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Abstract

For r ∈ R , the generalized logarithmic mean Lr(a, b) and Seiffert
mean P (a, b) of two positive numbers a and b are defined by Lr(a, b) =

a, for a = b, Lr(a, b) = [(br −ar)/r(b−a)]
1

r−1 , for r 6= 1, r 6= 0, and a 6=
b, Lr(a, b) = 1

e (
bb

aa )
1

b−a , for r = 1 and a 6= b, Lr(a, b) = (b − a)/(ln b −
ln a), for r = 0 and a 6= b, and P (a, b) = (a − b)/(4 arctan

√

a/b − π)
respectively. In this paper, we find the greatest value α and the least
value β such that the inequality

Lα(a, b) < P (a, b) (or P (a, b) < Lβ(a, b), resp.)

holds for all a, b > 0 with a 6= b.
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1 Introduction

For r ∈ R , the generalized logarithmic mean Lr(a, b) with parameter r of two
positive numbers a and b is defined by

Lr(a, b) =























a, a = b,

( br−ar

r(b−a)
)

1

r−1 , r 6= 1, r 6= 0, a 6= b,
1
e
( bb

aa
)

1

b−a , r = 1 , a 6= b,
(b− a)/(ln b− ln a), r = 0 , a 6= b.

It is well known that the generalized logarithmic mean is continuous and in-
creasing with respect to r ∈ R for fixed a and b.

For a, b > 0 with a 6= b the Seiffert mean P (a, b) was introduced by Seiffert
[8] as follows:

P (a, b) =
a− b

4 arctan(
√

a/b)− π
.

Recently, both means have been the subject of intensive research [1-15] and
therein.

Let H(a, b) = 2ab/(a+ b), A(a, b) = (a + b)/2, G(a, b) =
√
ab, I(a, b) =

1/e(bb/aa)1/(b−a) and L(a, b) = (b−a)/(ln b−ln a) be the harmonic , arithmetic,
geometric , identric and logarithmic means of two positive real numbers a and
b with a 6= b. Then

min{a, b} < H(a, b) < G(a, b) = L−1(a, b) < L(a, b) = L0(a, b)

< I(a, b) = L1(a, b) < A(a, b) = L2(a, b) < max{a, b}.

The following bounds for the Seiffert mean P (a, b) in terms of the power
mean Mr(a, b) = ((ar + br)/2)1/r(r 6= 0) were presented by Jagers in [13]:

M1/2 < P (a, b) < M2/3(a, b)

for all a, b > 0 with a 6= b.
Hästö [15] found the sharp lower bound for the Seiffert mean as follow:

Mlog2/logπ(a, b) < P (a, b)

for all a, b > 0 with a 6= b.
In [9], Seiffert proved

P (a, b) >
3A(a, b)G(a, b)

A(a, b) + 2G(a, b)
and P (a, b) >

2

π
A(a, b)

for all a, b > 0 with a 6= b.
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In [10], the authors found the greatest value α and the least value β such
that the double inequality αA(a, b) + (1 − α)H(a, b) < P (a, b) < βA(a, b) +
(1− β)H(a, b) holds for all a, b > 0 with a 6= b.

In [11], the author proved that

L3α−2(a, b) < αA(a, b) + (1− α)G(a, b), for α ∈ (0,
1

2
)

L3α−2(a, b) > αA(a, b) + (1− α)G(a, b), for α ∈ (
1

2
, 1)

In [9], Seiffert proved

L(a, b) < P (a, b) < I(a, b) = L1(a, b)

for all a, b > 0 with a 6= b.
The purpose of the present paper is to find the greatest value α such that

the inequality
Lα(a, b) < P (a, b)

holds for all a, b > 0 with a 6= b, at the same time we prove the parameter 1
in inequality P (a, b) < I(a, b) = L1(a, b) is optimal.

2 Main Results

Lemma 2.1 Let g(t) = 4 arctan t − π + 1
1−r

(rt2r−2 − 1)(4 arctan t − π) −
2(t2−1)(1−t2r)

t+t3
, one has the following: if r is the solution of equation 1

r−1
ln r =

ln π, then there exists λ ∈ (1,+∞) such that g(t) < 0 for t ∈ [1, λ) and g(t) > 0
for t ∈ (λ,+∞).

proof. Let g1(t) =
1
2
t3−2rg′(t), g2(t) = (1+t2)3g′1(t), g3(t) =

1
2
t1+2rg2

′(t), g4(t) =
1
2
t−1g3

′(t), g5(t) =
1
2
t−1g4

′(t), g6(t) =
1
2
t−1g5

′(t), g7(t) =
t5−2r

2r(r+1)
g′6(t), g8(t) =

1
4(r+2)t

g′7(t), then simple computations lead to

lim
t→1+

g(t) = 0, (2.1)

lim
t→+∞

g(t) = +∞, (2.2)

g1(t) = −r(4 arctan t− π) + 2
(1−r)(1+t2)

(r2t− t3−2r) + 2(1+r)t3

1+t2

+ (t2−1)(1−t2r)
(1+t2)2

(t1−2r + 3t3−2r),
(2.3)

lim
t→1+

g1(t) = 0, (2.4)

lim
t→+∞

g1(t) = +∞, (2.5)
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g2(t) = (3− 6r)t6−2r + (9− 2r)t4−2r + (6r − 3)t2−2r − (1− 2r)t−2r + (2r − 1)t6

+(4r − 9)t4 + (9− 2r)t2 + 1− 4r + 2
1−r

[(2r − 1)t6−2r − (3− 2r)t2−2r − r2t4 + r2],
(2.6)

lim
t→1+

g2(t) = 0, (2.7)

lim
t→+∞

g2(t) = +∞, (2.8)

g3(t) = (3− 6r)(3− r)t6 + (9− 2r)(2− r)t4 + (−6r2 + 13r − 9)t2

+r(1− 2r) + 3(2r − 1)t6+2r + 2(4r − 9)t4+2r + (9− 2r)t2+2r

+ 1
1−r

[(2r − 1)(6− 2r)t6 − 4r2t4+2r],
(2.9)

lim
t→1+

g3(t) = 0, (2.10)

lim
t→+∞

g3(t) = +∞, (2.11)

g4(t) = 3(3− 6r)(3− r)t4 + 2(9− 2r)(2− r)t2 + (−6r2 + 13r − 9)
+3(2r − 1)(3 + r)t4+2r + (4r − 9)(4 + 2r)t2+2r + (9− 2r)(1 + r)t2r

+ 1
1−r

[3(2r − 1)(6− 2r)t4 − 2r2(4 + 2r)t2+2r],
(2.12)

lim
t→1+

g4(t) = 32r(r − 1) < 0, (2.13)

lim
t→+∞

g4(t) = +∞, (2.14)

g5(t) = 6(3− 6r)(3− r)t2 + 2(9− 2r)(2− r) + 3(2r − 1)(3 + r)(2 + r)t2+2r

+(4r − 9)(4 + 2r)(1 + r)t2r + r(9− 2r)(1 + r)t2r−2

+ 1
1−r

[6(2r − 1)(6− 2r)t2 − r2(4 + 2r)(2 + 2r)t2r],
(2.15)

lim
t→1+

g5(t) = 16r(r − 1)(r + 7) < 0, (2.16)

lim
t→+∞

g5(t) = +∞, (2.17)

g6(t) = 6(3− 6r)(3− r) + 3(2r − 1)(3 + r)(2 + r)(1 + r)t2r

+2r(4r − 9)(2 + r)(1 + r)t2r−2 + r(9− 2r)(1 + r)(r − 1)t2r−4

+ 1
1−r

[12(2r − 1)(3− r)− 4r3(2 + r)(+r)t2r−2],
(2.18)

lim
t→1+

g6(t) = 8r(2r3 + 8r2 + 9r − 15), (2.19)

if r is the solution of equation 1
r−1

ln r = ln π, we can get 3
4
< r < 13

16
, from

simple computations we get

lim
t→1+

g6(t) = 8r(2r3 + 8r2 + 9r − 15) < 0, (2.20)

lim
t→+∞

g6(t) = +∞, (2.21)
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g7(t) = 3(2r−1)(3+r)(2+r)t4+(12r3−2r2−34r+36)t2+(9−2r)(r−2)(r−1),
(2.22)

lim
t→1+

g7(t) = 4(4r3 + 10r2 − 11r + 9), (2.23)

4r3 + 10r2 − 11r + 9 > 0 for 3
4
< r < 13

16
, so we have

lim
t→1+

g7(t) > 0, (2.24)

g8(t) = 3(2r − 1)(3 + r)t2 + 6r2 − 13r + 9, (2.25)

lim
t→1+

g8(t) = 2r(6r + 1) > 0, (2.26)

g′8(t) = 6(2r − 1)(3 + r)t > 0,

and g8(t) is strictly increasing in [1,+∞). From (2.26) and and the mono-
tonicity of g8(t) we clearly see that g8(t) > 0 for t > 1, hence g7(t) is strictly
increasing in [1,+∞).

The monotonicity of g7(t) and (2.24) implies that g7(t) > 0 for t > 1, then
we conclude that g6(t) is strictly increasing in [1,+∞).

It follows from (2.20)and (2.21) together with the monotonicity of g6(t)
that there exists t1 > 1 such that g6(t) < 0 for t ∈ [1, t1) and g6(t) > 0 for
t ∈ (t1,+∞), hence we know that g5(t) is strictly decreasing in [1, t1] and
strictly increasing in [t1,+∞).

the monotonicity of g5(t) in [1, t1] and in [t1,+∞) together with (2.16)
and (2.17) imply that there exists t2 > t1 such that g5(t) < 0 for t ∈ [1, t2)
and g5(t) > 0 for t ∈ (t2,+∞), hence g4(t) is strictly decreasing in [1, t2] and
strictly increasing in [t2,+∞).

From (2.13) and (2.14) together with the monotonicity of g4(t) in [1, t2] and
in [t2,+∞) , we clearly see that there exists t3 > t2 such that g4(t) < 0 for
t ∈ [1, t3) and g4(t) > 0 for t ∈ (t3,+∞), hence we know that g3(t) is strictly
decreasing in [1, t3] and strictly increasing in [t3,+∞).

It follows from (2.10) and (2.11) together with the monotonicity of g3(t) in
[1, t3] and in [t3,+∞) that there exists t4 > t3 such that g3(t) < 0 for t ∈ [1, t4)
and g3(t) > 0 for t ∈ (t4,+∞), hence we know that g2(t) is strictly decreasing
in [1, t4] and strictly increasing in [t4,+∞).

From (2.7) and (2.8) together with the monotonicity of g2(t) in [1, t4] and
in [t4,+∞) , we clearly see that there exists t5 > t4 such that g2(t) < 0 for
t ∈ [1, t5) and g2(t) > 0 for t ∈ (t5,+∞), hence we know that g1(t) is strictly
decreasing in [1, t5] and strictly increasing in [t5,+∞).

It follows from (2.4) and (2.5) together with the monotonicity of g1(t) in
[1, t5] and in [t5,+∞) that there exists t6 > t5 such that g1(t) < 0 for t ∈ [1, t6)
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and g1(t) > 0 for t ∈ (t6,+∞), hence we know that g(t) is strictly decreasing
in [1, t6] and strictly increasing in [t6,+∞).

Now from (2.1), (2.2)and the the monotonicity of g(t) in [1, t6] and in
[t6,+∞) imply that there exist λ ∈ (1,+∞), such that g(t) < 0 for t ∈ [1, λ)
and g(t) > 0 for t ∈ (λ,+∞).

Theorem 2.2 If r1 is the solution of equation 1
r−1

ln r = ln π, then the

double inequality

Lr1(a, b) < P (a, b) < L1(a, b) = I(a, b)

holds for all a, b > 0 , and the given parameter r1 and 1 in each inequality are

best possible.

Proof. Firstly, we prove
Lr1(a, b) < P (a, b), (2.27)

for all a, b > 0 with a 6= b.

Without loss of generality, we assume a > b. Let t =
√

a/b > 1 and r = r1.
Then

P (a, b)/Lr(a, b) =
t2 − 1

4 arctan t− π
(
r(1− t2)

1− t2r
)

1

r−1 . (2.28)

Let

f(t) = ln{ t2 − 1

4 arctan t− π
(
r(1− t2)

1− t2r
)

1

r−1} = ln
t2 − 1

4 arctan t− π
+

1

r − 1
ln

r(1− t2)

1− t2r
.

(2.29)
Simple computations lead to

lim
t→1+

f(t) = 0, (2.30)

lim
t→+∞

f(t) =
1

r − 1
ln r − ln π, (2.31)

f ′(t) =
2(t+ t3)

(t4 − 1)(4 arctan t− π)(1− t2r)
g(t) (2.32)

where

g(t) = 4 arctan t− π +
1

1− r
(rt2r−2 − 1)(4 arctan t− π)− 2(t2 − 1)(1− t2r)

t+ t3
.

(2.33)
If r = r1, from (2.32) and Lemma we know that there exists λ ∈ (1,+∞)

such that f ′(t) > 0 for t ∈ [1, λ) and f ′(t) < 0 for t ∈ (λ,+∞), hence f(t)
is strictly increasing in [1, λ] and strictly decreasing in [λ,+∞). From (2.30)
and (2.31) together with the monotonicity of f(t) in [1, λ] and in [λ,+∞) , we
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clearly see that f(t) > 0 for t ∈ (1,+∞), and from (2.28) and (2.29) we know
that Lr1(a, b) < p(a, b) holds for all a, b > 0 with a 6= b.

The other inequality of the theorem P (a, b) < L1(a, b) = I(a, b) has been
proved in [9].

Secondly, we prove that the parameters r1 and 1 cannot be improved in
each inequality.

For any ε > 0 and x > 1, we have

lim
x→+∞

P (1, x)

Lr1+ε(1, x)
=

1

π
(r1 + ε)

1

r1+ε−1 . (2.34)

But

ln[
1

π
(r1 + ε)

1

r1+ε−1 ] = − ln π +
1

r1 + ε− 1
ln(r1 + ε), (2.35)

by simple computations we can get

1

r1 + ε− 1
ln(r1 + ε) <

1

r1 − 1
ln r1, (2.36)

where r1 is the solution of equation 1
r−1

ln r = ln π, together with (2.34), (2.35)
and (2.36) we have

lim
x→+∞

P (1, x)

Lr1+ε(1, x)
< 1. (2.37)

Inequality (2.37) implies that for any ε > 0 there exists X = X(ε) > 1
such that P (1, x) < Lr1(1, x) for x ∈ (X,+∞). Hence the parameter r1 cannot
be improved, it is best possible.

Next we prove the parameter 1 in right-side inequality ( the result in [9])
cannot be improved.

For any 0 < ε < 1, let 0 < x < 1, then we have

P (1 + x, 1)− L1−ε(1 + x, 1) = x
4 arctan

√
1+x−π

− [ (1+x)1−ε−1
(1−ε)x

]−
1

ε

= h(x)

4 arctan
√
1+x−π

,
(2.38)

where h(x) = x− [ (1+x)1−ε−1
(1−ε)x

]−
1

ε (4 arctan
√
1 + x− π).

Let x → 0, making use of the Taylor expansion we get

h(x) =
ε

24
(x3 + o(x3)), (2.39)

(2.38) and (2.39) imply that for any 0 < ε < 1 there exists 0 < δ = δ(ε) < 1
such that P (1 + x, 1) > L1−ε(1 + x, 1). Hence the parameter 1 cannot be
improved in the right-side inequality.
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