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Abstract

In this short paper we present sufficient conditions for the order
regularity problem in Birkhoff interpolation with lacunary polynomials.
These conditions are a generalization of the Atkinson-Sharma theorem.
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1 Introduction

An algebraic Birkhoff interpolation problem [7] is defined by a triplet (X,E,C)
where E = (eij)

m, q
i=1,j=0 is an interpolation matrix with eij ∈ {0, 1} and exactly

n ones, X = (x1, . . . , xm) is an m-tuple of distinct real points (nodes) and
C = (cij : eij = 1) is a system of n real values. The objective of the algebraic
Birkhoff interpolation problem (X,E,C) is to find a polynomial p(x) of degree
less than n that satisfies

D(j)p(xi) = cij, eij = 1. (1)

A degree sequence is an n-tuple of integers K = (k1, . . . , kn) such that
0 ≤ k1 < · · · < kn. A K-algebraic Birkhoff interpolation problem [4] is defined
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by a quartet (X,E,K,C); in this more general problem, the goal is to find a

lacunary polynomial p(x) =
∑n

i=1 ai
xki

ki!
that satisfies (1).

The interpolation conditions determine a linear system. The generalized
Vandermonde matrix

V (X,E,K) =

(
xk1−j
i

(k1 − j)!
, . . . ,

xkn−j
i

(kn − j)!
; eij = 1

)

is the coefficient matrix of the system, where we have adopted a certain order
of the elements eij = 1 and we agree on 1/k! = 0 if k < 0.

Obviously, the interpolation problem (X,E,K,C) has a unique solution if
and only if the matrix V (X,E,K) is regular. An interpolation matrix E is
said to be conditionally K-regular if there exists a node system X such that
V (X,E,K) is regular. When V (X,E,K) is regular for every node system
X = (x1, . . . , xm) such that a ≤ x1 < · · · < xm ≤ b, E is said to be order
K-regular on [a, b]; otherwise, E is order K-singular on [a, b].

An interpolation matrix is said to be normal if it has as many ones as
columns. For a normal matrix E = (eij)

m, n−1
i=1,j=0, the Pólya condition is

j∑
k=0

m∑
i=1

eik ≥ j + 1, j = 0, 1, . . . , n− 1.

In algebraic interpolation, the degree system is K = (0, 1, . . . , n− 1). In this
case the conditional regularity of an interpolation matrix can be characterized
by the Pólya condition [2], and the Atkinson-Sharma theorem [1] provides us
with very general sufficient conditions to decide on order regularity. Moreover,
the regularity of the generalized Vandermonde matrix is not affected by affine
transformations of the node system, hence the property of order regularity
does not depend on the choice of the interval.

In the K-algebraic case, the situation is quite different. In fact, if we do
not impose any additional condition on the interval and the degree sequence,
even Lagrange interpolation turns out to be order K-singular.

If no constraints on the interval are imposed, that is, in the case −∞ ≤
x1 < · · · < xm ≤ +∞, it is possible to characterize order K-regularity of
Lagrange and Hermite-Sylvester interpolation [6], [3]. Nevertheless, it seems
unlikely that more general results can be obtained in this direction. In con-
trast, if we prevent the nodes from changing sign, then a full generalization
of the Atkinson-Sharma theorem to the K-algebraic problem can be made. A
preliminary study restricted to the case of two-node problems can be found in
[5].
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2 Definitions and previous results

Next we present several definitions and results stated in [4] that are relevant
to the present work.

The derivative sequence of an interpolation matrix E is the nondecreasing
sequence Q(E) = (q1, . . . , qn) whose elements are the derivative orders specified
in E. For instance, in the interpolation matrix

E =

 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0

 (2)

the derivative sequence is Q(E) = (0, 0, 1, 5, 6, 7) . An interpolation matrix E
with n ones satisfies the Pólya K-condition with respect to a degree sequence
K = (k1, . . . , kn) if qi ≤ ki, i = 1, . . . , n; in this case, we write Q(E) ≤ K.

Theorem 2.1 The interpolation matrix E is conditionally K-regular if and
only if E satisfies the Pólya K-condition.

Lemma 2.2 Let K = (k1, . . . , kn) and Q = (q1, . . . , qn) be nondecreasing
sequences and let K ′, Q′ represent the nondecreasing sequences obtained from
K and Q after inserting, in the right place, a new element r. If Q ≤ K, then
Q′ ≤ K ′.

We will also need the concept of supported sequence and the Atkinson-
Sharma theorem. Roughly speaking, a sequence in an interpolation matrix E
is a maximal block of ones placed in a row of E. More precisely, a sequence
Sr
ij(E) is a set of r elements in E that eij = ei,j+1 = · · · = ei,j+r−1 = 1 and such

that the elements ei,j−1 and ei,j+r, if they exist, are both zero. The sequence
Sr
ij(E) is odd if r is odd. The sequence Sr

ij(E) is upper supported if there exists
an element ei1,j1 = 1 such that i1 < i and j1 < j; in this case, we say that
the element ei1,j1 = 1 is an upper support of E. When there exists an element
ei2,j2 = 1 such that i < i2 and j2 < j, the sequence Sr

ij(E) is lower supported
and we call ei2,j2 a lower support. The sequence Sr

ij(E) is said to be supported
if it has upper and lower supports.

Theorem 2.3 (Atkinson-Sharma) Let E be a normal interpolation ma-
trix. If E satisfies the Pólya condition and contains no odd supported se-
quences, then E is order regular for algebraic interpolation.

3 Main result: a generalization of the Atkinson-

Sharma theorem

Let E be an interpolation matrix with n ones, K = (k1, . . . , kn) an arbitrary
degree sequence and K∗ = (k∗1, . . . , k

∗
r) the degree sequence made up of the
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r = kn − n + 1 elements of Kkn = (0, 1, . . . , kn) which are not in K. We say
that a sequence Sr

ij(E) is upper K-supported when it has a lower support
and, in addition, it has either an upper support or k∗1 < j. Let Q1(E) =(
q11, . . . , q

1
n1

)
denote the derivative sequence of the first row of E. We say that

the interpolation matrix E is upper K-inclusive if the elements q1i are all in
K. For example, the interpolation matrix

E =

 0 0 1 1
1 0 0 0
0 0 1 0


has no supported sequences. If we consider the degree sequence K = (0, 2, 3, 5) ,
we get K∗ = (1, 4) and k∗1 = 1. Therefore, the sequence in the first row S2

12(E)
is upper K-supported. We also note that Q1(E) = (2, 3); hence E satisfies the
upper K-inclusive condition. We are now in a position to state and prove the
main results.

Theorem 3.1 Let E be an interpolation matrix that satisfies the Pólya K-
condition and the upper K-inclusive property. If E contains no odd upper
K-supported sequences, then E is order K-regular on [0,+∞).

Proof. If kn = n − 1, we are in the algebraic case. In this case the Pólya
K-condition is equivalent to the classic Pólya condition [4] and K∗ has no
elements, so E has no odd supported sequences. From Theorem 2.3, it follows
that E is order regular on R. In the proper K-algebraic case, it is kn > n−1 and
K∗ has r = kn − n + 1 > 0 elements. Let X = (x1, . . . , xm) be a node system.
We first consider the case 0 < x1 < · · · < xm. We form an interpolation matrix

E∗ =

(
F1

Ē

)
with m + 1 rows and kn + 1 columns where F1 is a row which has ones in
the places specified by K∗ and Ē is an m × (kn + 1) matrix that has ones in
the same places as E. We take the node system y = (0, x1, . . . , xm) and the
following basis for the space Pkn of polynomials of degree ≤ kn

xk∗1

k∗1!
, . . . ,

xk∗r

k∗r !
,
xk1

k1!
, . . . ,

xkn

kn!
. (3)

We also arrange the elements e∗ij = 1 of E∗ according to the lexicographic
order of the pairs (i, j) with prevalence of the first index. Then, the triplet
(Y,E∗, Kkn) defines an algebraic Birkhoff problem whose generalized Vander-
monde matrix has the following structure

V (Y,E∗, Kkn) =

(
Ir Or×n
M V (X,E,K)

)
(4)
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where Ir is the identity matrix of order r, Or×n is a zero matrix, M is an n× r
matrix and V (X,E,K) is the generalized Vandermonde matrix of the triplet
(X,E,K) . If we apply r times Lemma 2.2, it results that E∗ satisfies the
Pólya condition. Now, let us suppose that E∗ has an odd supported sequence
Sl
ij(E

∗). If Sl
ij(E

∗) has an upper support in row 1, then we get a sequence
Sl
i−1,j(E) which is upper K-supported; if no upper support exists for Sl

ij(E
∗)

in row 1, then Sl
i−1,j(E) is an upper supported sequence and, in consequence,

it is also K-supported. To complete this case, we observe that E has no odd
K-supported sequences; therefore, E∗ has no odd supported sequences either,
and by Theorem 2.3, the generalized Vandermonde matrix V (Y,E∗, Kkn) is
regular. From the structure of V (Y,E∗, Kkn), it follows that V (X,E,K) is
also regular.

Now, we consider the case x1 = 0. The node system is X = (0, x2, . . . , xm),
0 < x2 < · · · < xm. For this case we construct an interpolation matrix E∗ =(
e∗ij
)

with m rows and kn + 1 columns that has ones in the same places as E
and, in addition, e∗1,k∗j = 1, j = 1, . . . , r. Let E1 denote the first row of E. As E

is upper K-inclusive, E1 has no common elements with K∗ and E∗ has exactly
kn + 1 ones. We also note that the derivative system Q(E∗) can be obtained
from Q(E) by adding the r new elements k∗1, . . . , k

∗
n. We arrange the basis

of Pkn as in (3) and set out the elements e∗ij = 1 placing first e1,k∗1 , . . . , e1,k∗r
and then the rest in a given order. With this arrangement, the generalized
Vandermonde matrix V (X,E∗, Kkn) has the block structure shown in (4). As
in the previous case, the triplet (X,E∗, Kkn) defines an algebraic problem that
satisfies the Pólya condition. If we suppose that there exists an odd supported
sequence Sl

ij(E
∗), then we get an odd upper K-supported sequence Sl

ij(E).
In consequence, no odd supported sequences exist in E∗ and V (X,E,K) is
regular. �

An analogous result can be established for order K-regularity on (−∞, 0].
To this end, we say that the sequence Sr

ij(E) is lower K-supported when it
has an upper support and it has either a lower support or k∗1 < j. We also
represent by Qm(E) =

(
qm1 , . . . , q

m
nm

)
the derivative sequence of the last row

of E, and say that the interpolation matrix E is lower K-inclusive if all the
elements qmi are in K.

Theorem 3.2 Let E be a lower K-inclusive matrix that satisfies the Pólya
K-condition. If E contains no odd lower K-supported sequences, then E is
order K-regular on (−∞, 0].

Proof. If we proceed as in the proof of Theorem 3.1, only a few obvious
changes must be made. In the case x1 < · · · < xn < 0, we build the matrix

E∗ =

(
Ē

Fm+1

)
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where Fm+1 is a row which has ones in places k∗1, . . . , k
∗
r . We also take the

basis of Pkn

xk1

k1!
, . . . ,

xkn

kn!
,
xk∗1

k∗1!
, . . . ,

xk∗r

k∗r !
, (5)

the node system Y = (x1, . . . , xn, 0) and arrange the elements e∗ij = 1 according
to the lexicographic order of the pairs (i, j) with prevalence of the first index.
We get the generalized Vandermonde matrix

V (Y,E∗, Kkn) =

(
V (X,E,K) On×r

M Ir

)
(6)

The interpolation matrix E∗ is normal and satisfies the Pólya condition; more-
over, as E has no odd lower K-supported sequences, E∗ has no odd supported
sequences either, and we can conclude that V (X,E,K) is regular. In the sec-
ond case x1 < · · · < xn = 0, the node system is X = (x1, . . . , xn−1, 0). We
now form the m × (kn + 1) extended matrix E∗ by adding r ones to the last
row of E in positions k∗1, . . . , k

∗
n; the lower K-inclusive property guarantees the

correctness of the process. We take the basis of Pkn as in (5) and choose an
arrangement of the elements e∗ij = 1 such that the elements e∗m,k∗1

, . . . , e∗m,k∗r

are placed at the end. The generalized Vandermonde matrix V (X,E∗, Kkn)
thus obtained has the block structure shown in (6). As in the previous case, we
know that E satisfies the Pólya K-condition and has no odd lower K-supported
sequences; hence, it results that E∗ satisfies the conditions of Theorem 2.3 and
we can conclude that V (X,E,K) is regular. �

Finally, it is worth noting that the K-inclusive properties have not been
used in the cases corresponding to nonzero nodes. Hence, the following results
hold.

Theorem 3.3 Let E be an interpolation matrix that satisfies the Pólya K-
condition. If E contains no odd upper K-supported sequences, then E is order
K-regular on (0,+∞).

Theorem 3.4 Let E be an interpolation matrix that satisfies the Pólya K-
condition. If E contains no odd lower K-supported sequences, then E is order
K-regular on (−∞, 0).
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