Mathematica Aeterna, Vol. 7, 2017, no. 2, 89-94

Optimal Convex Combination Bounds for The Square Root Mean

Meng Xiangju
College of Mathematics and Information Science, Baoding College, Baoding 071000, China
GAO Hongya
College of Mathematics and Information Science, Hebei University, Baoding 071002, China

Abstract

The optimal value of parameters α and β are obtained to make the following double inequality holds for all $a, b>0$ with $a \neq b$, $$
\alpha A(a, b)+(1-a) C(a, b)<Q(a, b)<\beta A(a, b)+(1-\beta) C(a, b)
$$ where $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{C}(\mathrm{a}, \mathrm{b})$ and $\mathrm{Q}(\mathrm{a}, \mathrm{b})$ denote arithmetic mean, the ontraharmonic mean, the square root mean of two different positive numbers a and b respectively.

Mathematics Subject Classification: xxxxx

Keywords: The arithmetic mean, The contraharmonic mean, The square root mean.

1 Introduction

For $p \in R$, the power mean of order p of two positive numbers a and b is defined by When $p \neq 0$,

$$
M_{p}(a, b)=\left(\left(a^{p}+b^{p}\right) / 2\right)^{1 / p},
$$

when $p=0$,

$$
M_{p}(a, b)=\sqrt{a b} .
$$

Recently, the power mean has been the subject of intensive research. In particular, many remarkable inequalities for $M_{p}(a, b)$ can be found in literatures [1-12]. It is well known that $M_{p}(a, b)$ is continuous and increasingly with respect to $p \in R$. For fixed a and b.If we denote $H(a, b)=2 a b /(a+b), G(a, b)=$
$\sqrt{a b}, L(a, b)=(b-a) /(\log b-\log a), P(a, b)=(a-b) /[4 \arctan \sqrt{a / b}-\pi], I(a, b)=$ $1 / e\left(b^{b} / a^{a}\right)^{1 /(b-a)}, A(a, b)=(a+b) / 2, T(a, b)=(a-b) /[2 \arcsin (a-b) /(a+$ $b)], Q(a, b)=\sqrt{\left(a^{2}+b^{2}\right) / 2}, C(a, b)=\left(a^{2}+b^{2}\right) /(a+b)$,

Then

$$
\begin{aligned}
& \min \{a, b\}<H(a, b)<G(a, b)<L(a, b)<P(a, b) \\
< & I(a, b)<A(a, b)<T(a, b)<Q(a, b)<C(a, b)<\max \{a, b\}
\end{aligned}
$$

In [13], Alzer and Janous established the following sharp double inequality (see also [14]):

$$
M_{l o g 2 / \log 3}(a, b) \leq \frac{2}{3} A(a, b)+\frac{1}{3} G(a, b) \leq M_{2 / 3}(a, b)
$$

for all $a, b>0$.
In [15], Mao proved

$$
M_{1 / 3}(a, b) \leq \frac{1}{3} A(a, b)+\frac{2}{3} G(a, b) \leq M_{1 / 2}(a, b)
$$

for all $a, b>0$ and $M_{1 / 3}(a, b)$ is the best possible lower power mean bound for the sum $(1 / 3) A(a, b)+2 / 3 G(a, b)$.

2 Monotonicity Theorem

Theorem 2.1 The double inequality

$$
\alpha A(a, b)+(1-\alpha) C(a, b)<Q(a, b)<\beta A(a, b)+(1-\beta) C(a, b)
$$

holds for all $a, b>0$ if and only if $\alpha \geq 2-\sqrt{2}$ and $\beta \leq 1 / 2$.
Proof Firstly, we prove that

$$
\begin{gather*}
Q(a, b)<1 / 2 A(a, b)+1 / 2 C(a, b) \tag{1}\\
Q(a, b)>(2-\sqrt{2}) A(a, b)+(\sqrt{2}-1) C(a, b) \tag{2}
\end{gather*}
$$

for all $a, b>0$ with $a \neq b$. Without loss of generality, we assume $a>b$. Let $t=a / b>1$ and $P \in\{1 / 2,2-\sqrt{2}\}$. Then

$$
\begin{align*}
& Q(a, b)-[p A(a, b)-(1-p) C(a, b)] \\
= & Q(t, 1)-[p A(t, 1)-(1-p) C(t, 1)] \\
= & \sqrt{\left(t^{2}+1\right) / 2-\left[p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)\right] / 2(t+1)} \\
= & {\left[\frac{\sqrt{2\left(t^{2}+1\right)(t+1)}}{p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)}-1\right]\left[p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)\right] / 2(t+1) } \tag{3}
\end{align*}
$$

Let

$$
\begin{equation*}
f(t)=\frac{\sqrt{2\left(t^{2}+1\right)}(t+1)}{p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)}-1 \tag{4}
\end{equation*}
$$

Then simple computations lead to

$$
\begin{gather*}
\lim _{t \rightarrow 1} f(t)=0 \\
\lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty}\left[\frac{\sqrt{2\left(t^{2}+1\right)}(t+1)}{p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)}-1\right]=\frac{\sqrt{2}}{2-p}-1 \tag{5}\\
f^{\prime}(t)=\left[\frac{\sqrt{2\left(t^{2}+1\right)}(t+1)}{p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)}-1\right]^{\prime}=\frac{g(t)}{\sqrt{2\left(t^{2}+1\right)}\left[p(t+1)^{2}+2(1-p)\left(t^{2}+1\right)\right]^{2}} \tag{6}
\end{gather*}
$$

where

$$
\begin{equation*}
g(t)=(6 p-4) t^{3}+(4-2 p) t^{2}+(2 p-4) t+4-6 p \tag{7}
\end{equation*}
$$

Now we distinguishes with two cases.
Case 1 If $p=1 / 2$, then it follows from (7) that

$$
\begin{equation*}
g(t)=-t^{3}+3 t^{2}-3 t+1=-(t-1)^{3} \tag{8}
\end{equation*}
$$

for all $t>1$.
Therefore, inequality (1) follows from (3)-(5) and (6) together with (8).
Case 2 If $p=2-\sqrt{2}$, then from (7) we have

$$
\begin{gather*}
g(1)=0, \lim _{t \rightarrow \infty} g(t)=-\infty \tag{9}\\
g^{\prime}(t)=3(6 p-4) t^{2}+2(4-29) t+2 p-4=(18 p-12) t^{2}+(8-4 p) t+2 p-4 \tag{10}\\
g^{\prime}(1)=16 p-8>0, \lim _{t \rightarrow \infty} g^{\prime}(t)=-\infty \tag{11}\\
g^{\prime \prime}(t)=2(18 p-12) t^{2}+(8-4 p)=(36 p-24) t+8-4 p \tag{12}\\
g^{\prime \prime}(1)=32 p-16>0, \lim _{t \rightarrow \infty} g^{\prime \prime}(t)=-\infty \tag{13}\\
g^{\prime \prime \prime}(t)=36 p-24<0 \tag{14}
\end{gather*}
$$

From (14) we clearly see that $g^{\prime \prime}(t)$ is strictly decreasing for $t>1$, which with (13) implies that there exists a constant $\lambda_{1} \in(1,+\infty)$ such that $g^{\prime \prime}(t)>0$ for and for $t \in\left(1, \lambda_{1}\right)$ and $g^{\prime \prime}(t)<0$ for $t \in\left(1, \lambda_{1}\right)$. This implies that $g^{\prime}(t)$ is strictly increasing for $t \in\left(1, \lambda_{1}\right)$ and strictly decreasing for $t \in\left(\lambda_{1},+\infty\right)$.

From (12) implies that there exists a constant $\lambda_{2} \in(1,+\infty)$ such that $g^{\prime}(t)>0$ for $t \in\left(1, \lambda_{2}\right)$ and $g^{\prime}(t)<0$ for $t \in\left(\lambda_{2},+\infty\right)$. This implies that $\mathrm{g}(\mathrm{t})$ is strictly increasing for $t \in\left(1, \lambda_{2}\right)$ and strictly decreasing for $t \in\left(\lambda_{2},+\infty\right)$.

From (9) implies that there exists a constan $\lambda_{3} \in(1,+\infty)$ such that $f^{\prime}(t)>$ 0 for $t \in\left(1, \lambda_{3}\right)$ and $f^{\prime}(t)<0$ for $t \in\left(\lambda_{3},+\infty\right)$. This implies that $f(t)$ is strictly increasing for $t \in\left(1, \lambda_{3}\right)$ and strictly decreasing for $t \in\left(\lambda_{3},+\infty\right)$.

Note that (5) becomes

$$
\lim _{t \rightarrow \infty} f(t)=\frac{\sqrt{2}}{2-p}-1=0
$$

Thus $f(t)>0$ for all $t>1$ and (2) follows.
Secondly, we prove that $1 / 2 A(a, b)+1 / 2 C(a, b)$ is the best possible upper convex combination bound of arithmetic and contraharmonic means for the square root $Q(a, b)$.

If $\beta>1 / 2$, the (13) lead to

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} g^{\prime \prime}(t)=32 p-16>0 \tag{15}
\end{equation*}
$$

From (15) and the continuity of $g^{\prime \prime}(t)$ we see that there exists $\delta=\delta(\beta)>0$ such that

$$
g^{\prime \prime}(t)>0
$$

for $t \in(1,1+\delta)$. (4)-(12) imply that

$$
f(t)>0 .
$$

Therefore, by (3) $Q(t, 1)>\beta A(t, 1)+(1-\beta) C(t, 1)$ for $t \in(1,1+\beta)$.
Finally, we prove that $(2-\sqrt{2}) A(a, b)+(\sqrt{2}-1) C(a, b)$ is the best possible lower convex combination bound of arithmetic and contraharmonic means for the square root $\mathrm{Q}(\mathrm{a}, \mathrm{b})$.

If $\alpha<2-\sqrt{2}$, then from (3) one has

$$
\lim _{t \rightarrow+\infty} \frac{\alpha A(t, 1)+(1-\alpha) C(t, 1)}{Q(t, 1)}=\sqrt{2}-\frac{\sqrt{2}}{2} \alpha>1
$$

Inequality (15) implies there exists $X=X(\alpha)>1$ such that $\alpha A(t, 1)+$ $(1-\alpha) C(t, 1)>Q(t, 1)$ for $t \in(X,+\infty)$.

References

[1] B.Y.Long, Y.M.Chu, Optimal power mean bounds for the weighted geometric mean of classical means in Journal of Inequalities and Applications, vol.2010, Article ID 905679, 6 pages, 2010.
[2] W.F.Xia, Y.M.Chu and G.D.Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstract and Applied Analysis, vol.2010,Article ID604804, 9 pages, 2010.
[3] Y.M.Chu and W.F.Xia, Two sharp inequalities for power mean, geometric mean and harmonic mean,Journal of Inequalities and Applications, vol.2009, Article ID 741923, 6 pages, 2009.
[4] S.H.Wu, Generalization and sharpness of the power means inequality and applications, Journal of Mathematical Analysis and Applications, vol.312, no.2, pp.637-652,2005.
[5] K.C.Richards, Sharp power mean bounds for the Gaussian hypergeometric function, Journal of Mathematical Analysis and Applications, vol.308,no. 1,pp. 303-313,2005.
[6] W.L.Wang,J.J.Wen,and H.N.Shi, Optimal inequalities involving power means, Acta Mathematica Sinica,vol.47,no.6,pp.1053-1062,2004.(Chiese)
[7] P.A.Hasto, Optimal inequalities between Seiffert's mean and power mean, Mathematical Inequalities and Applications, Vol.7, no.1, pp. 47-53, 2004.
[8] C.D.Tarnavas and D.D.Tarnavas, An inequality for mixed power means, Mathematical Inequality and Applications,vol.2,no.2,pp.175-181,1999.
[9] J.Bukor.J.Toth and L Zsilinszky, The logarithinic mean and the power mean of positive numbers, Octogon Mathematical Magazine,vol.2,no.1,pp.19-24,1994.
[10] J.E.Pecaric, Generalization of the power means and their inequalities, Journal of Mathematical An Applications,vol.161,no.2,pp.395-404,1991.
[11] J.Chen and B.Hu, The identric mean and the power mean inequalities of Ky Fan type, Facta Universitatis,no.4,pp.15-18,1989.
[12] C.O.lmoru, The power mean and the logarithmic mean, International Journal of Mathematics and Mathematical Sciences,vol.5,no.2,pp.337343,1982.
[13] H.Alzer and W.Janous, Solution of problem 8, Crux Mathematicorum, vol. 13,pp. 173-178,1987.
[14] P.S.Bullen,D.S.Mritrinovic,and P.M.vasic,Means and Their Inequalities,ol. 31 of Mathematics and Its Applications(East European eries),DReidel,Dordrecht,The netherlands, pp.459,1998.
[15] Q.J.Mao, Power mean,logarithmic mean and Heronian dual mean of two positive positive number, Journalof Suzhou College of Education, vol.16,no. 1-2,pp.82-85,1999(Chinese).

Received: March 03, 2017

