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Abstract

Given two positive real numbers a and b, let A(a, b), G(a, b) and
P(a, b) denote their arithmetic mean, geometric mean and Seiffert mean

respectively. Let Kr(a, b) = r

√

2
3A

r(a, b) + 1
3G

r(a, b) for r > 0. In this
paper, we find the greatest value α and the least value β such that the
double inequality

Kα(a, b) < P (a, b) < Kβ(a, b)

holds for all a, b > 0 with a 6= b.
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1 Introduction

In this paper we consider several means of two positive real numbers a and
b. Recall that the arithmetic mean and the geometric mean are defined by
A(a, b) = a+b

2
and G(a, b) =

√
ab. The family(Kr(a, b))r>0 of means of a and b

is defined by[7]

Kr(a, b) =
r

√

2Ar(a, b) +Gr(a, b)

3
.

For a, b > 0 with a 6= b the Seiffert mean P (a, b) was introduced by Seiffert
[8] as follows:

P (a, b) =
a− b

4 arctan(
√

a/b)− π
.

Recently, both means have been the subject of intensive research [1-14] and
therein.
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The following bounds for the Seiffert mean P (a, b) in terms of the power
mean Mr(a, b) = ((ar + br)/2)1/r(r 6= 0) were presented by Jagers in [13]:

M1/2 < P (a, b) < M2/3(a, b)

for all a, b > 0 with a 6= b.
Hästö [14] found the sharp lower bound for the Seiffert mean as follow:

Mlog2/logπ(a, b) < P (a, b)

for all a, b > 0 with a 6= b.
In [9], Seiffert proved

P (a, b) >
3A(a, b)G(a, b)

A(a, b) + 2G(a, b)
and P (a, b) >

2

π
A(a, b)

for all a, b > 0 with a 6= b.
In [10] it proved that

I(a, b) < K2(a, b)

for all positive real numbers a 6= b, where I(a, b) = 1/e(bb/aa)1/(b−a) is the
identric mean of two positive real numbers a and b with a 6= b.

J.Sàndor proved in [5] that

I(a, b) > K1(a, b)

for all positive real numbers a 6= b.
In [7], the author proved that

K 6

5
(a, b) < I(a, b) < K ln 3−ln 2

1−ln 2

(a, b)

for all a, b > 0 with a 6= b.
The purpose of this paper is to find the greatest value α and the least value

β such that the inequality

Kα(a, b) < P (a, b) < Kβ(a, b)

holds for all a, b > 0 with a 6= b.

2 Main Results

Lemma 2.1 For x > 1 and r ∈ (0, 1), let

h(x) = x(x+ 2xr−1)2 − (x+ 2xr+1 + 2rxr+1 − 2rxr−1)(x2 + 2xr)
+ (x2 − 1)(1 + 2xr)(2x+ 2rxr−1).

(2.1)

We have:

case 1. If r = 4
5
then h(x) > 0 holds for x ∈ [1,+∞).

case 2. If r = ln 3−ln 2
lnπ−ln 2

then there exists λ ∈ (1,+∞) such that h(x) < 0 for

x ∈ [1, λ) and h(x) > 0 for x ∈ (λ,+∞).
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proof.

h(x) = x(x+ 2xr−1)2 − (x+ 2xr+1 + 2rxr+1 − 2rxr−1)(x2 + 2xr)
+ (x2 − 1)(1 + 2xr)(2x+ 2rxr−1)
= 2xh1(x),

(2.2)

where

h1(x) = x2 − 1 + (1− r)xr+2 − 2x2r + (2r − 1)xr + 2x2r−2 − rxr−2. (2.3)

Then simple computations lead to

lim
x→1+

h1(x) = 0, (2.4)

lim
x→+∞

h1(x) = +∞. (2.5)

h′

1(x) = xh2(x), (2.6)

h2(x) = 2 + (1− r)(2 + r)xr − 4rx2r−2 + (2r − 1)rxr−2

+2(2r − 2)x2r−4 − r(r − 2)xr−4,
(2.7)

lim
x→1+

h2(x) = 0, (2.8)

lim
x→+∞

h2(x) = +∞. (2.9)

h′

2(x) = xr−5h3(x), (2.10)

h3(x) = (2r − r2 − r3)x4 − (8r2 − 8r)xr+2 + (2r3 − 5r2 + 2r)x2

+(8r2 − 24r + 16)xr − (r3 − 6r2 + 8r),
(2.11)

lim
x→1+

h3(x) = 16− 20r, (2.12)

lim
x→+∞

h3(x) = +∞. (2.13)

h′

3(x) = 2xh4(x), (2.14)

h4(x) = 2(2r − r3 − r2)x2 − (4r2 − 4r)(2 + r)xr + (2r3 − 5r2 + 2r)
+(4r3 − 12r2 + 8r)xr−2,

(2.15)
lim
x→1+

h4(x) = r(22− 23r). (2.16)

h′

4(x) = 4rxh5(x), (2.17)

h5(x) = 2− r2 − r − (r2 − r)(r + 2)xr−2 + (r2 − 3r + 2)(r − 2)xr−4, (2.18)

lim
x→1+

h5(x) = (7r − 2)(1− r), (2.19)

lim
x→+∞

h5(x) = 2− r − r2. (2.20)

h′

5(x) = (1− r)(2− r)xr−5h6(x), (2.21)
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h6(x) = −r(r + 2)x2 + (r − 2)(r − 4) (2.22)

lim
x→1+

h6(x) = 8− 8r, (2.23)

lim
x→+∞

h6(x) = −∞, (2.24)

h′

6(x) = −2r(r + 2)x < 0,

and h6(x) is strictly decreasing in [1,+∞). Combining (2.23) and (2.24) we
can get that there exist x1 > 1 such that h6(x) > 0 for x ∈ [1, x1] and h6(x) < 0
for x ∈ [x1,+∞). This implies that h5(x) is strictly increasing in [1, x1] and
strictly decreasing in [x1,+∞).

From (2.19), (2.20) and the monotonicity of h5(x) we clearly see that
h5(x) > 0 for x > 1 and r ∈ {4

5
, ln 3−ln 2
lnπ−ln 2

}. Hence h4(x) is strictly increas-
ing in [1,+∞), together with (2.16) and (2.14) we can get h4(x) > 0 and
h′

3(x) > 0 for x > 1. Obviously h3(x) is strictly increasing in [1,+∞).
Now we divide the proof into two cases.

Case 1. If r = 4
5
.

From (2.12) and the monotonicity of h3(x) we have h3(x) > 0 for x ∈
[1,+∞), hence we know that h2(x) is strictly increasing in [1,+∞).

From (2.8) and the monotonicity of h2(x) we can get h2(x) > 0 for x ∈
[1,+∞), so we know that h1(x) is strictly increasing in [1,+∞).

From (2.4) and the monotonicity of h1(x) we have h1(x) > 0 for x ∈
[1,+∞), hence we know that h(x) is strictly increasing in [1,+∞).

Case 2. If r = ln 3−ln 2
lnπ−ln 2

.

From (2.12) and (2.13) together with the monotonicity of h3(x) we clearly
see that there exists λ1 ∈ [1,+∞) such that h3(x) < 0 for x ∈ [1, λ1) and
h3(x) > 0 for x ∈ (λ1,+∞), hence we know that h2(x) is strictly decreasing
in [1, λ1] and strictly increasing in [λ1,+∞).

It follows from (2.8) and (2.9) together with the monotonicity of h2(x)
in [1, λ1] and in [λ1,+∞) that there exists λ2 > λ1 such that h2(x) < 0 for
x ∈ [1, λ2) and h2(x) > 0 for x ∈ [λ2,+∞), hence we know that h1(x) is
strictly decreasing in [1, λ2] and strictly increasing in [λ2,+∞).

From (2.4) and (2.5) together with the monotonicity of h1(x) in [1, λ2] and
in [λ2,+∞) , we clearly see that there exists λ > λ2 such that h1(x) < 0 for
x ∈ [1, λ] and h1(x) > 0 for x ∈ [λ,+∞), hence from (2.2) we know that
h(x) < 0 for x ∈ [1, λ] and h(x) > 0 for x ∈ [λ,+∞).

Theorem 2.2 The double inequality

Kα(a, b) < P (a, b) < Kβ(a, b)

holds for all a, b > 0 with a 6= b if and only if α ≤ 4
5
and β ≥ ln 3−ln 2

lnπ−ln 2
.
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Proof. Firstly, we prove
K 4

5
(a, b) < P (a, b), (2.25)

P (a, b) < K ln 3−ln 2

lnπ−ln 2

(a, b) (2.26)

for all a, b > 0 with a 6= b.
Let a = et, b = e−t, t > 0 , Then

Kr(a, b)/P (a, b) = {2(
et+e−t

2
)r + 1

3
} 1

r /{ et − e−t

4 arctan et − π
}. (2.27)

Let

f(t) = ln(Kr(a, b)/P (a, b)) =
1

r
ln

2chrt + 1

3
− ln(et− e−t)+ ln(4 arctan et−π).

(2.28)
Simple computations lead to

lim
t→0+

f(t) = 0, (2.29)

lim
t→+∞

f(t) = ln[
π

2
(
2

3
)
1

r ], (2.30)

f ′(t) =
−(2chr−1t+ cht)(1 + e2t)

(1 + 2chrt)sht(4 arctan et − π)(1 + e2t)
f1(t), (2.31)

where

f1(t) = 4 arctan et − π − 2
sht + 2shtchrt

ch2t+ 2chrt
. (2.32)

lim
t→0+

f1(t) = 0, (2.33)

lim
t→+∞

f1(t) = π, (2.34)

f ′

1(t) =
2

(ch2t+ 2chrt)2
h(cht), (2.35)

where

h(x) = x(x+ 2xr−1)2 − (x+ 2xr+1 + 2rxr+1 − 2rxr−1)(x2 + 2xr)
+ (x2 − 1)(1 + 2xr)(2x+ 2rxr−1), x > 1.

If r = 4
5
, from (2.35) and the Lemma we know that f ′

1(t) > 0 for t ∈ (0,+∞)
, hence f1(t) is strictly increasing in (0,+∞). From (2.31), (2.32) and the
monotonicity of f1(t) we get f ′(t) < 0 for t ∈ (0,+∞) and f(t) is strictly
decreasing in t ∈ (0,+∞). Using (2.29) and the monotonicity of f(t) we have
f(t) < 0 in t ∈ (0,+∞). So (2.25) is proved.

If r = ln 3−ln 2
lnπ−ln 2

, from (2.35) and the Lemma we know that there exists
t1 ∈ (0,+∞) such that f ′

1(t) < 0 for t ∈ (0, t1) and f ′

1(t) > 0 for t ∈ (t1,+∞),
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hence f1(t) is strictly decreasing in (0, t1) and strictly increasing in (t1,+∞).
From (2.33) and (2.34) together with the monotonicity of f1(t) in (0, t1) and in
(t1,+∞) , we know that there exists t2 > t1 such that f1(t) < 0 for t ∈ (0, t2)
and f1(t) > 0 for t ∈ (t2,+∞), hence with (2.31) we clearly see that f ′(t) > 0
for t ∈ (0, t2) and f ′(t) < 0 for t ∈ (t2,+∞), and from (2.29) and (2.30) we
know that f(t) > 0 for t ∈ (0,+∞). So K ln 3−ln 2

lnπ−ln 2

(a, b) > p(a, b) holds for all

a, b > 0 with a 6= b, (2.26) is proved.
Secondly, we prove that the parameters 4

5
and ln 3−ln 2

lnπ−ln 2
cannot be improved

in each inequality.
For any 0 < ε < ln 3−ln 2

lnπ−ln 2
and x > 1, we have

lim
x→+∞

K ln 3−ln 2

lnπ−ln 2
−ǫ(x, 1)

P (x, 1)
=

π

2
(
2

3
)

1
ln 3−ln 2

lnπ−ln 2
−ε < 1. (2.36)

Inequality (2.36) implies that for any 0 < ε < ln 3−ln 2
lnπ−ln 2

there exists X =
X(ε) > 1 such that K ln 3−ln 2

lnπ−ln 2
−ǫ(x, 1) < P (x, 1) for x ∈ (X,+∞). Hence the

parameter ln 3−ln 2
lnπ−ln 2

in the right-side inequality cannot be improved, it is the
best possible.

Next we prove the parameter 4
5
in the left-side inequality cannot be im-

proved.
For any x > 1, if r > 4

5
, then from (2.12) and the continuity of h3(x) we

see that there exists δ = δ(r) > 0 such that

h3(x) < 0, ∀x ∈ [1, 1 + δ).

Then (2.8) and (2.10) imply that

h2(x) < 0, ∀x ∈ [1, 1 + δ).

From (2.2), (2.4) and (2.6) we have

h(x) < 0, ∀x ∈ [1, 1 + δ).

Then from (2.33) and (2.35) we see that there exists δ′ = δ′(δ) > 0 such that

f1(t) < 0, ∀t ∈ [0, δ′).

Then (2.29) and (2.31) imply that

f(t) > 0, ∀t ∈ [0, δ′).

Therefore, P (et, e−t) < K 4

5
(et, e−t) for t ∈ [0, δ′). Hence the parameter 4

5

in the left-side inequality cannot be improved, it is the best possible.
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