\phi_{L}^{\overleftarrow{L}}\left(\mathcal{G}_{1}\right)\right]=\phi_{L}^{\overleftarrow{(})}\left(\mathcal{G}_{1}\right)$ is $\left(L, e_{0}\right)$ filters as

$$
\left[\phi_{L}^{\overleftarrow{ }}\left(\mathcal{G}_{1}\right)\right](x)=\left\{\begin{array}{ll}
1 \text { if } & x=1, \\
\frac{1}{2} & \text { if } \\
0 \in\left\{\frac{1}{2}, \frac{3}{4}\right\} \\
0 & \text { if }
\end{array} \quad x \in\left\{\frac{1}{4}, 0\right\}\right.
$$

But $\phi_{L}^{\overleftarrow{(}}\left(\mathcal{G}_{1}\right)$ is not a $\left(L, e_{1}\right)$-filter because
$\operatorname{But}\left[\phi_{L}^{\leftarrow}\left(\mathcal{G}_{1}\right)\right](x)=e_{1}(1, x) \vee\left(\frac{1}{2} \odot e_{1}\left(\frac{3}{4}, x\right)\right) \vee\left(\frac{1}{2} \odot e_{1}\left(\frac{1}{2}, x\right)\right)$ is an $\left(L, e_{1}\right)$-filter as follows

$$
\left[\phi_{L}^{\left.\overleftarrow{ }\left(\mathcal{G}_{1}\right)\right](x)=\left\{\begin{array}{ll}
1 \text { if } & x=1, \\
\frac{3}{4} \text { if } & x=\frac{3}{4}, \\
\frac{1}{2} \text { if } & x=\frac{1}{2}, \\
\frac{1}{4} \text { if } & x=\frac{1}{4}, \\
0 & \text { if }
\end{array} \quad x=0\right.}\right.
$$

Since $\frac{3}{4}=e_{1}\left(1, \frac{3}{4}\right) \not \leq e_{1}\left(\phi(1), \phi\left(\frac{3}{4}\right)\right)=e_{1}\left(1, \frac{1}{2}\right)=\frac{1}{2}$, The converse of the above theorem need not be true.
(2) Define a function $\psi: Y \rightarrow X$ as follows:

$$
\psi(0)=0, \psi\left(\frac{1}{2}\right)=\frac{1}{2}, \psi(1)=1 .
$$

Since $e_{i}(x, y)=e_{i}(\psi(x), \psi(y))$ for $i \in\{0,1\}$, We obtain $\left[\psi_{L}^{\leftarrow}\left(\mathcal{F}_{i}\right)\right]=\psi_{L}^{\overleftarrow{L}}\left(\mathcal{F}_{i}\right)$ for $i \in\{1,2\}$ as follows;

$$
\psi_{L}^{\overleftarrow{L}}\left(\mathcal{F}_{1}\right)(x)=\left\{\begin{array}{ll}
1 \text { if } & y=1 \\
\frac{1}{2} \text { if } & y=\frac{1}{2} \\
0 & \text { if } \\
y=0
\end{array} \quad \psi_{L}^{\overleftarrow{ }}\left(\mathcal{F}_{2}\right)(y)=\left\{\begin{array}{l}
1 \text { if } y=1 \\
0 \text { otherwise }
\end{array}\right.\right.
$$

Theorem 4.4 Let $(X, \leq, *)$ and (Y, \leq, \star) be complete residuated lattices. Let $\phi: X \rightarrow Y$ be a function with $\phi(x * y) \leq \phi(x) \star \phi(y)$ with $\phi(1)=1$ and $\phi(0)=0, e_{X}, e_{Y}$ p-fuzzy posets. Let \mathcal{F} and \mathcal{G} be $\left(L, e_{X}\right)$ and $\left(L, e_{Y}\right)$-filters, respectively. Then we have the following properties.
(1) If $\mathcal{F}(x) \odot e_{Y}(\phi(x), 0)=0$, then $\left[\phi_{L}(\mathcal{F})\right]$ is the coarsest $\left(L, e_{Y}\right)$-filter for which $\phi:(X, \mathcal{F}) \rightarrow\left(Y,\left[\phi_{\vec{L}}(\mathcal{F})\right]\right)$ is a filter preserving map.
(2) If ϕ is injective and ϕ^{-1} is order-preserving relation, $\left[\phi_{L}(\mathcal{F})\right]$ is an (L, e_{X})-filter.
(3) If ϕ is surjective, ϕ^{-1} is order-preserving relation and \mathcal{F} is an $\left(L, e_{X}\right)$ filter with $\mathcal{F}(x) \odot e_{Y}(\phi(x), 0)=0$, then $\phi_{L}(\mathcal{F})$ is an $\left(L, e_{X}\right)$-filter.
(4) If $\phi: X \rightarrow Y$ is an order preserving map with $\phi(x * y)=\phi(x) \star \phi(y)$, then $\left[\phi_{L}\left(\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]\right)\right]$ is an $\left(L, e_{Y}\right)$-filter on Y with $\left[\phi_{L}\left(\left[\phi_{L}^{\overleftarrow{G}}(\mathcal{G})\right]\right)\right] \leq \mathcal{G}$.

Proof. (1) (F1) Since $\phi^{-1}(1)=1,\left[\phi_{L}(\mathcal{F})\right](1)=1$. By the assumption,

$$
\begin{aligned}
{\left[\phi_{L}(\mathcal{F})\right](0) } & =\bigvee_{y \in Y} \phi_{L}(\mathcal{F})(y) \odot e_{Y}(y, 0) \\
& =\bigvee_{x=\phi^{-1}(\{y\})} \mathcal{F}(x) \odot e_{Y}(\phi(x), 0) \leq 0 .
\end{aligned}
$$

(F2) Since

$$
\begin{aligned}
& e_{Y}\left(\phi\left(x_{1} * x_{2}\right), \phi\left(x_{1}\right) \star \phi\left(x_{2}\right)\right) \odot e_{Y}\left(\phi\left(x_{1}\right) \star \phi\left(x_{2}\right), z_{1} \star z_{2}\right) \\
& \leq e_{Y}\left(\phi\left(x_{1} * x_{2}\right), z_{1} \star z_{2}\right),
\end{aligned}
$$

by the definition of $\phi_{L}(\mathcal{F})\left(y_{i}\right)$ for $i \in\{1,2\}$ and (L4), there exist $x_{i} \in L^{Y}$ with $x_{i}=\phi^{-1}\left(y_{i}\right)$ such that

$$
\begin{aligned}
& {\left[\phi_{\vec{L}}(\mathcal{F})\right]\left(z_{1}\right) \odot\left[\phi_{\vec{L}}(\mathcal{F})\right]\left(z_{2}\right)} \\
& =\left(\bigvee_{y_{1} \in X} \phi_{L}(\mathcal{F})\left(y_{1}\right) \odot e_{Y}\left(y_{1}, z_{1}\right)\right) \odot\left(\bigvee_{y_{2} \in X} \phi_{L}(\mathcal{F})\left(y_{2}\right) \odot e_{Y}\left(y_{2}, z_{2}\right)\right) \\
& =\left(\bigvee_{x_{1} \in X} \mathcal{F}\left(x_{1}\right) \odot e_{Y}\left(\phi\left(x_{1}\right), z_{1}\right)\right) \odot\left(\bigvee_{x_{2} \in X} \mathcal{F}\left(x_{2}\right) \odot e_{Y}\left(\phi\left(x_{2}\right), z_{2}\right)\right) \\
& \leq \bigvee_{x_{1}, x_{2} \in X}\left(\mathcal{F}\left(x_{1} * x_{2}\right) \odot e_{Y}\left(\phi\left(x_{1}\right) \star \phi\left(x_{2}\right), z_{1} \star z_{2}\right)\right) \\
& \leq \bigvee_{x_{1}, x_{2} \in X}\left(\mathcal{F}\left(x_{1} * x_{2}\right) \odot e_{Y}\left(\phi\left(x_{1} * x_{2}\right), z_{1} \star z_{2}\right)\right) \\
& \leq\left[\phi_{L}(\mathcal{F})\right]\left(z_{1} \star z_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
{\left[\phi_{L}(\mathcal{F})\right](y) \odot e_{Y}(y, z) } & =\left(\bigvee_{w \in Y} \phi_{L}(\mathcal{F})(w) \odot e_{Y}(w, y)\right) \odot e_{Y}(y, z) \tag{F3}\\
& \leq \bigvee_{w \in Y} \phi_{\vec{L}}(\mathcal{F})(w) \odot e_{Y}(w, z)=\left[\phi_{L}(\mathcal{F})\right](z)
\end{align*}
$$

Hence $\left[\phi_{L}(\mathcal{F})\right]$ is an $\left(L, e_{Y}\right)$-filter on X. Moreover, $\phi:(X, \mathcal{F}) \rightarrow\left(Y,\left[\phi_{L}(\mathcal{F})\right]\right)$ is a filter preserving map from:

$$
\begin{aligned}
{\left[\phi_{L}(\mathcal{F})\right](\phi(x)) } & =\bigvee_{w \in Y} \phi_{L}(\mathcal{F})(w) \odot e_{Y}(w, \phi(x)) \\
& \geq \phi_{\vec{L}}^{\vec{~}}(\mathcal{F})(\phi(x)) \odot e_{Y}(\phi(x), \phi(x)) \geq \mathcal{F}(x) .
\end{aligned}
$$

Let $\phi:(X, \mathcal{F}) \rightarrow(Y, \mathcal{G})$ be a filter preserving map. For each $y \in Y$, we have

$$
\begin{aligned}
{\left[\phi_{L}(\mathcal{F})\right](y) } & =\bigvee_{z \in Y} \phi_{\vec{L}}(\mathcal{F})(z) \odot e_{Y}(z, y) \\
& \leq \bigvee_{z \in Y}\left(\bigvee_{x \in \phi^{-1}(\{z\})}\left(\mathcal{F}(x) \odot e_{Y}(z, y)\right)\right) \\
& \leq \bigvee_{\phi(x) \in Y}\left(\mathcal{G}(\phi(x)) \odot e_{Y}(\phi(x), y)\right) \\
& \leq \mathcal{G}(y) .
\end{aligned}
$$

(2) Since ϕ is injective, $\phi^{-1}(\phi(\{x\}))=\{x\}$,

$$
\begin{aligned}
\mathcal{F}(x) \odot e_{Y}(\phi(x), 0) & \leq \mathcal{F}(x) \odot \bigvee_{z \in \phi^{-1}(\phi(\{x\})), w \in \phi^{-1}(\{0\})} e_{X}(z, w) \\
& =\mathcal{F}(x) \odot e_{X}(x, 0) \leq \mathcal{F}(0)=0 .
\end{aligned}
$$

(3) Since ϕ is surjective, $\phi\left(\phi^{-1}(\{y\})\right)=\{y\}$. Thus $\phi_{L}(\mathcal{F})=\left[\phi_{L}(\mathcal{F})\right]$ is an (L, e_{X})-filter from:

$$
\begin{aligned}
& {\left[\phi_{L}(\mathcal{F})\right](y) }=\bigvee_{z \in Y} \phi_{\vec{L}}(\mathcal{F})(z) \odot e_{Y}(z, y) \\
& \leq \bigvee_{z \in Y} \bigvee_{x \in \phi^{-1}(\{z\}), w \in \phi^{-1}(\{y\})} \mathcal{F}(x) \odot e_{X}(x, w) \\
& \leq \bigvee_{w \in \phi(\{y\})} \mathcal{F}(w) \\
&=\phi_{\vec{L}}(\mathcal{F})(y), \\
& {\left[\phi_{L}(\mathcal{F})\right](y) \geq \phi_{L}(\mathcal{F})(y) \odot e_{Y}(y, y)=\phi_{L}(\mathcal{F})(y) . }
\end{aligned}
$$

(4) From the condition of (1), we have

$$
\begin{aligned}
& {\left[\phi_{L}^{\leftarrow}(\mathcal{G})\right](x) \odot e_{X}(\phi(x), 0)} \\
& =\bigvee_{w \in X}\left(\phi_{L}^{\leftarrow}(\mathcal{G})(w) \odot e_{X}(w, x) \odot e_{X}(\phi(x), 0)\right) \\
& \leq \bigvee_{w \in X}\left(\mathcal{G}(\phi(w)) \odot e_{Y}(\phi(w), \phi(x)) \odot e_{Y}(\phi(x), 0)\right) \\
& \leq \bigvee_{w \in X}\left(\mathcal{G}(\phi(w)) \odot e_{Y}(\phi(w), 0)\right) \\
& \leq \mathcal{G}(0)=0
\end{aligned}
$$

Hence $\left[\phi_{L}\left(\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]\right)\right]$ exists.

$$
\begin{aligned}
& {\left[\phi_{L}^{\vec{L}}\left(\left[\phi_{L}^{\overleftarrow{L}}(\mathcal{G})\right]\right)\right](y)} \\
& =\bigvee_{z \in Y}\left(\phi_{L}\left(\left[\phi_{L}^{\overleftarrow{ }}(\mathcal{G})\right]\right)(z) \odot e_{X}(z, y)\right) \\
& =\bigvee_{x \in X} \bigvee_{x=\phi^{-1}(\{z\})}\left(\left[\phi_{L}^{\overleftarrow{ }}(\mathcal{G})\right](x) \odot e_{X}(z, y)\right) \\
& =\bigvee_{x \in X} \bigvee_{x=\phi^{-1}(\{z\})}\left(\bigvee_{w \in X} \phi_{L}^{\overleftarrow{(G)}}(\mathcal{G})(w) \odot e_{X}(w, x) \odot e_{X}(z, y)\right) \\
& =\bigvee_{x \in X} \bigvee_{x=\phi^{-1}(\{z\})}\left(\bigvee_{w \in X} \mathcal{G}(\phi(w)) \odot e_{Y}(\phi(w), \phi(x)) \odot e_{Y}(\phi(x), y)\right) \\
& =\bigvee_{w \in X}\left(\mathcal{G}(\phi(w)) \odot e_{Y}(\phi(w), y)\right) \\
& \leq \mathcal{G}(y) .
\end{aligned}
$$

Example 4.5 Let $X=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ and $Y=\left\{0, \frac{1}{2}, 1\right\}$ be sets, $L=[0,1]$ the complete residuated lattice as in Example 3.6. Define functions $\mathcal{G}_{i}: Y \rightarrow$ $[0,1]$ as follows:

$$
\mathcal{G}_{1}(y)=\left\{\begin{array}{l}
1 \text { if } \quad x=1, \\
\frac{1}{2} \text { if } x=\frac{1}{2}, \\
0 \text { otherwise },
\end{array} \quad \mathcal{G}_{2}(x)=\left\{\begin{array}{l}
1 \text { if } x=1, \\
\frac{1}{2} \text { if } x=\frac{3}{4} \\
0 \text { otherwise }
\end{array}\right.\right.
$$

e_{0}, e_{1} are fuzzy posets on X and Y as follows:

$$
e_{0}(x, y)=\left\{\begin{array}{l}
1 \text { if } x \leq y \\
0 \text { otherwise }
\end{array}\right.
$$

and $e_{1}(x, y)=x \rightarrow y$.
(1) Define a function $\phi: X \rightarrow Y$ as follows:

$$
\phi(0)=0, \phi\left(\frac{1}{4}\right)=\phi\left(\frac{1}{2}\right)=\frac{1}{2}, \phi\left(\frac{3}{4}\right)=\phi(1)=1 .
$$

Then $\phi(x \odot y) \leq \phi(x) \odot \phi(y)$ and ϕ^{-1} is an order-preserving relation. Let $\mathcal{F}(x)=x$ be an $\left([0,1], e_{1}\right)$ filter on X with $\mathcal{F}(x) \odot e_{1}(\phi(x), 0)=0$. Then we obtain an $\left([0,1], e_{1}\right)$ filter $\left[\phi_{L}(\mathcal{F})\right]=\phi_{L}(\mathcal{F})$ on Y as follows:

$$
\left[\phi_{L}(\mathcal{F})\right](y)= \begin{cases}1 \text { if } & y=1 \\ \frac{1}{2} \text { if } & y=\frac{1}{2} \\ 0 & \text { if } \\ y=0\end{cases}
$$

(2) Define a function $\psi: X \rightarrow Y$ as follows:

$$
\psi(0)=\psi\left(\frac{1}{4}\right)=0, \psi\left(\frac{1}{2}\right)=\psi\left(\frac{3}{4}\right)=\frac{1}{2}, \psi(1)=1
$$

Then $\frac{1}{2}=\psi\left(\frac{3}{4} \odot \frac{3}{4}\right) \not \leq \psi\left(\frac{3}{4}\right) \odot \psi\left(\frac{3}{4}\right)=0$. Let $\mathcal{F}(x)=x$ be an $\left([0,1], e_{1}\right)$ filter on X with $\mathcal{F}\left(\frac{3}{4}\right) \odot e_{1}\left(\psi\left(\frac{3}{4}\right), 0\right)=\frac{1}{4} \neq 0$. Then $\left([0,1], e_{1}\right)$ filter $\left[\phi_{L}(\mathcal{F})\right]=\psi_{L}(\mathcal{F})$ is not $\left([0,1], e_{1}\right)$ filter on Y as follows:

$$
\left[\psi_{L}(\mathcal{F})\right](y)=\left\{\begin{array}{ll}
1 \text { if } & y=1, \\
\frac{3}{4} \text { if } & y=\frac{1}{2} \\
\frac{1}{4} & \text { if }
\end{array} \quad y=0 .\right.
$$

(3) Define an injective function $\psi: Y \rightarrow X$ as follows:

$$
\psi(0)=0, \psi\left(\frac{1}{2}\right)=\frac{1}{2}, \psi(1)=1
$$

Define an $\left([0,1], e_{1}\right)$ filter $\mathcal{G}(x)=x$. Then we obtain an $\left([0,1], e_{1}\right)$ filter $\left[\psi_{L}(\mathcal{G})\right](y)=y$.

Example 4.6 Let $X, Y, L=[0,1], \mathcal{G}_{1}, \mathcal{F}_{i}, e_{0}, e_{1} \phi$ and ψ be as same in Example 4.3.
(1) $\left[\phi_{L}\left(\left[\phi_{L}^{\overleftarrow{L}}\left(\mathcal{G}_{1}\right)\right]\right)\right]$ is an $\left(L, e_{0}\right)$-filter as

$$
\left[\phi_{L}^{\vec{L}}\left(\left[\phi_{L}^{\overleftarrow{ }}\left(\mathcal{G}_{1}\right)\right]\right)\right](y)= \begin{cases}1 \text { if } & y=1 \\ \frac{1}{2} \text { if } & y=\frac{1}{2} \\ 0 \text { if } & y=0\end{cases}
$$

(2) Since $\frac{3}{4}=e_{1}\left(1, \frac{3}{4}\right) \not \leq e_{1}\left(\phi(1), \phi\left(\frac{3}{4}\right)\right)=e_{1}\left(1, \frac{1}{2}\right)=\frac{1}{2}$, then $\left[\phi_{L}\left(\left[\phi_{L}^{\leftarrow}\left(\mathcal{G}_{1}\right)\right]\right)\right]$ is not an (L, e_{1}) filter such that

$$
\left[\phi_{L}\left(\left[\phi_{L}^{\leftarrow}\left(\mathcal{G}_{1}\right)\right]\right)\right](y)= \begin{cases}1 \text { if } & y=1 \\ \frac{3}{4} \text { if } & y=\frac{1}{2} \\ \frac{1}{2} \text { if } & y=0\end{cases}
$$

(3)

$$
\psi_{L}\left(\psi_{L}^{\leftarrow}\left(\mathcal{F}_{1}\right)\right)(x)=\left\{\begin{array}{l}
1 \text { if } \quad x=1, \\
\frac{1}{2} \text { if } \quad x=\frac{1}{2} \\
0 \text { otherwise }
\end{array} \quad \psi_{L}\left(\psi_{L}^{\overleftarrow{L}}\left(\mathcal{F}_{2}\right)\right)(x)=\left\{\begin{array}{l}
1 \text { if } \quad x=1 \\
0 \text { otherwise }
\end{array}\right.\right.
$$

Then $\psi_{L}\left(\psi_{L}^{\overleftarrow{L}}\left(\mathcal{F}_{1}\right)\right)$ is not a $\left(L, e_{1}\right)$-filter because

$$
\frac{3}{4}=\psi_{L}\left(\psi_{L}^{\overleftarrow{L}}\left(\mathcal{F}_{1}\right)\right)(1) \odot e_{1}\left(1, \frac{3}{4}\right) \not \leq \psi_{L}\left(\psi_{L}^{\leftarrow}\left(\mathcal{F}_{1}\right)\right)\left(\frac{3}{4}\right)=0
$$

$\operatorname{But}\left[\psi_{L}\left(\psi_{L}^{\leftarrow}\left(\mathcal{F}_{1}\right)\right)\right](x)=x=e_{1}(1, x) \vee\left(\frac{1}{2} \odot e_{1}\left(\frac{1}{2}, x\right)\right)$ is an $\left(L, e_{1}\right)$-filter with $\left[\psi_{L}\left(\psi_{L}^{\leftarrow}\left(\mathcal{F}_{1}\right)\right)\right]=\mathcal{F}_{1}$. Moreover, $\left[\psi_{L}\left(\psi_{L}^{\leftarrow}\left(\mathcal{F}_{2}\right)\right)\right]<\mathcal{F}_{2}$.

References

[1] M.H.Burton, M.Muraleetharan and J.Gutierrez Garcia, Generalised filters 1, Fuzzy Sets and Systems, 106(1999), 275-284.
[2] M.H.Burton, M.Muraleetharan and J.Gutierrez Garcia, Generalised filters 2, Fuzzy Sets and Systems, 106(1999), 393-400.
[3] W.Gähler, The general fuzzy filter approach to fuzzy topology I, Fuzzy Sets and Systems, 76(1995), 205-224.
[4] J. Gutiérrez García, I. Mardones Pérez, M.H. Burton, The relationship between various filter notions on a GL-monoid, J. Math. Anal. Appl. 230(1999), 291-302.
[5] U. Höhle, E.P. Klement, Non-classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publishers, Boston, 1995.
[6] U.Höhle, A.P.Sostak, Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series, Kluwer Academic Publisher, Dordrecht, 1999.
[7] G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets and Systems, 158(2007), 424-435.
[8] Y.C. Kim, J.M. Ko, Images and preimages of L-filter bases, Fuzzy Sets and Systems, 173(2005), 93-113.
[9] E. Turunen, Mathematics behind Fuzzy Logic Physica-Verlag, Heidelberg, 1999.

Received: January, 2012

