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Abstract

The optimal value of parameters α and β are obtained to make the
following double inequality holds for all a, b > 0 with a 6= b ,

αA(a, b) + (1− a)C(a, b) < Q(a, b) < βA(a, b) + (1− β)C(a, b)

where A(a,b), C(a,b) and Q(a,b) denote arithmetic mean,the ontrahar-
monic mean,the square root mean of two different positive numbers a
and b respectively.
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1 Introduction

For p ∈ R,the power mean of order p of two positive numbers a and b is defined
by When p 6= 0,

Mp(a, b) = ((ap + bp)/2)1/p,

when p = 0,
Mp(a, b) =

√
ab.

Recently, the power mean has been the subject of intensive research. In
particular, many remarkable inequalities for Mp(a, b) can be found in litera-
tures [1-12]. It is well known that Mp(a, b) is continuous and increasingly with
respect to p ∈ R . For fixed a and b.If we denote H(a, b) = 2ab/(a+b),G(a, b) =
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√
ab,L(a, b) = (b−a)/(logb−loga),P (a, b) = (a−b)/[4arctan

√
a/b−π],I(a, b) =

1/e(bb/aa)1/(b−a), A(a, b) = (a + b)/2,T (a, b) = (a − b)/[2arcsin(a − b)/(a +

b)],Q(a, b) =
√

(a2 + b2)/2,C(a, b) = (a2 + b2)/(a+ b),
Then

min{a, b} < H(a, b) < G(a, b) < L(a, b) < P (a, b)
< I(a, b) < A(a, b) < T (a, b) < Q(a, b) < C(a, b) < max{a, b}

In [13], Alzer and Janous established the following sharp double inequality
(see also [14]):

Mlog2/log3(a, b) ≤
2

3
A(a, b) +

1

3
G(a, b) ≤M2/3(a, b)

for all a, b > 0.
In [15], Mao proved

M1/3(a, b) ≤
1

3
A(a, b) +

2

3
G(a, b) ≤M1/2(a, b)

for all a, b > 0 and M1/3(a, b) is the best possible lower power mean bound
for the sum (1/3)A(a, b) + 2/3G(a, b) .

2 Monotonicity Theorem

Theorem 2.1 The double inequality

αA(a, b) + (1− α)C(a, b) < Q(a, b) < βA(a, b) + (1− β)C(a, b)

holds for all a, b > 0 if and only if α ≥ 2−
√

2 and β ≤ 1/2 .

Proof Firstly, we prove that

Q(a, b) < 1/2A(a, b) + 1/2C(a, b) (1)

Q(a, b) > (2−
√

2)A(a, b) + (
√

2− 1)C(a, b) (2)

for all a, b > 0 with a 6= b. Without loss of generality, we assume a > b .
Let t = a/b > 1 and P ∈ {1/2, 2−

√
2} . Then

Q(a, b)− [pA(a, b)− (1− p)C(a, b)]
= Q(t, 1)− [pA(t, 1)− (1− p)C(t, 1)]

=
√

(t2 + 1)/2− [p(t+ 1)2 + 2(1− p)(t2 + 1)]/2(t+ 1)

= [

√
2(t2 + 1)(t+ 1)

p(t+ 1)2 + 2(1− p)(t2 + 1)
− 1][p(t+ 1)2 + 2(1− p)(t2 + 1)]/2(t+ 1)

(3)
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Let

f(t) =

√
2(t2 + 1)(t+ 1)

p(t+ 1)2 + 2(1− p)(t2 + 1)
− 1 (4)

Then simple computations lead to

lim
t→1

f(t) = 0

lim
t→∞

f(t) = lim
t→∞

[

√
2(t2 + 1)(t+ 1)

p(t+ 1)2 + 2(1− p)(t2 + 1)
− 1] =

√
2

2− p
− 1 (5)

f ′(t) = [

√
2(t2 + 1)(t+ 1)

p(t+ 1)2 + 2(1− p)(t2 + 1)
−1]′ =

g(t)√
2(t2 + 1)[p(t+ 1)2 + 2(1− p)(t2 + 1)]2

(6)
where

g(t) = (6p− 4)t3 + (4− 2p)t2 + (2p− 4)t+ 4− 6p (7)

Now we distinguishes with two cases.
Case 1 If p = 1/2 , then it follows from (7) that

g(t) = −t3 + 3t2 − 3t+ 1 = −(t− 1)3 (8)

for all t > 1 .
Therefore, inequality (1) follows from (3)-(5) and (6) together with (8).
Case 2 If p = 2−

√
2 , then from (7) we have

g(1) = 0, lim
t→∞

g(t) = −∞ (9)

g′(t) = 3(6p−4)t2 +2(4−29)t+2p−4 = (18p−12)t2 +(8−4p)t+2p−4 (10)

g′(1) = 16p− 8 > 0, lim
t→∞

g′(t) = −∞ (11)

g′′(t) = 2(18p− 12)t2 + (8− 4p) = (36p− 24)t+ 8− 4p (12)

g′′(1) = 32p− 16 > 0, lim
t→∞

g′′(t) = −∞ (13)

g′′′(t) = 36p− 24 < 0 (14)

From (14) we clearly see that g′′(t) is strictly decreasing for t > 1 , which
with (13) implies that there exists a constant λ1 ∈ (1,+∞) such that g′′(t) > 0
for and for t ∈ (1, λ1) and g′′(t) < 0 for t ∈ (1, λ1). This implies that g′(t) is
strictly increasing for t ∈ (1, λ1) and strictly decreasing for t ∈ (λ1,+∞) .
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From (12) implies that there exists a constant λ2 ∈ (1,+∞) such that
g′(t) > 0 for t ∈ (1, λ2) and g′(t) < 0 for t ∈ (λ2,+∞) . This implies that g(t)
is strictly increasing for t ∈ (1, λ2) and strictly decreasing for t ∈ (λ2,+∞) .

From (9) implies that there exists a constan λ3 ∈ (1,+∞) such that f ′(t) >
0 for t ∈ (1, λ3) and f ′(t) < 0 for t ∈ (λ3,+∞) . This implies that f(t) is
strictly increasing for t ∈ (1, λ3) and strictly decreasing for t ∈ (λ3,+∞) .

Note that (5) becomes

lim
t→∞

f(t) =

√
2

2− p
− 1 = 0

Thus f(t) > 0 for all t > 1 and (2) follows.
Secondly, we prove that 1/2A(a, b) + 1/2C(a, b) is the best possible upper

convex combination bound of arithmetic and contraharmonic means for the
square root Q(a, b) .

If β > 1/2 , the (13) lead to

lim
t→1+

g′′(t) = 32p− 16 > 0 (15)

From (15) and the continuity of g′′(t) we see that there exists δ = δ(β) > 0
such that

g′′(t) > 0

for t ∈ (1, 1 + δ) . (4)-(12) imply that

f(t) > 0.

Therefore,by (3) Q(t, 1) > βA(t, 1) + (1− β)C(t, 1) for t ∈ (1, 1 + β) .
Finally, we prove that (2−

√
2)A(a, b)+(

√
2−1)C(a, b) is the best possible

lower convex combination bound of arithmetic and contraharmonic means for
the square root Q(a,b) .

If α < 2−
√

2 , then from (3) one has

lim
t→+∞

αA(t, 1) + (1− α)C(t, 1)

Q(t, 1)
=
√

2−
√

2

2
α > 1

Inequality (15) implies there exists X = X(α) > 1 such that αA(t, 1) +
(1− α)C(t, 1) > Q(t, 1) for t ∈ (X,+∞) .
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