Optimal Convex Combination Bounds of the weighted geometric and Harmonic Means for the Centroidal Mean

Shaoqin Gao

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Lingling Song

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

We find the greatest value α and the least value β such that the double inequality

 $\alpha H(a,b) + (1-\alpha)S(a,b) < T(a,b) < \beta H(a,b) + (1-\beta)S(a,b)$

holds for all a, b > 0 with $a \neq b$. Here S(a, b) denotes the weighted geometric mean of a and b with weights $\frac{a}{a+b}$ and $\frac{b}{a+b}$, T(a, b) and H(a, b) denote the Centroidal and harmonic means of two positive numbers a and b, respectively.

Mathematics Subject Classification: 26D15

Keywords: Optimal convex combination bound, Centroidal mean, harmonic mean, the weighted geometric mean.

1 Introduction

For a, b > 0 with $a \neq b$ the weighted geometric mean S(a, b) with weights $\frac{a}{a+b}$ and $\frac{b}{a+b}$ was introduced as follow:

$$S(a,b) = a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}.$$

This mean is a special case of Gini's mean [3]. For more properties of the mean S see, e.g., [4] and [5]. Recently, the inequalities for means have been the subject of intensive research [1-6] and related references therein.

Let $T(a,b) = 2(a^2 + ab + b^2)/3(a + b)$ and H(a,b) = 2ab/(a + b), be the centroidal and harmonic ftwo positive real numbers a and b with $a \neq b$.

Let $M_r(a, b) = (\frac{a^r + b^r}{2})^{\frac{1}{r}}$ denote the power mean of order $r \neq 0$ of a and b. In [6] E.Neuman and J.Sandor found the sharp bounds for the weighted geometric mean as follow:

$$M_2(a,b) < S(a,b) < \sqrt{2M_2(a,b)}.$$

In [2], the authors found the greatest value α and the least value β such that the double inequality

$$\alpha A(a, b) + (1 - \alpha)H(a, b) < P(a, b) < \beta A(a, b) + (1 - \beta)H(a, b)$$

holds for all a, b > 0 with $a \neq b$, where $P(a, b) = \frac{a-b}{4 \arctan(\sqrt{a/b}) - \pi}$.

The purpose of the present paper is to find the greatest value α and the least value β such that the double inequality

$$\alpha H(a,b) + (1-\alpha)S(a,b) < T(a,b) < \beta H(a,b) + (1-\beta)S(a,b)$$

holds for all a, b > 0 with $a \neq b$.

2 Main Results

Theorem 2.1 The double inequality

$$\alpha H(a,b) + (1-\alpha)S(a,b) < T(a,b) < \beta H(a,b) + (1-\beta)S(a,b)$$

holds for all a, b > 0 with $a \neq b$ if and only if $\alpha \geq \frac{1}{3}$ and $\beta \leq \frac{1}{9}$.

Proof. Firstly, we prove that

$$T(a,b) < \frac{1}{9}H(a,b) + \frac{8}{9}S(a,b),$$
 (2.1)

$$T(a,b) > \frac{1}{3}H(a,b) + \frac{2}{3}S(a,b),$$
 (2.2)

for all a, b > 0 with $a \neq b$.

Without loss of generality, we assume a > b. Let t = a/b > 1 and $p \in \{\frac{1}{9}, \frac{1}{3}\}$. Then we have

$$= \frac{\frac{1}{b}[T(a,b) - pH(a,b) - (1-p)S(a,b)]}{\frac{2}{3}\frac{t^2 + t + 1}{t+1} - \frac{2pt}{1+t} - (1-p)t^{\frac{t}{1+t}}.$$
(2.3)

Let

$$f(t) = \frac{\frac{2}{3}\frac{t^2+t+1}{t+1} - \frac{2pt}{1+t}}{(1-p)t^{\frac{t}{1+t}}},$$
(2.4)

$$g(t) = \ln f(t) = \ln(\frac{2}{3}\frac{t^2 + t + 1}{t + 1} - \frac{2pt}{1 + t}) - \ln(1 - p) - \frac{t}{1 + t}\ln t.$$
 (2.5)

Simple computations lead to

$$\lim_{t \to 1^+} g(t) = 0, \tag{2.6}$$

$$\lim_{t \to +\infty} g(t) = \ln \frac{2}{3(1-p)},$$
(2.7)

$$g'(t) = \frac{g_1(t)}{(1+t)^2 [\frac{2}{3}(t^2+t+1)-2pt]},$$
(2.8)

where

$$g_1(t) = \left[\frac{2}{3}(2t+1) - 2p\right](1+t)^2 - 2(1+t)\left[\frac{2}{3}(t^2+t+1) - 2pt\right] \\ -\left[\frac{2}{3}(t^2+t+1) - 2pt\right]\ln t.$$
(2.9)

$$\lim_{t \to 1^+} g_1(t) = 0, \tag{2.10}$$

$$\lim_{t \to +\infty} g_1(t) = -\infty, \qquad (2.11)$$

$$g_1'(t) = \left(\frac{2}{3} + 4p\right)t - \frac{2}{3} + 2p - \frac{2}{3t} - \left(\frac{4t+2}{3} - 2p\right)\ln t, \qquad (2.12)$$

$$\lim_{t \to 1^+} g_1'(t) = 6p - \frac{2}{3},\tag{2.13}$$

$$\lim_{t \to +\infty} g_1'(t) = -\infty. \tag{2.14}$$

$$g_1''(t) = 4p - \frac{2}{3} + \frac{2}{3t^2} - \frac{4}{3}\ln t - \frac{2}{3t} + \frac{2p}{t},$$
(2.15)

$$\lim_{t \to 1^+} g_1''(t) = 6p - \frac{2}{3},\tag{2.16}$$

$$\lim_{t \to +\infty} g_1''(t) = -\infty. \tag{2.17}$$

$$g_1^{(3)}(t) = \frac{2}{3t^3}g_2(t), \qquad (2.18)$$

where

$$g_2(t) = -2t^2 + t - 3pt - 2, (2.19)$$

$$\lim_{t \to 1^+} g_2(t) = -3 - 3p, \tag{2.20}$$

783

$$g_2'(t) = -4t + 1 - 3p, (2.21)$$

$$\lim_{t \to 1^+} g_2'(t) = -3 - 3p, \tag{2.22}$$

$$g_2''(t) = -4. (2.23)$$

From (2.23) and (2.22) we know $g'_2(t) < 0$ for t > 1, hence $g_2(t)$ is strictly decreasing in $[1, +\infty)$. It follows from (2.20) and (2.18) we get that $g_1^{(3)}(t) < 0$ for t > 1, hence $g''_1(t)$ is strictly decreasing in $[1, +\infty)$.

Now we divide the proof into two cases:

Case 1 If $p = \frac{1}{9}$.

(2.16) leads to $g''_1(t) < 0$ for t > 1, hence $g'_1(t)$ is strictly decreasing in $[1, +\infty)$. From (2.6), (2.8), (2.10), (2.12), (2.13) and $\frac{2}{3}(t^2 + t + 1) - 2pt > 0$ for $p = \frac{1}{9}$, we can get g(t) < 0 for t > 1. Then inequality (2.1) follows from (2.3)-(2.5).

Case 2 If $p = \frac{1}{3}$.

Then from (2.16) and (2.17) together with the monotonicity of $g''_1(t)$ we clearly see that there exists $\lambda_1 > 1$ such that $g''_1(t) > 0$ for $t \in [1, \lambda_1)$ and $g''_1(t) < 0$ for $t \in (\lambda_1, +\infty)$, hence $g'_1(t)$ is strictly increasing in $[1, \lambda_1]$ and strictly decreasing in $[\lambda_1, +\infty)$.

From (2.13) and (2.14) together with the monotonicity of $g'_1(t)$ in $[1, \lambda_1]$ and $[\lambda_1, +\infty)$ we know that there exists $\lambda_2 > \lambda_1$ such that $g'_1(t) > 0$ for $t \in [1, \lambda_2)$ and $g'_1(t) < 0$ for $t \in (\lambda_2, +\infty)$, hence $g_1(t)$ is strictly increasing in $[1, \lambda_2]$ and strictly decreasing in $[\lambda_2, +\infty)$.

From (2.10) and (2.11) together with the monotonicity of $g_1(t)$ we clearly see that there exists $\lambda_3 > \lambda_2$ such that $g_1(t) > 0$ for $t \in [1, \lambda_3)$ and $g_1(t) < 0$ for $t \in (\lambda_3, +\infty)$, hence g(t) is strictly increasing in $[1, \lambda_3]$ and strictly decreasing in $[\lambda_3, +\infty)$.

From (2.6) and (2.7) together with the monotonicity of g(t) in $[1, \lambda_3]$ and $[\lambda_3, +\infty)$, we can get that g(t) > 0 for $t \in [1, +\infty)$, from (2.3) and (2.4) we get (2.2).

Secondly, we prove that $\frac{1}{9}H(a,b) + \frac{8}{9}S(a,b)$ is the best possible upper convex combination bound of the weighted geometric and harmonic means for the centroidal mean T(a,b).

For any t > 1 and $\beta \in R$, we have

$$T(t,1) - \beta H(t,1) - (1-\beta)S(t,1) = \frac{h(t)}{3(1+t)},$$
(2.26)

where

$$h(t) = 2(t^2 + t + 1) - 6\beta t - 3(1 - \beta)(1 + t)t^{\frac{t}{1+t}}.$$
 (2.27)

It follows from (2.27) that

$$h(1) = h'(1) = 0, (2.28)$$

Optimal Convex Combination Bounds

$$h''(1) = \frac{1}{2}(9\beta - 1). \tag{2.29}$$

If $\beta > \frac{1}{9}$, then (2.29) leads to

$$h''(1) > 0. (2.30)$$

From (2.30) and the continuity of h''(t) we see that there exists $\delta = \delta(\beta) > 0$ such that

$$h''(t) > 0, \quad \forall t \in [1, 1 + \delta).$$
 (2.31)

Then (2.28) and (2.31) imply that

$$h(t) > 0, \quad \forall t \in [1, 1 + \delta).$$
 (2.32)

Therefore, $\beta H(t, 1) + (1 - \beta)S(t, 1) < T(t, 1)$ for $t \in [1, 1 + \delta)$ follows from (2.26) and (2.32).

Finally, we prove that $\frac{1}{3}H(a,b) + \frac{2}{3}S(a,b)$ is the best possible lower convex combination bound of the weighted geometric and harmonic means for the centroidal mean T(a,b).

In fact, for $\alpha < \frac{1}{3}$, we have

$$\lim_{x \to +\infty} \frac{\alpha H(1,x) + (1-\alpha)S(1,x)}{T(1,x)} = \frac{3}{2}(1-\alpha) > 1.$$
 (2.33)

Inequality (2.33) implies that for any $\alpha < \frac{1}{3}$ there exists $X = X(\alpha) > 1$ such that $\alpha H(1, x) + (1 - \alpha)S(1, x) > T(1, x)$ for $x \in (X, +\infty)$.

The authors declaire no conflicts of interest.

ACKNOWLEDGEMENTS. This research is partly supported by the National Natural Science Foundation of China (11271106).

References

- H.J.Seiffert, Problem 887, Nieuw Archief voor Wiskunde, vol. 11, no. 2(1993), pp.176-176.
- [2] Y.M.Chu, Y.F.Qiu, M.K.Wang and G.D.Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert's mean, Journal of Inequalities and Applications, Article ID 436457, dio: 10.1155/436457, 2010, 7 pages.
- [3] E. Neuman, J. Sandor, Inequalities involving Stolarsky and Gini means, Math. Pannon., vol. 14, no. 1(2003), pp.29-44.
- [4] J. Sandor, On the identric and logarithmic means, Aequationes Math., vol.40(1990), pp.261-270.

785

- [5] J. Sandor, On certain identities for means, Studia Univ. Babes-Bolayi Math., vol.38(1993), pp.7-14.
- [6] E.Neuman and J.Sändor, Companion inequalities for certain bivariate means, Appl. Anal. Discrete Math., vol.3(2009), pp.46-51.

Received: August, 2014