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Abstract

We find the greatest value α and the least value β such that the
double inequality

αH(a, b) + (1− α)S(a, b) < T (a, b) < βH(a, b) + (1− β)S(a, b)

holds for all a, b > 0 with a 6= b. Here S(a, b) denotes the weighted
geometric mean of a and b with weights a

a+b and
b

a+b , T (a, b) andH(a, b)
denote the Centroidal and harmonic means of two positive numbers a

and b, respectively.
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1 Introduction

For a, b > 0 with a 6= b the weighted geometric mean S(a, b) with weights a
a+b

and b
a+b

was introduced as follow:

S(a, b) = a
a

a+b b
b

a+b .

This mean is a special case of Gini’s mean[3]. For more properties of the
mean S see, e.g., [4] and [5]. Recently, the inequalities for means have been
the subject of intensive research [1-6] and related references therein.
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Let T (a, b) = 2(a2 + ab+ b2)/3(a+ b) and H(a, b) = 2ab/(a+ b), be the
centroidal and harmonicmeans of two positive real numbers a and b with a 6= b.

Let Mr(a, b) = (a
r+br

2
)
1

r denote the power mean of order r 6= 0 of a and
b. In [6] E.Neuman and J.Sandor found the sharp bounds for the weighted
geometric mean as follow:

M2(a, b) < S(a, b) <
√
2M2(a, b).

In [2], the authors found the greatest value α and the least value β such
that the double inequality

αA(a, b) + (1− α)H(a, b) < P (a, b) < βA(a, b) + (1− β)H(a, b)

holds for all a, b > 0 with a 6= b, where P (a, b) = a−b

4 arctan(
√

a/b)−π
.

The purpose of the present paper is to find the greatest value α and the
least value β such that the double inequality

αH(a, b) + (1− α)S(a, b) < T (a, b) < βH(a, b) + (1− β)S(a, b)

holds for all a, b > 0 with a 6= b.

2 Main Results

Theorem 2.1 The double inequality

αH(a, b) + (1− α)S(a, b) < T (a, b) < βH(a, b) + (1− β)S(a, b)

holds for all a, b > 0 with a 6= b if and only if α ≥ 1
3
and β ≤ 1

9
.

Proof. Firstly, we prove that

T (a, b) <
1

9
H(a, b) +

8

9
S(a, b), (2.1)

T (a, b) >
1

3
H(a, b) +

2

3
S(a, b), (2.2)

for all a, b > 0 with a 6= b.
Without loss of generality, we assume a > b. Let t = a/b > 1 and p ∈

{1
9
, 1
3
}. Then we have

1

b
[T (a, b)− pH(a, b)− (1− p)S(a, b)]

=
2

3

t2 + t + 1

t+ 1
− 2pt

1 + t
− (1− p)t

t

1+t .
(2.3)
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Let

f(t) =
2
3
t2+t+1
t+1

− 2pt
1+t

(1− p)t
t

1+t

, (2.4)

g(t) = ln f(t) = ln(
2

3

t2 + t+ 1

t+ 1
− 2pt

1 + t
)− ln(1− p)− t

1 + t
ln t. (2.5)

Simple computations lead to

lim
t→1+

g(t) = 0, (2.6)

lim
t→+∞

g(t) = ln
2

3(1− p)
, (2.7)

g′(t) =
g1(t)

(1 + t)2[2
3
(t2 + t + 1)− 2pt]

, (2.8)

where

g1(t) = [2
3
(2t+ 1)− 2p](1 + t)2 − 2(1 + t)[2

3
(t2 + t+ 1)− 2pt]

−[
2

3
(t2 + t+ 1)− 2pt] ln t.

(2.9)

lim
t→1+

g1(t) = 0, (2.10)

lim
t→+∞

g1(t) = −∞, (2.11)

g′1(t) = (
2

3
+ 4p)t− 2

3
+ 2p− 2

3t
− (

4t+ 2

3
− 2p) ln t, (2.12)

lim
t→1+

g′1(t) = 6p− 2

3
, (2.13)

lim
t→+∞

g′1(t) = −∞. (2.14)

g′′1(t) = 4p− 2

3
+

2

3t2
− 4

3
ln t− 2

3t
+

2p

t
, (2.15)

lim
t→1+

g′′1(t) = 6p− 2

3
, (2.16)

lim
t→+∞

g′′1(t) = −∞. (2.17)

g
(3)
1 (t) =

2

3t3
g2(t), (2.18)

where
g2(t) = −2t2 + t− 3pt− 2, (2.19)

lim
t→1+

g2(t) = −3− 3p, (2.20)



784 Shaoqin Gao, Lingling Song

g′2(t) = −4t + 1− 3p, (2.21)

lim
t→1+

g′2(t) = −3− 3p, (2.22)

g′′2(t) = −4. (2.23)

From (2.23) and (2.22) we know g′2(t) < 0 for t > 1 , hence g2(t) is strictly

decreasing in [1,+∞). It follows from (2.20) and (2.18) we get that g
(3)
1 (t) < 0

for t > 1 , hence g′′1(t) is strictly decreasing in [1,+∞).
Now we divide the proof into two cases:
Case 1 If p = 1

9
.

(2.16) leads to g′′1(t) < 0 for t > 1, hence g′1(t) is strictly decreasing in
[1,+∞). From (2.6), (2.8), (2.10), (2.12), (2.13) and 2

3
(t2 + t + 1) − 2pt > 0

for p = 1
9
, we can get g(t) < 0 for t > 1. Then inequality (2.1) follows from

(2.3)-(2.5).
Case 2 If p = 1

3
.

Then from (2.16) and (2.17) together with the monotonicity of g′′1(t) we
clearly see that there exists λ1 > 1 such that g′′1(t) > 0 for t ∈ [1, λ1) and
g′′1(t) < 0 for t ∈ (λ1,+∞), hence g′1(t) is strictly increasing in [1, λ1] and
strictly decreasing in [λ1,+∞).

From (2.13) and (2.14) together with the monotonicity of g′1(t) in [1, λ1] and
[λ1,+∞) we know that there exists λ2 > λ1 such that g′1(t) > 0 for t ∈ [1, λ2)
and g′1(t) < 0 for t ∈ (λ2,+∞), hence g1(t) is strictly increasing in [1, λ2] and
strictly decreasing in [λ2,+∞).

From (2.10) and (2.11) together with the monotonicity of g1(t) we clearly
see that there exists λ3 > λ2 such that g1(t) > 0 for t ∈ [1, λ3) and g1(t) < 0 for
t ∈ (λ3,+∞), hence g(t) is strictly increasing in [1, λ3] and strictly decreasing
in [λ3,+∞).

From (2.6) and (2.7) together with the monotonicity of g(t) in [1, λ3] and
[λ3,+∞), we can get that g(t) > 0 for t ∈ [1,+∞), from (2.3) and (2.4) we
get (2.2).

Secondly, we prove that 1
9
H(a, b)+ 8

9
S(a, b) is the best possible upper convex

combination bound of the weighted geometric and harmonic means for the
centroidal mean T(a,b).

For any t > 1 and β ∈ R, we have

T (t, 1)− βH(t, 1)− (1− β)S(t, 1) =
h(t)

3(1 + t)
, (2.26)

where
h(t) = 2(t2 + t + 1)− 6βt− 3(1− β)(1 + t)t

t

1+t . (2.27)

It follows from (2.27) that

h(1) = h′(1) = 0, (2.28)
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h′′(1) =
1

2
(9β − 1). (2.29)

If β > 1
9
, then (2.29) leads to

h′′(1) > 0. (2.30)

From (2.30) and the continuity of h′′(t) we see that there exists δ = δ(β) > 0
such that

h′′(t) > 0, ∀t ∈ [1, 1 + δ). (2.31)

Then (2.28) and (2.31) imply that

h(t) > 0, ∀t ∈ [1, 1 + δ). (2.32)

Therefore, βH(t, 1) + (1 − β)S(t, 1) < T (t, 1) for t ∈ [1, 1 + δ) follows from
(2.26) and (2.32).

Finally, we prove that 1
3
H(a, b) + 2

3
S(a, b) is the best possible lower convex

combination bound of the weighted geometric and harmonic means for the
centroidal mean T(a,b).

In fact, for α < 1
3
, we have

lim
x→+∞

αH(1, x) + (1− α)S(1, x)

T (1, x)
=

3

2
(1− α) > 1. (2.33)

Inequality (2.33) implies that for any α < 1
3
there exists X = X(α) > 1

such that αH(1, x) + (1− α)S(1, x) > T (1, x) for x ∈ (X,+∞).
The authors declaire no conflicts of interest.
ACKNOWLEDGEMENTS. This research is partly supported by the

National Natural Science Foundation of China (11271106).

References

[1] H.J.Seiffert, Problem 887, Nieuw Archief voor Wiskunde, vol. 11, no.
2(1993), pp.176-176.

[2] Y.M.Chu, Y.F.Qiu, M.K.Wang and G.D.Wang, The optimal convex com-
bination bounds of arithmetic and harmonic means for the Seiffert’s
mean, Journal of Inequalities and Applications, Article ID 436457, dio:
10.1155/436457, 2010, 7 pages.

[3] E. Neuman, J. Sandor, Inequalities involving Stolarsky and Gini means,
Math. Pannon., vol. 14, no. 1(2003), pp.29-44.

[4] J. Sandor, On the identric and logarithmic means, Aequationes Math.,
vol.40(1990), pp.261-270.



786 Shaoqin Gao, Lingling Song

[5] J. Sandor, On certain identities for means, Studia Univ. Babes-Bolayi
Math., vol.38(1993), pp.7-14.
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