Optimal Inequalities for Seiffert and $K_r(a, b)$ Means

Shaoqin Gao

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

Given two positive real numbers a and b, let A(a, b), G(a, b) and P(a, b) denote their arithmetic mean, geometric mean and Seiffert mean respectively. Let $K_r(a,b) = \sqrt[r]{\frac{2}{3}A^r(a,b) + \frac{1}{3}G^r(a,b)}$ for r > 0. In this paper, we find the greatest value α and the least value β such that the double inequality

$$K_{\alpha}(a,b) < P(a,b) < K_{\beta}(a,b)$$

holds for all a, b > 0 with $a \neq b$.

Mathematics Subject Classification: 26D15

Keywords: Optimal inequality, arithmetic mean, geometric mean, Seiffert mean

1 Introduction

In this paper we consider several means of two positive real numbers a and b. Recall that the arithmetic mean and the geometric mean are defined by $A(a,b) = \frac{a+b}{2}$ and $G(a,b) = \sqrt{ab}$. The family $(K_r(a,b))_{r>0}$ of means of a and b is defined by [7]

$$K_r(a,b) = \sqrt[r]{rac{2A^r(a,b) + G^r(a,b)}{3}}.$$

For a, b > 0 with $a \neq b$ the Seiffert mean P(a, b) was introduced by Seiffert [8] as follows:

$$P(a,b) = \frac{a-b}{4\arctan(\sqrt{a/b}) - \pi}$$

Recently, both means have been the subject of intensive research [1-14] and therein.

The following bounds for the Seiffert mean P(a, b) in terms of the power mean $M_r(a, b) = ((a^r + b^r)/2)^{1/r} (r \neq 0)$ were presented by Jagers in [13]:

$$M_{1/2} < P(a,b) < M_{2/3}(a,b)$$

for all a, b > 0 with $a \neq b$.

 $H\ddot{a}st\ddot{o}$ [14] found the sharp lower bound for the Seiffert mean as follow:

$$M_{log2/log\pi}(a,b) < P(a,b)$$

for all a, b > 0 with $a \neq b$.

In [9], Seiffert proved

$$P(a,b) > \frac{3A(a,b)G(a,b)}{A(a,b) + 2G(a,b)}$$
 and $P(a,b) > \frac{2}{\pi}A(a,b)$

for all a, b > 0 with $a \neq b$.

In [10] it proved that

$$I(a,b) < K_2(a,b)$$

for all positive real numbers $a \neq b$, where $I(a,b) = 1/e(b^b/a^a)^{1/(b-a)}$ is the identric mean of two positive real numbers a and b with $a \neq b$.

J.Sàndor proved in [5] that

$$I(a,b) > K_1(a,b)$$

for all positive real numbers $a \neq b$.

In [7], the author proved that

$$K_{\frac{6}{5}}(a,b) < I(a,b) < K_{\frac{\ln 3 - \ln 2}{1 - \ln 2}}(a,b)$$

for all a, b > 0 with $a \neq b$.

The purpose of this paper is to find the greatest value α and the least value β such that the inequality

$$K_{\alpha}(a,b) < P(a,b) < K_{\beta}(a,b)$$

holds for all a, b > 0 with $a \neq b$.

2 Main Results

Lemma 2.1 For x > 1 and $r \in (0, 1)$, let

$$h(x) = x(x+2x^{r-1})^2 - (x+2x^{r+1}+2rx^{r+1}-2rx^{r-1})(x^2+2x^r) + (x^2-1)(1+2x^r)(2x+2rx^{r-1}).$$
(2.1)

We have:

case 1. If $r = \frac{4}{5}$ then h(x) > 0 holds for $x \in [1, +\infty)$. case 2. If $r = \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$ then there exists $\lambda \in (1, +\infty)$ such that h(x) < 0 for $x \in [1, \lambda)$ and h(x) > 0 for $x \in (\lambda, +\infty)$.

proof.

$$h(x) = x(x + 2x^{r-1})^2 - (x + 2x^{r+1} + 2rx^{r+1} - 2rx^{r-1})(x^2 + 2x^r) + (x^2 - 1)(1 + 2x^r)(2x + 2rx^{r-1}) = 2xh_1(x),$$
(2.2)

where

$$h_1(x) = x^2 - 1 + (1 - r)x^{r+2} - 2x^{2r} + (2r - 1)x^r + 2x^{2r-2} - rx^{r-2}.$$
 (2.3)

Then simple computations lead to

$$\lim_{x \to 1^+} h_1(x) = 0, \tag{2.4}$$

$$\lim_{x \to +\infty} h_1(x) = +\infty. \tag{2.5}$$

$$h_1'(x) = xh_2(x), (2.6)$$

$$h_2(x) = 2 + (1-r)(2+r)x^r - 4rx^{2r-2} + (2r-1)rx^{r-2} + 2(2r-2)x^{2r-4} - r(r-2)x^{r-4},$$
(2.7)

$$\lim_{x \to 1^+} h_2(x) = 0, \tag{2.8}$$

$$\lim_{x \to +\infty} h_2(x) = +\infty.$$
(2.9)

$$h_2'(x) = x^{r-5}h_3(x), (2.10)$$

$$h_3(x) = (2r - r^2 - r^3)x^4 - (8r^2 - 8r)x^{r+2} + (2r^3 - 5r^2 + 2r)x^2 + (8r^2 - 24r + 16)x^r - (r^3 - 6r^2 + 8r),$$
(2.11)

$$\lim_{x \to 1^+} h_3(x) = 16 - 20r, \tag{2.12}$$

$$\lim_{x \to +\infty} h_3(x) = +\infty. \tag{2.13}$$

$$h_3'(x) = 2xh_4(x), (2.14)$$

$$h_4(x) = 2(2r - r^3 - r^2)x^2 - (4r^2 - 4r)(2 + r)x^r + (2r^3 - 5r^2 + 2r) + (4r^3 - 12r^2 + 8r)x^{r-2},$$

$$\lim_{x \to 1^+} h_4(x) = r(22 - 23r).$$
(2.15)
(2.16)

$$h_4'(x) = 4rxh_5(x), (2.17)$$

$$h_5(x) = 2 - r^2 - r - (r^2 - r)(r + 2)x^{r-2} + (r^2 - 3r + 2)(r - 2)x^{r-4}, \quad (2.18)$$

$$\lim_{x \to 1^+} h_5(x) = (7r - 2)(1 - r), \qquad (2.19)$$

$$\lim_{x \to +\infty} h_5(x) = 2 - r - r^2.$$
(2.20)

$$h'_{5}(x) = (1-r)(2-r)x^{r-5}h_{6}(x), \qquad (2.21)$$

$$h_6(x) = -r(r+2)x^2 + (r-2)(r-4)$$
(2.22)

$$\lim_{x \to 1^+} h_6(x) = 8 - 8r, \tag{2.23}$$

$$\lim_{x \to +\infty} h_6(x) = -\infty, \tag{2.24}$$

$$h_6'(x) = -2r(r+2)x < 0,$$

and $h_6(x)$ is strictly decreasing in $[1, +\infty)$. Combining (2.23) and (2.24) we can get that there exist $x_1 > 1$ such that $h_6(x) > 0$ for $x \in [1, x_1]$ and $h_6(x) < 0$ for $x \in [x_1, +\infty)$. This implies that $h_5(x)$ is strictly increasing in $[1, x_1]$ and strictly decreasing in $[x_1, +\infty)$.

From (2.19), (2.20) and the monotonicity of $h_5(x)$ we clearly see that $h_5(x) > 0$ for x > 1 and $r \in \{\frac{4}{5}, \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}\}$. Hence $h_4(x)$ is strictly increasing in $[1, +\infty)$, together with (2.16) and (2.14) we can get $h_4(x) > 0$ and $h'_3(x) > 0$ for x > 1. Obviously $h_3(x)$ is strictly increasing in $[1, +\infty)$.

Now we divide the proof into two cases.

Case 1. If $r = \frac{4}{5}$.

From (2.12) and the monotonicity of $h_3(x)$ we have $h_3(x) > 0$ for $x \in$ $[1, +\infty)$, hence we know that $h_2(x)$ is strictly increasing in $[1, +\infty)$.

From (2.8) and the monotonicity of $h_2(x)$ we can get $h_2(x) > 0$ for $x \in$ $[1, +\infty)$, so we know that $h_1(x)$ is strictly increasing in $[1, +\infty)$.

From (2.4) and the monotonicity of $h_1(x)$ we have $h_1(x) > 0$ for $x \in$ $[1, +\infty)$, hence we know that h(x) is strictly increasing in $[1, +\infty)$.

Case 2. If $r = \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$. From (2.12) and (2.13) together with the monotonicity of $h_3(x)$ we clearly see that there exists $\lambda_1 \in [1, +\infty)$ such that $h_3(x) < 0$ for $x \in [1, \lambda_1)$ and $h_3(x) > 0$ for $x \in (\lambda_1, +\infty)$, hence we know that $h_2(x)$ is strictly decreasing in $[1, \lambda_1]$ and strictly increasing in $[\lambda_1, +\infty)$.

It follows from (2.8) and (2.9) together with the monotonicity of $h_2(x)$ in $[1, \lambda_1]$ and in $[\lambda_1, +\infty)$ that there exists $\lambda_2 > \lambda_1$ such that $h_2(x) < 0$ for $x \in [1, \lambda_2)$ and $h_2(x) > 0$ for $x \in [\lambda_2, +\infty)$, hence we know that $h_1(x)$ is strictly decreasing in $[1, \lambda_2]$ and strictly increasing in $[\lambda_2, +\infty)$.

From (2.4) and (2.5) together with the monotonicity of $h_1(x)$ in $[1, \lambda_2]$ and in $[\lambda_2, +\infty)$, we clearly see that there exists $\lambda > \lambda_2$ such that $h_1(x) < 0$ for $x \in [1,\lambda]$ and $h_1(x) > 0$ for $x \in [\lambda, +\infty)$, hence from (2.2) we know that h(x) < 0 for $x \in [1, \lambda]$ and h(x) > 0 for $x \in [\lambda, +\infty)$.

Theorem 2.2 The double inequality

$$K_{\alpha}(a,b) < P(a,b) < K_{\beta}(a,b)$$

holds for all a, b > 0 with $a \neq b$ if and only if $\alpha \leq \frac{4}{5}$ and $\beta \geq \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$.

Proof. Firstly, we prove

$$K_{\frac{4}{2}}(a,b) < P(a,b),$$
 (2.25)

$$P(a,b) < K_{\frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}}(a,b)$$
 (2.26)

for all a, b > 0 with $a \neq b$. Let $a = e^t, b = e^{-t}, t > 0$, Then

$$K_r(a,b)/P(a,b) = \left\{\frac{2(\frac{e^t + e^{-t}}{2})^r + 1}{3}\right\}^{\frac{1}{r}} / \left\{\frac{e^t - e^{-t}}{4\arctan e^t - \pi}\right\}.$$
 (2.27)

Let

$$f(t) = \ln(K_r(a,b)/P(a,b)) = \frac{1}{r} \ln \frac{2ch^r t + 1}{3} - \ln(e^t - e^{-t}) + \ln(4\arctan e^t - \pi).$$
(2.28)

Simple computations lead to

$$\lim_{t \to 0^+} f(t) = 0, \tag{2.29}$$

$$\lim_{t \to +\infty} f(t) = \ln[\frac{\pi}{2}(\frac{2}{3})^{\frac{1}{r}}], \qquad (2.30)$$

$$f'(t) = \frac{-(2ch^{r-1}t + cht)(1 + e^{2t})}{(1 + 2ch^{r}t)sht(4\arctan e^{t} - \pi)(1 + e^{2t})}f_{1}(t), \qquad (2.31)$$

where

$$f_1(t) = 4 \arctan e^t - \pi - 2 \frac{sht + 2shtch^r t}{ch^2 t + 2ch^r t}.$$
 (2.32)

$$\lim_{t \to 0^+} f_1(t) = 0, \tag{2.33}$$

$$\lim_{t \to +\infty} f_1(t) = \pi, \qquad (2.34)$$

$$f_1'(t) = \frac{2}{(ch^2t + 2ch^rt)^2}h(cht), \qquad (2.35)$$

where

$$h(x) = x(x+2x^{r-1})^2 - (x+2x^{r+1}+2rx^{r+1}-2rx^{r-1})(x^2+2x^r) + (x^2-1)(1+2x^r)(2x+2rx^{r-1}), x > 1.$$

If $r = \frac{4}{5}$, from (2.35) and the Lemma we know that $f'_1(t) > 0$ for $t \in (0, +\infty)$, , hence $f_1(t)$ is strictly increasing in $(0, +\infty)$. From (2.31), (2.32) and the monotonicity of $f_1(t)$ we get f'(t) < 0 for $t \in (0, +\infty)$ and f(t) is strictly decreasing in $t \in (0, +\infty)$. Using (2.29) and the monotonicity of f(t) we have f(t) < 0 in $t \in (0, +\infty)$. So (2.25) is proved.

If $r = \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$, from (2.35) and the Lemma we know that there exists $t_1 \in (0, +\infty)$ such that $f'_1(t) < 0$ for $t \in (0, t_1)$ and $f'_1(t) > 0$ for $t \in (t_1, +\infty)$,

791

hence $f_1(t)$ is strictly decreasing in $(0, t_1)$ and strictly increasing in $(t_1, +\infty)$. From (2.33) and (2.34) together with the monotonicity of $f_1(t)$ in $(0, t_1)$ and in $(t_1, +\infty)$, we know that there exists $t_2 > t_1$ such that $f_1(t) < 0$ for $t \in (0, t_2)$ and $f_1(t) > 0$ for $t \in (t_2, +\infty)$, hence with (2.31) we clearly see that f'(t) > 0 for $t \in (0, t_2)$ and f'(t) < 0 for $t \in (t_2, +\infty)$, and from (2.29) and (2.30) we know that f(t) > 0 for $t \in (0, +\infty)$. So $K_{\frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}}(a, b) > p(a, b)$ holds for all a, b > 0 with $a \neq b$, (2.26) is proved.

Secondly, we prove that the parameters $\frac{4}{5}$ and $\frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$ cannot be improved in each inequality.

For any $0 < \varepsilon < \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$ and x > 1, we have

$$\lim_{x \to +\infty} \frac{K_{\frac{\ln 3 - \ln 2}{\ln \pi - \ln 2} - \epsilon}(x, 1)}{P(x, 1)} = \frac{\pi}{2} \left(\frac{2}{3}\right)^{\frac{1}{\ln 3 - \ln 2} - \epsilon} < 1.$$
(2.36)

Inequality (2.36) implies that for any $0 < \varepsilon < \frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$ there exists $X = X(\varepsilon) > 1$ such that $K_{\frac{\ln 3 - \ln 2}{\ln \pi - \ln 2} - \epsilon}(x, 1) < P(x, 1)$ for $x \in (X, +\infty)$. Hence the parameter $\frac{\ln 3 - \ln 2}{\ln \pi - \ln 2}$ in the right-side inequality cannot be improved, it is the best possible.

Next we prove the parameter $\frac{4}{5}$ in the left-side inequality cannot be improved.

For any x > 1, if $r > \frac{4}{5}$, then from (2.12) and the continuity of $h_3(x)$ we see that there exists $\delta = \delta(r) > 0$ such that

$$h_3(x) < 0, \quad \forall x \in [1, 1+\delta).$$

Then (2.8) and (2.10) imply that

$$h_2(x) < 0, \quad \forall x \in [1, 1+\delta).$$

From (2.2), (2.4) and (2.6) we have

$$h(x) < 0, \quad \forall x \in [1, 1+\delta).$$

Then from (2.33) and (2.35) we see that there exists $\delta' = \delta'(\delta) > 0$ such that

$$f_1(t) < 0, \quad \forall t \in [0, \delta').$$

Then (2.29) and (2.31) imply that

$$f(t) > 0, \quad \forall t \in [0, \delta').$$

Therefore, $P(e^t, e^{-t}) < K_{\frac{4}{5}}(e^t, e^{-t})$ for $t \in [0, \delta')$. Hence the parameter $\frac{4}{5}$ in the left-side inequality cannot be improved, it is the best possible.

The authors declaire no conflicts of interest.

ACKNOWLEDGEMENTS. This research is partly supported by the National Natural Science Foundation of China (11271106).

References

- H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Archiv der Mathematik, vol. 80, no. 2, 2003, pp.201-215.
- [2] F. Burk, The geometric, logarithmic and arithmetic mean equality, The American Mathematical Monrhly, vol.94, no. 6, 1987, pp.527-538.
- [3] W. Janous, Anote on generlized Heronian means, Mathematical Inequalities and Appication, vol.4, no.3, 2001, pp.369-375.
- [4] E.B. Leach and M. C. Sholander, Extend mean values. II, Journal of Mathematical Analysis and Applications, vol.92, no.1, 1983, pp.207-223.
- [5] J.Sá ndor, A note on some inequalities for means, Arch. Math.(Basel) vol.56, 1991, pp.471-473.
- [6] A.O.Pittenger, Inequalities between arithmetic and Logarithmic means, Publikacije Elektrotehničkog Fakulteta. Ser. Mat. Fiz., no.675-715, 1981, pp.15-18.
- [7] O.Kouba, New bounds for the Identric mean of two arguments, J. Inequal. Pure and Appl. Math., vol.9, iss.3, art.71, 2008.
- [8] H.J.Seiffert, Problem 887, Nieuw Archief voor Wiskunde, vol 11, no. 2, 1993, pp.176-176.
- [9] H.J.Seiffert, Ungleichungen für einen bestimmten mittelwert, Nieuw Archief voor Wiskunde, vol 13, no. 2, 1995, pp.195-198.
- [10] J.Sá ndor and T.Trif, Some new inequalities for means of two arguments, Int. J. Math. Sci., vol.25, 2001, pp.525-535.
- [11] B.Y.Long and Y.M.Chu, Optimal inequalities for generalized logarithmic, arithmetic and geometric means, Journal of Inequalities and Applications, vol.2010, Article ID 806825, 2010, 10 pages.
- [12] E.Neuman and J.Sändor, On certain means of two arguments and their extensions, International Journal of Mathematics and Mathematical Sciences, no.16, 2003, pp.981-993.
- [13] A.A.Jagers, Solution of problem 887, Nieuw Archief voor Wiskunde, vol.12, 1994, pp.230-231.
- [14] P.A.Hästö, Optimal inequalities between Seiffert's mean and power mean, Mathematical Inequalities and Applications, Vol 7, no.1, 2004, pp. 47-53.

Received: August, 2014