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Abstract 
In this paper an optimal multirate control method (OMCM) is applied to a linear discrete power system model 

(derived from its associated linear continuous model), in order to design a suitable excitation controller and thus enhance 

in a robust manner the dynamic stability characteristics of the physical system under consideration. The relevant 

computer simulation results, based on a practical power system, demonstrated clearly the validity, suitability, 

effectiveness and implementability of the so accomplished controller design.  
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1. Introduction 
The typical control problem has always been to start with a suitable linear (or linearized) open-loop mathematical 

model of a physical plant (in continuous or discrete form) and attempt to design a proper controller for it, i.e. to obtain an 

associated closed-loop system with enhanced dynamic stability characteristics (Al-Rahmani and franklin, 1994; Ogata, 

1994; Sagfors et al. 1998;Fujimoto and Hori, 2002; Srinivasarao, et al. 2007; QingWei, 2008; Mizumoto, et al. 2007; 

Chak, et al. 1997). The digital controller applied for the discrete linear systems may be obtained by using a new OMCM ( 

Heidarinejad, et al. 2011; Stoorvogel, 1992; Chen and Qui, 1994; Arvanitis, 1996). 

It is pointed out that the used OMCM technique reduced the original LQ regulation problem to an associated 

discrete-time LQ regulation problem for the performance index with crossed product terms, for which is computer a 

fictitious static state feedback controller. In addition thus technique offers more flexibility in choosing the sampling rates 

and provides a power design computed method (Arvanitis, 1996; Polushin, and Marquez, 2004; Cimino and Pagilla, 

2010).  

In the present work the discrete linear open-loop system model under consideration systematically derived from the 

associated continuous 6th order MIMO linearized open-loop model of a practical power system, hawing on 160 MVA 

synchronous machine supplying power to an infinite grid through a step-up transformer and a transmission line 

(Papadopoulos and Boglou, 1990). The sought digital controller for the enhancement of the dynamic characteristics of 

the above 8th order discrete model is accomplished by the proper application of the new OMCM to it. 

 

2. Overview of New OMCM for Linear Discrete Systems  
Starting with the general linear state space system description in continuous form (Arvanitis, 1996),  
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(t) , (t) and (t)nx R u R y R  are the state, input and output vectors respectively. 

The associated discrete system description is obtained by letting , 1, 2, ..., ,n i J ppi  be used of observability 

indices of the pair and To(A,C), R  be a sampling period, figure1.  
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with the generalized reachability Grammian of order N in the interval ],0[ 0T  being 
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Fig.1. Control of linear systems using OMCM. 

Next follows the application of the OMCM technique to the above descriptions. The input of the plant are 

constrained to the following piecewise constant controls  

* * 1 T τ
ˆ(kT μT ) T (kT ),μ N0 0
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u B u
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for  

*
t kT μT , μ 0,...,N 1, k 0

0 0
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and [0,T ), where ( ) .N N N NB B B B

 

The ith plant output )(tiy  is detected at every ii MTT /0 , such that  

T
(kT ρT ) (kT ρT ), 0,1, ...,M 1

0 0i i i i
y c xi             (6) 

where , 1, 2, ...,M Z i pi  are the output multiplicities of the sampling. In general .NM i  The sampled values of 

the plant outputs obtained over ))1(,[ 00 TkkT  are stored in the 
*M -dimentional column vector )kT(ˆ 0γ  of the form 

T
ˆ(kT ) [ (kT )... (kT (M 1)T )... (kT )... (kT (M 1)T )]p p p p0 1 0 1 0 1 1 0 0
γ y y y y  

where 
*

1

p
M Mi

i
.  

The vector )kT(ˆ 0γ  is used in the control law of the form  

ˆ ˆ ˆ[(k 1)T ] (kT ) (kT )
0 0 0

u L u Kγu                  (7) 

where 
p xp p xM

N N N,L R K Ru . 

Finally one scetcs a controller in the form of (5) and (7) which, nowen applied to system (1), minimizes the following 

performance index 

1 T T
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where 
pxp mxm

andQ R R R  are symmetric matrices with 0, 0Q R  while ( )
T

AC QC  is an observable pair.  

The above problem is equivalent to the problem of designing a control law of the form of equation (8), in order to 

minimize the following index:  
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The following basic formula of the multirate sampling mechanism holds 
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and where, in (9) 
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The ultimate expressions for the control law optimal gain matrices uL  and K are as follows 

T 1 T 1

u N N N N N( ) ( )L R B PB G B PΦ H D              (10) 

T 1 T 1

N N N N N( ) ( )K R B PB G B PΦ H                (11) 

where N N, andR G H  are defined in (Ogata, 1994; Sagfors, et al 1998; Arvanitis, 1996). The resulting discrete 

closed-loop system matrix 
cl/d

A  takes the following  

cl/d ol/d NA A B KH                    (12) 

where cl=closed-loop, ol=open-loop and d=discrete.  

 

3. Design and Simulations of Open- and Closed-Loop Power System 
The system under investigation is shown in block diagram form in Figure 2, and consists of a three-phase 160 MVA 

synchronous machine with automatic excitation control system supplying power through a step-up transformer and a 

high-voltage transmission line to an infinite grid. The numerical values of the parameters, which define the total system 

as well as its operating point, come from (Papadopoulos and Boglou, 1990) and are given in Appendix A.  

Based on the state variables figure 2 and the values of the parameters and the operating point (see Appendix A), the 

system of figure 2 may be described in state-space form, in the form of 1, where 
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and the numerical values of the matrices A, B and C are given in Appendix B. 

 

 
Fig.2, Block diagram representation of regulated synchronous machine supplying power to an infinite grid. 

The computed discrete linear open-loop system model for the same operating point corresponding to the linearized 

continuous transformer open-loop system model of figure 1 is given, in terms of its matrices with sampling period 

To=0.4 sec., as follows:  

0.6808 5.4034 0.0745 0.0841 0.3513 0.3905 0.2572 0.3942 0.0018 0.0506

0.0100 0.2719 0.0096 0.0006 0.0018 0.0020 0.0011 0.0020 0 0.0004

0.8058 92.9580 0.2750 0.0224 0.0579 0.0624 0.0299 0.0619 0.0006 0.0185

0.37

/ol d
A

77 5.8500 0.0524 0.0362 0.1360 0.1534 0.0926 0.1506 0.0008 0.0225

0.1734 1.0489 0.0107 0.0245 0.3595 0.2874 0.3251 0.3800 0.0003 0.0122

0.0141 0.6437 0.0147 0.0014 0.0048 0.0184 0.0031 0.0053 0 0.0009

0.0078 2.0973 0.0132 0.0030 0.0120 0.1990 0.0215 0.0134 0.0001 0.0016

0.0067 2.0913 0.0122 0.0029 0.0119 0.1676 0.9482 0.9475 0.0001 0.0016

12.3587 122.1028 1.4904 3.2910 14.4844 6.4718 29.3545 24.1441 0.0635 0.5357

5.2071 30.8392 0.3013 1.0662 9.7173 9.3513 9.5697 11.6895 0.0170 0.6346

 

0.3995 0.0020 0.0624 0.1524 0.3887 0.0053 0.0136 0.0134 25.4486 11.9382

/ 0.0480 0.0273 2.0098 0.0856 0.0421 0.0431 0.0428 0.0399 4.0183 1.2487

T

ol d
B  

0 0 1 0 0 0 0 0 0 0

/ 0.4777 0 0.0433 0 0 0 0 0 0 0ol d
C C  

Due to space limitation, the numerical description of the resulting discrete closed-loop system model is not presented 

here, but it depends on time following derived weight matrices 

0.1 0

0 0.01
Q  

1 0

0 1
R  

and the chosen output multiplicities of the sampling  
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4 8M , while the input multiplicity of the sampling was taken as No=2. 

The further application of OMCM leads to the computation of the numerical values of the gain feedback matrices 

K, Lu and F with dimensions (4x12), (4x4) and (4x10), respectively. 

The magnitude of the eigenvalues of the discrete original open-loop and of the designed closed-loop power system 

model are shown in Table 1.  

Table 1: Magnitude of eigenvalues of discrete original open-loop and designed closed-loop power system models. 

Original open-loop power system model 
 

0.9087 0.9087 0.6985 0.6985 0.9608 0.4263 0.0211 0.0076 

0.0005 0.0005 

Designed closed-loop power system 

model 
ˆ

 

0.6358 0.6358 0.6657 0.6657 0.4395 0.9608 0.0211 0.0005 

0.0005 0.0076 

 

The solution results of the discrete system models (i.e. eigenvalues, eigenvectors, responses of system variables 

etc.) for zero initial conditions were obtained using a special software program (based on the theory of & 2 and runs in 

MATLAB program (environment).  

The time responses of the variables , ,vt  corresponding to the linear discrete open-loop and closed-loop system 

models, are shown in figure 3 
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Fig.3. Responses of , ,vt  outputs subject to unit step input change where (a) and (b) refer to discrete open loop and 

close loop to input change ΔVref.=0,05 p.u., and ΔTm=0.0 and (c) and (d) refer to discrete open loop and close loop to 

input change ΔVref.=0,10 p.u.,, and ΔTm=0.0. 

 It is to be noted that the multirate output sampling controllers are based on samplings with different period in every 

output variable of the system under control.  

The results of figure 3 demonstrate clearly that the application of the OMCM leads to the design of a very efficient 

two-point multirate controller with distinct robustness characteristics, i.e. to a linear discrete closed-loop system model 

with superior dynamic stability characteristics. The motivation for designing and using OMCM controllers has to do with 

the fact that they many be implemented directly using digital computers, which malies them very useful in practical 

applications.  

 

4.    Conclusions  
  An efficient optimal multirate control method was presented in concise form. In turn based on it an appropriate 

software program was used to obtain a linear discrete open-loop system model from an original continuous linearized 

open-loop system model of a practical power system at a given operating point. In addition, through the same program, a 

robust OMCM controller was designed, which yielded a discrete closed-loop system model with superior dynamic 

stability characteristics by comparison to the associated ones of the discrete open-loop system model. The clear 

simplicity of the OMCM used makes an appropriate and reliable tool for the design of such implementable controllers.  

Appendix A (Numerical values of system parameters and operating point) 

Synchronous machine: 3-phase, 160 MVA, pf=0.094, xd=1.7, xq=1.6, 
' '

0.245 . .; 5.9,x p u
d do

 H=5.4 s; ωR =314 

rad. s-1.  

Type-1 exciter: KA=50, KE= -0.17, SE = 0.95, KF = 0.04, KR = 1, Ko =1; τΑ = 0,05, τΕ = 0,95, τF = 1, τR = 0.05, το = 

10 p.u., τ1 = τ3 = 0.440, τ2 = τ4 =0,092 s.  

External system: Re = 0.02, Xe = 0.40 p.u., (on 160 MVA base).  

Operating point: Po=1, Qo=0.5, EFDo=2.5128, Eqo=0.9986, vto=1, Tmo=1 p.u.; δο=1.1966 rad.; K1=1.1330, 

K2=1.3295, K3=0.3072, K4=1.8235, K5=-0.0433, K6=0.4777.  
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Appendix B (Numerical values of matrices A, B and C of the original 10th-order system) 

0.5517 0 0.3091 0 0 0 0 0 0 0.1695

0.0410 0 0.0350 0 0 0 0 0 0 0

0 314.1593 0 0 0 0 0 0 0 0

9.5540 0 0.8660 20 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0.0421 0.0328

0.1962 10.8696 0.1672 0 0 10.8696 0 0 0 0

0.9386 51.9849 0.7999 0 0 41.1153 10.8696 0 0 0

0.9386 51.

A

9849 0.7999 0 0 41.1143 10.8696 0.1 0 0

0 0 0 1000 1000 0 0 1000 20 0

0 0 0 0 0 0 0 0 1.0526 0.8211

 

 

0 0 0 0 0 0 0 0 1000 0

0 0.0926 0 0 0 0.4428 2.1179 2.1179 0 0
B  

 

0 0 1 0 0 0 0 0 0 0

0.4777 0 0.0433 0 0 0 0 0 0 0
C
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