Optimal Convex Combination Bounds of the weighted geometric and Harmonic Means for the Centroidal Mean

Shaoqin Gao
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China
\section*{Lingling Song}
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

We find the greatest value α and the least value β such that the double inequality $$
\alpha H(a, b)+(1-\alpha) S(a, b)<T(a, b)<\beta H(a, b)+(1-\beta) S(a, b)
$$ holds for all $a, b>0$ with $a \neq b$. Here $S(a, b)$ denotes the weighted geometric mean of a and b with weights $\frac{a}{a+b}$ and $\frac{b}{a+b}, T(a, b)$ and $H(a, b)$ denote the Centroidal and harmonic means of two positive numbers a and b, respectively.

Mathematics Subject Classification: 26D15
Keywords: Optimal convex combination bound, Centroidal mean, harmonic mean, the weighted geometric mean.

1 Introduction

For $a, b>0$ with $a \neq b$ the weighted geometric mean $S(a, b)$ with weights $\frac{a}{a+b}$ and $\frac{b}{a+b}$ was introduced as follow:

$$
S(a, b)=a^{\frac{a}{a+b}} b^{\frac{b}{a+b}} .
$$

This mean is a special case of Gini's mean[3]. For more properties of the mean S see, e.g., [4] and [5]. Recently, the inequalities for means have been the subject of intensive research [1-6] and related references therein.

Let $T(a, b)=2\left(a^{2}+a b+b^{2}\right) / 3(a+b)$ and $H(a, b)=2 a b /(a+b)$, be the centroidal and harmonicmeans of two positive real numbers a and b with $a \neq b$.

Let $M_{r}(a, b)=\left(\frac{a^{r}+b^{r}}{2}\right)^{\frac{1}{r}}$ denote the power mean of order $r \neq 0$ of a and b. In [6] E.Neuman and J.Sandor found the sharp bounds for the weighted geometric mean as follow:

$$
M_{2}(a, b)<S(a, b)<\sqrt{2} M_{2}(a, b)
$$

In [2], the authors found the greatest value α and the least value β such that the double inequality

$$
\alpha A(a, b)+(1-\alpha) H(a, b)<P(a, b)<\beta A(a, b)+(1-\beta) H(a, b)
$$

holds for all $a, b>0$ with $a \neq b$, where $P(a, b)=\frac{a-b}{4 \arctan (\sqrt{a / b})-\pi}$.
The purpose of the present paper is to find the greatest value α and the least value β such that the double inequality

$$
\alpha H(a, b)+(1-\alpha) S(a, b)<T(a, b)<\beta H(a, b)+(1-\beta) S(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.

2 Main Results

Theorem 2.1 The double inequality

$$
\alpha H(a, b)+(1-\alpha) S(a, b)<T(a, b)<\beta H(a, b)+(1-\beta) S(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha \geq \frac{1}{3}$ and $\beta \leq \frac{1}{9}$.
Proof. Firstly, we prove that

$$
\begin{align*}
& T(a, b)<\frac{1}{9} H(a, b)+\frac{8}{9} S(a, b), \tag{2.1}\\
& T(a, b)>\frac{1}{3} H(a, b)+\frac{2}{3} S(a, b), \tag{2.2}
\end{align*}
$$

for all $a, b>0$ with $a \neq b$.
Without loss of generality, we assume $a>b$. Let $t=a / b>1$ and $p \in$ $\left\{\frac{1}{9}, \frac{1}{3}\right\}$. Then we have

$$
\begin{align*}
& \frac{1}{b}[T(a, b)-p H(a, b)-(1-p) S(a, b)] \\
= & \frac{2}{3} \frac{t^{2}+t+1}{t+1}-\frac{2 p t}{1+t}-(1-p) t^{\frac{t}{1+t}} . \tag{2.3}
\end{align*}
$$

Let

$$
\begin{gather*}
f(t)=\frac{\frac{2}{3} \frac{t^{2}+t+1}{t+1}-\frac{2 p t}{1+t}}{(1-p) t^{\frac{t}{1+t}}} \tag{2.4}\\
g(t)=\ln f(t)=\ln \left(\frac{2}{3} \frac{t^{2}+t+1}{t+1}-\frac{2 p t}{1+t}\right)-\ln (1-p)-\frac{t}{1+t} \ln t \tag{2.5}
\end{gather*}
$$

Simple computations lead to

$$
\begin{gather*}
\lim _{t \rightarrow 1^{+}} g(t)=0 \tag{2.6}\\
\lim _{t \rightarrow+\infty} g(t)=\ln \frac{2}{3(1-p)}, \tag{2.7}\\
g^{\prime}(t)=\frac{g_{1}(t)}{(1+t)^{2}\left[\frac{2}{3}\left(t^{2}+t+1\right)-2 p t\right]}, \tag{2.8}
\end{gather*}
$$

where

$$
\begin{align*}
g_{1}(t) & =\left[\frac{2}{3}(2 t+1)-2 p\right](1+t)^{2}-2(1+t)\left[\frac{2}{3}\left(t^{2}+t+1\right)-2 p t\right] \\
& -\left[\frac{2}{3}\left(t^{2}+t+1\right)-2 p t\right] \ln t . \tag{2.9}
\end{align*}
$$

$$
\begin{equation*}
g_{1}^{\prime \prime}(t)=4 p-\frac{2}{3}+\frac{2}{3 t^{2}}-\frac{4}{3} \ln t-\frac{2}{3 t}+\frac{2 p}{t}, \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} g_{1}^{\prime \prime}(t)=6 p-\frac{2}{3} \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} g_{1}^{\prime \prime}(t)=-\infty \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
g_{1}^{(3)}(t)=\frac{2}{3 t^{3}} g_{2}(t) \tag{2.17}
\end{equation*}
$$

where

$$
\begin{gather*}
g_{2}(t)=-2 t^{2}+t-3 p t-2, \tag{2.19}\\
\lim _{t \rightarrow 1^{+}} g_{2}(t)=-3-3 p, \tag{2.20}
\end{gather*}
$$

$$
\begin{gather*}
g_{2}^{\prime}(t)=-4 t+1-3 p, \tag{2.21}\\
\lim _{t \rightarrow 1^{+}} g_{2}^{\prime}(t)=-3-3 p, \tag{2.22}\\
g_{2}^{\prime \prime}(t)=-4 . \tag{2.23}
\end{gather*}
$$

From (2.23) and (2.22) we know $g_{2}^{\prime}(t)<0$ for $t>1$, hence $g_{2}(t)$ is strictly decreasing in $[1,+\infty)$. It follows from (2.20) and (2.18) we get that $g_{1}^{(3)}(t)<0$ for $t>1$, hence $g_{1}^{\prime \prime}(t)$ is strictly decreasing in $[1,+\infty)$.

Now we divide the proof into two cases:
Case 1 If $p=\frac{1}{9}$.
(2.16) leads to $g_{1}^{\prime \prime}(t)<0$ for $t>1$, hence $g_{1}^{\prime}(t)$ is strictly decreasing in $[1,+\infty)$. From (2.6), (2.8), (2.10), (2.12), (2.13) and $\frac{2}{3}\left(t^{2}+t+1\right)-2 p t>0$ for $p=\frac{1}{9}$, we can get $g(t)<0$ for $t>1$. Then inequality (2.1) follows from (2.3)-(2.5).

Case 2 If $p=\frac{1}{3}$.
Then from (2.16) and (2.17) together with the monotonicity of $g_{1}^{\prime \prime}(t)$ we clearly see that there exists $\lambda_{1}>1$ such that $g_{1}^{\prime \prime}(t)>0$ for $t \in\left[1, \lambda_{1}\right)$ and $g_{1}^{\prime \prime}(t)<0$ for $t \in\left(\lambda_{1},+\infty\right)$, hence $g_{1}^{\prime}(t)$ is strictly increasing in $\left[1, \lambda_{1}\right]$ and strictly decreasing in $\left[\lambda_{1},+\infty\right)$.

From (2.13) and (2.14) together with the monotonicity of $g_{1}^{\prime}(t)$ in $\left[1, \lambda_{1}\right]$ and $\left[\lambda_{1},+\infty\right)$ we know that there exists $\lambda_{2}>\lambda_{1}$ such that $g_{1}^{\prime}(t)>0$ for $t \in\left[1, \lambda_{2}\right)$ and $g_{1}^{\prime}(t)<0$ for $t \in\left(\lambda_{2},+\infty\right)$, hence $g_{1}(t)$ is strictly increasing in $\left[1, \lambda_{2}\right]$ and strictly decreasing in $\left[\lambda_{2},+\infty\right)$.

From (2.10) and (2.11) together with the monotonicity of $g_{1}(t)$ we clearly see that there exists $\lambda_{3}>\lambda_{2}$ such that $g_{1}(t)>0$ for $t \in\left[1, \lambda_{3}\right)$ and $g_{1}(t)<0$ for $t \in\left(\lambda_{3},+\infty\right)$, hence $g(t)$ is strictly increasing in $\left[1, \lambda_{3}\right]$ and strictly decreasing in $\left[\lambda_{3},+\infty\right)$.

From (2.6) and (2.7) together with the monotonicity of $g(t)$ in $\left[1, \lambda_{3}\right]$ and $\left[\lambda_{3},+\infty\right)$, we can get that $g(t)>0$ for $t \in[1,+\infty)$, from (2.3) and (2.4) we get (2.2).

Secondly, we prove that $\frac{1}{9} H(a, b)+\frac{8}{9} S(a, b)$ is the best possible upper convex combination bound of the weighted geometric and harmonic means for the centroidal mean $\mathrm{T}(\mathrm{a}, \mathrm{b})$.

For any $t>1$ and $\beta \in R$, we have

$$
\begin{equation*}
T(t, 1)-\beta H(t, 1)-(1-\beta) S(t, 1)=\frac{h(t)}{3(1+t)} \tag{2.26}
\end{equation*}
$$

where

$$
\begin{equation*}
h(t)=2\left(t^{2}+t+1\right)-6 \beta t-3(1-\beta)(1+t) t^{\frac{t}{1+t}} . \tag{2.27}
\end{equation*}
$$

It follows from (2.27) that

$$
\begin{equation*}
h(1)=h^{\prime}(1)=0, \tag{2.28}
\end{equation*}
$$

$$
\begin{equation*}
h^{\prime \prime}(1)=\frac{1}{2}(9 \beta-1) . \tag{2.29}
\end{equation*}
$$

If $\beta>\frac{1}{9}$, then (2.29) leads to

$$
\begin{equation*}
h^{\prime \prime}(1)>0 . \tag{2.30}
\end{equation*}
$$

From (2.30) and the continuity of $h^{\prime \prime}(t)$ we see that there exists $\delta=\delta(\beta)>0$ such that

$$
\begin{equation*}
h^{\prime \prime}(t)>0, \quad \forall t \in[1,1+\delta) . \tag{2.31}
\end{equation*}
$$

Then (2.28) and (2.31) imply that

$$
\begin{equation*}
h(t)>0, \quad \forall t \in[1,1+\delta) . \tag{2.32}
\end{equation*}
$$

Therefore, $\beta H(t, 1)+(1-\beta) S(t, 1)<T(t, 1)$ for $t \in[1,1+\delta)$ follows from (2.26) and (2.32).

Finally, we prove that $\frac{1}{3} H(a, b)+\frac{2}{3} S(a, b)$ is the best possible lower convex combination bound of the weighted geometric and harmonic means for the centroidal mean $\mathrm{T}(\mathrm{a}, \mathrm{b})$.

In fact, for $\alpha<\frac{1}{3}$, we have

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{\alpha H(1, x)+(1-\alpha) S(1, x)}{T(1, x)}=\frac{3}{2}(1-\alpha)>1 . \tag{2.33}
\end{equation*}
$$

Inequality (2.33) implies that for any $\alpha<\frac{1}{3}$ there exists $X=X(\alpha)>1$ such that $\alpha H(1, x)+(1-\alpha) S(1, x)>T(1, x)$ for $x \in(X,+\infty)$.

The authors declaire no conflicts of interest.
ACKNOWLEDGEMENTS. This research is partly supported by the National Natural Science Foundation of China (11271106).

References

[1] H.J.Seiffert, Problem 887, Nieuw Archief voor Wiskunde, vol. 11, no. 2(1993), pp.176-176.
[2] Y.M.Chu, Y.F.Qiu, M.K.Wang and G.D.Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert's mean, Journal of Inequalities and Applications, Article ID 436457, dio: 10.1155/436457, 2010, 7 pages.
[3] E. Neuman, J. Sandor, Inequalities involving Stolarsky and Gini means, Math. Pannon., vol. 14, no. 1(2003), pp.29-44.
[4] J. Sandor, On the identric and logarithmic means, Aequationes Math., vol.40(1990), pp.261-270.
[5] J. Sandor, On certain identities for means, Studia Univ. Babes-Bolayi Math., vol.38(1993), pp.7-14.
[6] E.Neuman and J.Sändor, Companion inequalities for certain bivariate means, Appl. Anal. Discrete Math., vol.3(2009), pp.46-51.

Received: August, 2014

