Optimal Inequalities for Generalized Logarithmic and Seiffert Means

Shaoqin Gao
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China
Lingling Song
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China
\section*{Mengna You}
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

For $r \in \mathbf{R}$, the generalized logarithmic mean $L_{r}(a, b)$ and Seiffert mean $P(a, b)$ of two positive numbers a and b are defined by $L_{r}(a, b)=$ a, for $a=b, L_{r}(a, b)=\left[\left(b^{r}-a^{r}\right) / r(b-a)\right]^{\frac{1}{r-1}}$, for $r \neq 1, r \neq 0$, and $a \neq$ $b, L_{r}(a, b)=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}$, for $r=1$ and $a \neq b, L_{r}(a, b)=(b-a) /(\ln b-$ $\ln a)$, for $r=0$ and $a \neq b$, and $P(a, b)=(a-b) /(4 \arctan \sqrt{a / b}-\pi)$ respectively. In this paper, we find the greatest value α and the least value β such that the inequality

$$
L_{\alpha}(a, b)<P(a, b)\left(\text { or } P(a, b)<L_{\beta}(a, b), \text { resp. }\right)
$$

holds for all $a, b>0$ with $a \neq b$.

Mathematics Subject Classification: 26D15
Keywords: Optimal inequality, the Generalized Logarithmic mean, the

1 Introduction

For $r \in \mathbf{R}$, the generalized logarithmic mean $L_{r}(a, b)$ with parameter r of two positive numbers a and b is defined by

$$
L_{r}(a, b)=\left\{\begin{array}{l}
a, \quad a=b, \\
\left(\frac{b^{r}-a^{r}}{r(b-a)^{\frac{1}{r-1}}, r \neq 1, r \neq 0, a \neq b,}\right. \\
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}, r=1, a \neq b, \\
(b-a) /(\ln b-\ln a), \quad r=0, a \neq b
\end{array}\right.
$$

It is well known that the generalized logarithmic mean is continuous and increasing with respect to $r \in \mathbf{R}$ for fixed a and b.

For $a, b>0$ with $a \neq b$ the Seiffert mean $P(a, b)$ was introduced by Seiffert [8] as follows:

$$
P(a, b)=\frac{a-b}{4 \arctan (\sqrt{a / b})-\pi} .
$$

Recently, both means have been the subject of intensive research [1-15] and therein.

Let $H(a, b)=2 a b /(a+b), A(a, b)=(a+b) / 2, G(a, b)=\sqrt{a b}, I(a, b)=$ $1 / e\left(b^{b} / a^{a}\right)^{1 /(b-a)}$ and $L(a, b)=(b-a) /(\ln b-\ln a)$ be the harmonic , arithmetic, geometric , identric and logarithmic means of two positive real numbers a and b with $a \neq b$. Then

$$
\begin{gathered}
\min \{a, b\}<H(a, b)<G(a, b)=L_{-1}(a, b)<L(a, b)=L_{0}(a, b) \\
<I(a, b)=L_{1}(a, b)<A(a, b)=L_{2}(a, b)<\max \{a, b\} .
\end{gathered}
$$

The following bounds for the Seiffert mean $P(a, b)$ in terms of the power mean $M_{r}(a, b)=\left(\left(a^{r}+b^{r}\right) / 2\right)^{1 / r}(r \neq 0)$ were presented by Jagers in [13]:

$$
M_{1 / 2}<P(a, b)<M_{2 / 3}(a, b)
$$

for all $a, b>0$ with $a \neq b$.
Hästö [15] found the sharp lower bound for the Seiffert mean as follow:

$$
M_{\log 2 / \log \pi}(a, b)<P(a, b)
$$

for all $a, b>0$ with $a \neq b$.
In [9], Seiffert proved

$$
P(a, b)>\frac{3 A(a, b) G(a, b)}{A(a, b)+2 G(a, b)} \text { and } P(a, b)>\frac{2}{\pi} A(a, b)
$$

for all $a, b>0$ with $a \neq b$.

In [10], the authors found the greatest value α and the least value β such that the double inequality $\alpha A(a, b)+(1-\alpha) H(a, b)<P(a, b)<\beta A(a, b)+$ $(1-\beta) H(a, b)$ holds for all $a, b>0$ with $a \neq b$.

In [11], the author proved that

$$
\begin{aligned}
& L_{3 \alpha-2}(a, b)<\alpha A(a, b)+(1-\alpha) G(a, b), \text { for } \alpha \in\left(0, \frac{1}{2}\right) \\
& L_{3 \alpha-2}(a, b)>\alpha A(a, b)+(1-\alpha) G(a, b), \text { for } \alpha \in\left(\frac{1}{2}, 1\right)
\end{aligned}
$$

In [9], Seiffert proved

$$
L(a, b)<P(a, b)<I(a, b)=L_{1}(a, b)
$$

for all $a, b>0$ with $a \neq b$.
The purpose of the present paper is to find the greatest value α such that the inequality

$$
L_{\alpha}(a, b)<P(a, b)
$$

holds for all $a, b>0$ with $a \neq b$, at the same time we prove the parameter 1 in inequality $P(a, b)<I(a, b)=L_{1}(a, b)$ is optimal.

2 Main Results

Lemma 2.1 Let $g(t)=4 \arctan t-\pi+\frac{1}{1-r}\left(r t^{2 r-2}-1\right)(4 \arctan t-\pi)-$ $\frac{2\left(t^{2}-1\right)\left(1-t^{2 r}\right)}{t+t^{3}}$, one has the following: if r is the solution of equation $\frac{1}{r-1} \ln r=$ $\ln \pi$, then there exists $\lambda \in(1,+\infty)$ such that $g(t)<0$ for $t \in[1, \lambda)$ and $g(t)>0$ for $t \in(\lambda,+\infty)$.
proof. Let $g_{1}(t)=\frac{1}{2} t^{3-2 r} g^{\prime}(t), g_{2}(t)=\left(1+t^{2}\right)^{3} g_{1}^{\prime}(t), g_{3}(t)=\frac{1}{2} t^{1+2 r} g_{2}{ }^{\prime}(t), g_{4}(t)=$ $\frac{1}{2} t^{-1} g_{3}{ }^{\prime}(t), g_{5}(t)=\frac{1}{2} t^{-1} g_{4}{ }^{\prime}(t), g_{6}(t)=\frac{1}{2} t^{-1} g_{5}{ }^{\prime}(t), g_{7}(t)=\frac{t^{5-2 r}}{2 r(r+1)} g_{6}^{\prime}(t), g_{8}(t)=$ $\frac{1}{4(r+2) t} g_{7}^{\prime}(t)$, then simple computations lead to

$$
\begin{gather*}
\lim _{t \rightarrow 1^{+}} g(t)=0 \tag{2.1}\\
\lim _{t \rightarrow+\infty} g(t)=+\infty \tag{2.2}\\
\left.g_{1}(t)=\begin{array}{c}
-r(4 \arctan t-\pi)+\frac{2}{(1-r)\left(1+t^{2}\right)}\left(r^{2} t-t^{3-2 r}\right)+\frac{2(1+r) t^{3}}{1+t^{2}} \\
+\frac{\left(t^{2}-1\right)\left(1-t^{2 r}\right)}{\left(1+t^{2}\right)^{2}}\left(t^{1-2 r}+3 t^{3-2 r}\right) \\
\lim _{t \rightarrow 1^{+}} g_{1}(t)
\end{array}\right)=0 \tag{2.3}\\
\lim _{t \rightarrow+\infty} g_{1}(t)=+\infty
\end{gather*}
$$

$$
\begin{align*}
& g_{2}(t)=(3-6 r) t^{6-2 r}+(9-2 r) t^{4-2 r}+(6 r-3) t^{2-2 r}-(1-2 r) t^{-2 r}+(2 r-1) t^{6} \\
& +(4 r-9) t^{4}+(9-2 r) t^{2}+1-4 r+\frac{2}{1-r}\left[(2 r-1) t^{6-2 r}-(3-2 r) t^{2-2 r}-r^{2} t^{4}+r^{2}\right] \text {, } \tag{2.7}\\
& \lim _{t \rightarrow 1^{+}} g_{2}(t)=0, \tag{2.6}\\
& \lim _{t \rightarrow+\infty} g_{2}(t)=+\infty, \tag{2.8}\\
& g_{3}(t)=(3-6 r)(3-r) t^{6}+(9-2 r)(2-r) t^{4}+\left(-6 r^{2}+13 r-9\right) t^{2} \\
& +r(1-2 r)+3(2 r-1) t^{6+2 r}+2(4 r-9) t^{4+2 r}+(9-2 r) t^{2+2 r} \\
& +\frac{1}{1-r}\left[(2 r-1)(6-2 r) t^{6}-4 r^{2} t^{4+2 r}\right] \text {, } \tag{2.10}\\
& \lim _{t \rightarrow 1^{+}} g_{3}(t)=0, \tag{2.9}\\
& \lim _{t \rightarrow+\infty} g_{3}(t)=+\infty, \tag{2.11}\\
& g_{4}(t)=3(3-6 r)(3-r) t^{4}+2(9-2 r)(2-r) t^{2}+\left(-6 r^{2}+13 r-9\right) \\
& +3(2 r-1)(3+r) t^{4+2 r}+(4 r-9)(4+2 r) t^{2+2 r}+(9-2 r)(1+r) t^{2 r} \\
& +\frac{1}{1-r}\left[3(2 r-1)(6-2 r) t^{4}-2 r^{2}(4+2 r) t^{2+2 r}\right] \text {, } \tag{2.13}\\
& \lim _{t \rightarrow 1^{+}} g_{4}(t)=32 r(r-1)<0, \tag{2.12}\\
& \lim _{t \rightarrow+\infty} g_{4}(t)=+\infty, \tag{2.14}\\
& g_{5}(t)=6(3-6 r)(3-r) t^{2}+2(9-2 r)(2-r)+3(2 r-1)(3+r)(2+r) t^{2+2 r} \\
& +(4 r-9)(4+2 r)(1+r) t^{2 r}+r(9-2 r)(1+r) t^{2 r-2} \\
& +\frac{1}{1-r}\left[6(2 r-1)(6-2 r) t^{2}-r^{2}(4+2 r)(2+2 r) t^{2 r}\right], \tag{2.16}\\
& \lim _{t \rightarrow 1^{+}} g_{5}(t)=16 r(r-1)(r+7)<0, \tag{2.15}\\
& \lim _{t \rightarrow+\infty} g_{5}(t)=+\infty, \tag{2.17}\\
& g_{6}(t)=6(3-6 r)(3-r)+3(2 r-1)(3+r)(2+r)(1+r) t^{2 r} \\
& +2 r(4 r-9)(2+r)(1+r) t^{2 r-2}+r(9-2 r)(1+r)(r-1) t^{2 r-4} \\
& +\frac{1}{1-r}\left[12(2 r-1)(3-r)-4 r^{3}(2+r)(+r) t^{2 r-2}\right] \text {, } \tag{2.18}\\
& \lim _{t \rightarrow 1^{+}} g_{6}(t)=8 r\left(2 r^{3}+8 r^{2}+9 r-15\right), \tag{2.19}
\end{align*}
$$

if r is the solution of equation $\frac{1}{r-1} \ln r=\ln \pi$, we can get $\frac{3}{4}<r<\frac{13}{16}$, from simple computations we get

$$
\begin{align*}
\lim _{t \rightarrow 1^{+}} g_{6}(t)= & 8 r\left(2 r^{3}+8 r^{2}+9 r-15\right)<0 \tag{2.20}\\
& \lim _{t \rightarrow+\infty} g_{6}(t)=+\infty \tag{2.21}
\end{align*}
$$

$$
\begin{gather*}
g_{7}(t)=3(2 r-1)(3+r)(2+r) t^{4}+\left(12 r^{3}-2 r^{2}-34 r+36\right) t^{2}+(9-2 r)(r-2)(r-1), \tag{2.22}\\
\lim _{t \rightarrow 1^{+}} g_{7}(t)=4\left(4 r^{3}+10 r^{2}-11 r+9\right), \tag{2.23}\\
4 r^{3}+10 r^{2}-11 r+9>0 \text { for } \frac{3}{4}<r<\frac{13}{16}, \text { so we have } \\
\lim _{t \rightarrow 1^{+}} g_{7}(t)>0, \tag{2.24}\\
g_{8}(t)=3(2 r-1)(3+r) t^{2}+6 r^{2}-13 r+9, \tag{2.25}\\
\lim _{t \rightarrow 1^{+}} g_{8}(t)=2 r(6 r+1)>0, \tag{2.26}\\
g_{8}^{\prime}(t)=6(2 r-1)(3+r) t>0,
\end{gather*}
$$

and $g_{8}(t)$ is strictly increasing in $[1,+\infty)$. From (2.26) and and the monotonicity of $g_{8}(t)$ we clearly see that $g_{8}(t)>0$ for $t>1$, hence $g_{7}(t)$ is strictly increasing in $[1,+\infty)$.

The monotonicity of $g_{7}(t)$ and (2.24) implies that $g_{7}(t)>0$ for $t>1$, then we conclude that $g_{6}(t)$ is strictly increasing in $[1,+\infty)$.

It follows from (2.20) and (2.21) together with the monotonicity of $g_{6}(t)$ that there exists $t_{1}>1$ such that $g_{6}(t)<0$ for $t \in\left[1, t_{1}\right)$ and $g_{6}(t)>0$ for $t \in\left(t_{1},+\infty\right)$, hence we know that $g_{5}(t)$ is strictly decreasing in $\left[1, t_{1}\right]$ and strictly increasing in $\left[t_{1},+\infty\right)$.
the monotonicity of $g_{5}(t)$ in $\left[1, t_{1}\right]$ and in $\left[t_{1},+\infty\right)$ together with (2.16) and (2.17) imply that there exists $t_{2}>t_{1}$ such that $g_{5}(t)<0$ for $t \in\left[1, t_{2}\right)$ and $g_{5}(t)>0$ for $t \in\left(t_{2},+\infty\right)$, hence $g_{4}(t)$ is strictly decreasing in $\left[1, t_{2}\right]$ and strictly increasing in $\left[t_{2},+\infty\right)$.

From (2.13) and (2.14) together with the monotonicity of $g_{4}(t)$ in $\left[1, t_{2}\right]$ and in $\left[t_{2},+\infty\right)$, we clearly see that there exists $t_{3}>t_{2}$ such that $g_{4}(t)<0$ for $t \in\left[1, t_{3}\right)$ and $g_{4}(t)>0$ for $t \in\left(t_{3},+\infty\right)$, hence we know that $g_{3}(t)$ is strictly decreasing in $\left[1, t_{3}\right]$ and strictly increasing in $\left[t_{3},+\infty\right)$.

It follows from (2.10) and (2.11) together with the monotonicity of $g_{3}(t)$ in $\left[1, t_{3}\right]$ and in $\left[t_{3},+\infty\right)$ that there exists $t_{4}>t_{3}$ such that $g_{3}(t)<0$ for $t \in\left[1, t_{4}\right)$ and $g_{3}(t)>0$ for $t \in\left(t_{4},+\infty\right)$, hence we know that $g_{2}(t)$ is strictly decreasing in $\left[1, t_{4}\right]$ and strictly increasing in $\left[t_{4},+\infty\right)$.

From (2.7) and (2.8) together with the monotonicity of $g_{2}(t)$ in $\left[1, t_{4}\right]$ and in $\left[t_{4},+\infty\right)$, we clearly see that there exists $t_{5}>t_{4}$ such that $g_{2}(t)<0$ for $t \in\left[1, t_{5}\right)$ and $g_{2}(t)>0$ for $t \in\left(t_{5},+\infty\right)$, hence we know that $g_{1}(t)$ is strictly decreasing in $\left[1, t_{5}\right]$ and strictly increasing in $\left[t_{5},+\infty\right)$.

It follows from (2.4) and (2.5) together with the monotonicity of $g_{1}(t)$ in $\left[1, t_{5}\right]$ and in $\left[t_{5},+\infty\right)$ that there exists $t_{6}>t_{5}$ such that $g_{1}(t)<0$ for $t \in\left[1, t_{6}\right)$
and $g_{1}(t)>0$ for $t \in\left(t_{6},+\infty\right)$, hence we know that $g(t)$ is strictly decreasing in $\left[1, t_{6}\right]$ and strictly increasing in $\left[t_{6},+\infty\right)$.

Now from (2.1), (2.2) and the the monotonicity of $g(t)$ in $\left[1, t_{6}\right]$ and in $\left[t_{6},+\infty\right)$ imply that there exist $\lambda \in(1,+\infty)$, such that $g(t)<0$ for $t \in[1, \lambda)$ and $g(t)>0$ for $t \in(\lambda,+\infty)$.

Theorem 2.2 If r_{1} is the solution of equation $\frac{1}{r-1} \ln r=\ln \pi$, then the double inequality

$$
L_{r_{1}}(a, b)<P(a, b)<L_{1}(a, b)=I(a, b)
$$

holds for all $a, b>0$, and the given parameter r_{1} and 1 in each inequality are best possible.

Proof. Firstly, we prove

$$
\begin{equation*}
L_{r_{1}}(a, b)<P(a, b), \tag{2.27}
\end{equation*}
$$

for all $a, b>0$ with $a \neq b$.
Without loss of generality, we assume $a>b$. Let $t=\sqrt{a / b}>1$ and $r=r_{1}$. Then

$$
\begin{equation*}
P(a, b) / L_{r}(a, b)=\frac{t^{2}-1}{4 \arctan t-\pi}\left(\frac{r\left(1-t^{2}\right)}{1-t^{2 r}}\right)^{\frac{1}{r-1}} . \tag{2.28}
\end{equation*}
$$

Let
$f(t)=\ln \left\{\frac{t^{2}-1}{4 \arctan t-\pi}\left(\frac{r\left(1-t^{2}\right)}{1-t^{2 r}}\right)^{\frac{1}{r-1}}\right\}=\ln \frac{t^{2}-1}{4 \arctan t-\pi}+\frac{1}{r-1} \ln \frac{r\left(1-t^{2}\right)}{1-t^{2 r}}$.
Simple computations lead to

$$
\begin{gather*}
\lim _{t \rightarrow 1^{+}} f(t)=0, \tag{2.30}\\
\lim _{t \rightarrow+\infty} f(t)=\frac{1}{r-1} \ln r-\ln \pi, \tag{2.31}\\
f^{\prime}(t)=\frac{2\left(t+t^{3}\right)}{\left(t^{4}-1\right)(4 \arctan t-\pi)\left(1-t^{2 r}\right)} g(t) \tag{2.32}
\end{gather*}
$$

where
$g(t)=4 \arctan t-\pi+\frac{1}{1-r}\left(r t^{2 r-2}-1\right)(4 \arctan t-\pi)-\frac{2\left(t^{2}-1\right)\left(1-t^{2 r}\right)}{t+t^{3}}$.
If $r=r_{1}$, from (2.32) and Lemma we know that there exists $\lambda \in(1,+\infty)$ such that $f^{\prime}(t)>0$ for $t \in[1, \lambda)$ and $f^{\prime}(t)<0$ for $t \in(\lambda,+\infty)$, hence $f(t)$ is strictly increasing in $[1, \lambda]$ and strictly decreasing in $[\lambda,+\infty)$. From (2.30) and (2.31) together with the monotonicity of $f(t)$ in $[1, \lambda]$ and in $[\lambda,+\infty)$, we
clearly see that $f(t)>0$ for $t \in(1,+\infty)$, and from (2.28) and (2.29) we know that $L_{r_{1}}(a, b)<p(a, b)$ holds for all $a, b>0$ with $a \neq b$.

The other inequality of the theorem $P(a, b)<L_{1}(a, b)=I(a, b)$ has been proved in [9].

Secondly, we prove that the parameters r_{1} and 1 cannot be improved in each inequality.

For any $\varepsilon>0$ and $x>1$, we have

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{P(1, x)}{L_{r_{1}+\varepsilon}(1, x)}=\frac{1}{\pi}\left(r_{1}+\varepsilon\right)^{\frac{1}{r_{1}+\varepsilon-1}} . \tag{2.34}
\end{equation*}
$$

But

$$
\begin{equation*}
\ln \left[\frac{1}{\pi}\left(r_{1}+\varepsilon\right)^{\frac{1}{r_{1}+\varepsilon-1}}\right]=-\ln \pi+\frac{1}{r_{1}+\varepsilon-1} \ln \left(r_{1}+\varepsilon\right) \tag{2.35}
\end{equation*}
$$

by simple computations we can get

$$
\begin{equation*}
\frac{1}{r_{1}+\varepsilon-1} \ln \left(r_{1}+\varepsilon\right)<\frac{1}{r_{1}-1} \ln r_{1}, \tag{2.36}
\end{equation*}
$$

where r_{1} is the solution of equation $\frac{1}{r-1} \ln r=\ln \pi$, together with (2.34), (2.35) and (2.36) we have

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{P(1, x)}{L_{r_{1}+\varepsilon}(1, x)}<1 . \tag{2.37}
\end{equation*}
$$

Inequality (2.37) implies that for any $\varepsilon>0$ there exists $X=X(\varepsilon)>1$ such that $P(1, x)<L_{r_{1}}(1, x)$ for $x \in(X,+\infty)$. Hence the parameter r_{1} cannot be improved, it is best possible.

Next we prove the parameter 1 in right-side inequality (the result in [9]) cannot be improved.

For any $0<\varepsilon<1$, let $0<x<1$, then we have

$$
\begin{align*}
P(1+x, 1)-L_{1-\varepsilon}(1+x, 1) & =\frac{x}{4 \arctan \sqrt{1+x}-\pi}-\left[\frac{(1+x)^{1-\varepsilon}-1}{(1-\varepsilon) x}\right]^{-\frac{1}{\varepsilon}} \tag{2.38}\\
& =\frac{h(x)}{4 \arctan \sqrt{1+x}-\pi},
\end{align*}
$$

where $h(x)=x-\left[\frac{(1+x)^{1-\varepsilon}-1}{(1-\varepsilon) x}\right]^{-\frac{1}{\varepsilon}}(4 \arctan \sqrt{1+x}-\pi)$.
Let $x \rightarrow 0$, making use of the Taylor expansion we get

$$
\begin{equation*}
h(x)=\frac{\varepsilon}{24}\left(x^{3}+o\left(x^{3}\right)\right), \tag{2.39}
\end{equation*}
$$

(2.38) and (2.39) imply that for any $0<\varepsilon<1$ there exists $0<\delta=\delta(\varepsilon)<1$ such that $P(1+x, 1)>L_{1-\varepsilon}(1+x, 1)$. Hence the parameter 1 cannot be improved in the right-side inequality.

The authors declaire no conflicts of interest.
ACKNOWLEDGEMENTS. This research is partly supported by the National Natural Science Foundation of China (11271106).

References

[1] H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Archiv der Mathematik, vol. 80, no. 2, 2003, pp.201-215.
[2] F. Burk, The geometric, logarithmic and arithmetic mean equality, The American Mathematical Monrhly, vol.94, no. 6, 1987, pp.527-538.
[3] W. Janous, Anote on generlized Heronian means, Mathematical Inequalities and Appication, vol.4, no.3, 2001, pp.369-375.
[4] E.B. Leach and M. C. Sholander, Extend mean values. II, Journal of Mathematical Analysis and Applications, vol.92, no.1, 1983, pp.207-223.
[5] J.Sá ndor, On certain inequalities for means, Journal of Mathematical Analysis and Applications, vol.189, no.2, 1995, pp.602-606.
[6] A.O.Pittenger, Inequalities between arithmetic and Logarithmic means, Publikacije Elektrotehničkog Fakulteta. Ser. Mat. Fiz., no.675-715, 1981, pp.15-18.
[7] C.O.Imoru, The power mean and the Logarithmic mean, International Journal of Mathematics and Mathematical Sciences, vol.5, no.2, 1982, pp.337-343.
[8] H.J.Seiffert, Problem 887, Nieuw Archief voor Wiskunde, vol 11, no. 2, 1993, pp.176-176.
[9] H.J.Seiffert, Ungleichungen für einen bestimmten mittelwert, Nieuw Archief voor Wiskunde, vol 13, no. 2, 1995, pp.195-198.
[10] Y.M.Chu, Y.F.Qiu, M.K.Wang and G.D.Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert's mean, Journal of Inequalities and Applications, Article ID 436457, dio: 10.1155/436457, 2010, 7 pages.
[11] B.Y.Long and Y.M.Chu, Optimal inequalities for generalized logarithmic, arithmetic and geometric means, Journal of Inequalities and Applications, vol.2010, Article ID 806825, 2010, 10 pages.
[12] E.Neuman and J.Sändor, On certain means of two arguments and their extensions, International Journal of Mathematics and Mathematical Sciences, no.16, 2003, pp.981-993.
[13] A.A.Jagers, Solution of problem 887, Nieuw Archief voor Wiskunde, vol.12, 1994, pp.230-231.
[14] X.Li, Ch-p. Chen and F. Qi, Monotonicity result for generlized logarithmic means, Tamkang Journal of Mathematics, vol.38, no.2, 2007, pp.177-181.
[15] P.A.Hästö, Optimal inequalities between Seiffert's mean and power mean, Mathematical Inequalities and Applications, Vol 7, no.1, 2004, pp. 47-53.

Received: March, 2014

