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Abstract

In this paper, we present the least value α and the greatest value β

such that the double inequality

αG(a, b) + (1− α)Q(a, b) < M(a, b) < βG(a, b) + (1− β)Q(a, b)

holds for all a, b > 0 with a 6= b, where G(a,b), M(a,b) and Q(a,b) are
respectively the geometric, Neuman-Sándor and quadratic means of a
and b.
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1 Introduction

For a, b > 0 with a 6= b the Neuman-Sándor mean M(a, b)[1] was defined by

M(a, b) =
a− b

2 sinh−1(
a− b

a+ b
)
,

(1.1)

where sinh−1(x) = log(x+
√
1 + x2) is the inverse hyperbolic sine function.
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Recently, the Neuman-Sándor mean has been the subject of intensive re-
search. In particular, many remarkable inequalities for the Neuman-Sándor
mean M(a, b) can be found in the literature [1,2].

Let H(a, b) = (2ab)/(a + b), G(a, b) =
√
ab, L(a, b) = (a − b)/(log a −

log b), P (a, b) = (a − b)/(4 arctan
√

a/b − π), A(a, b) = (a + b)/2, T (a, b) =

(a− b)/[2 arctan(a− b)/(a + b)], Q(a, b) =
√

(a2 + b2)/2, and C(a, b) = (a2 +

b2)/(a + b) be the harmonic, geometric, logarithmic, first Seiffert, arithmetic,
second Seiffert, quadratic, and contra-harmonic mean of a and b, respectively.
Then

min{a, b} < H(a, b) < G(a, b) < L(a, b) < P (a, b) < A(a, b)
< M(a, b) < T (a, b) < Q(a, b) < C(a, b) < max{a, b} (1.2)

hold for all a, b > 0 with a 6= b.
In [3], Neuman proved that the double inequalities

αQ(a, b) + (1− α)A(a, b) < M(a, b) < βQ(a, b) + (1− β)A(a, b) (1.3)

and

λC(a, b) + (1− λ)A(a, b) < M(a, b) < µC(a, b) + (1− µ)A(a, b) (1.4)

hold for all a, b > 0 with a 6= b if and only if α ≤ [1 − log(1 +
√
2)]/[(

√
2 −

1) log(1 +
√
2)] = 0.3249 · · · , β ≥ 1/3, λ ≤ [1 − log(1 +

√
2)]/ log(1 +

√
2) =

0.1345 · · · and µ ≥ 1/6.
In [4], Li etc showed that the double inequality

Lp0(a, b) < M(a, b) < L2(a, b) (1.5)

holds for all a, b > 0 with a 6= b, where Lp(a, b) = [(ap+1 − bp+1)/((p + 1)(a−
b))]1/p(p 6= −1, 0), L0(a, b) = 1/e(aa/bb)1/(a−b) and L−1(a, b) = (a− b)/(log a−
log b) is the p-th generalized logarithmic mean of a and b, and p0 = 1.843 · · ·
is the unique solution of the equation (p+ 1)1/p = 2 log(1 +

√
2).

In[5], Chu etc proved that the double inequalities

α1L(a, b) + (1− α1)Q(a, b) < M(a, b) < β1L(a, b) + (1− β1)Q(a, b) (1.6)

and

α2L(a, b) + (1− α2)C(a, b) < M(a, b) < β2L(a, b) + (1− β2)C(a, b) (1.7)

hold for all a, b > 0 with a 6= b if and only if α1 ≥ 2/5, β1 ≤ 1− 1/[
√
2 log(1 +√

2)] = 0.1977 · · · , α2 ≥ 5/8 and β2 ≤ 1− 1/[2 log(1 +
√
2)] = 0.4327 · · ·.

The main purpose of this paper is to find the least value α and the greatest
value β such that the double inequality

αG(a, b) + (1− α)Q(a, b) < M(a, b) < βG(a, b) + (1− β)Q(a, b)

holds for all a, b > 0 with a 6= b.
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2 Lemmas

In order to establish our main result we need several lemmas, which we present
in this section.

Lemma 2.1 Let f(x) = 1/
√
1 + x2, g(x) = 1/

√
1− x2, h(x) =

√
1− x4,

and k(x) = 1/
√
1− x4. Then the inequalities

1− x2

2
< f(x) < 1− x2

2
+

3

8
x4, (2.1)

g(x) > 1 +
x2

2
, (2.2)

h(x) < 1− x4

2
, (2.3)

and

k(x) > 1 +
x4

2
(2.4)

hold for all x ∈ (0, 1).

Proof. The first inequality in (2.1) is known (see [5, lemma 2.1]). The second
inequality in (2.1) and the inequalities (2.2), (2.3) follow in turn from the
inequalities

(

1− x2

2
+

3

8
x4
)2

− f 2(x) =
x6

64(1 + x2)
[9x2(x2 + 1)

+4(10− 6x2)] > 0,

(2.5)

g2(x)−
(

1 +
x2

2

)2

=
x4

4(1− x2)
(x2 + 3) > 0, (2.6)

and
(

1− x4

2

)2

− h2(x) =
x8

4
> 0 (2.7)

for all x ∈ (0, 1). Making use of (2.2) with x replaced by x2 the inequality
(2.4) is obtained.

Lemma 2.2 (see [5, lemma 2.4]) Let ϕ(x) = x/[
√
1 + x2

(

sinh−1(x)
)2
] −

1/ sinh−1(x). Then the inequality

ϕ(x) < −x
3
+

17

90
x3 (2.8)

holds for all x ∈ (0, 1).
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Lemma 2.3 Let ψ(x) = log(x+
√
1 + x2). Then the double inequality

x− x3

6
< ψ(x) < x (2.9)

holds for all x ∈ (0, 1).

Proof. Let

ψ1(x) = ψ(x)− (x− x3

6
) (2.10)

Then simple computations lead to

lim
x→0+

ψ1(x) = 0, (2.11)

and

ψ′

1(x) =
1√

1 + x2
− (1− x2

2
). (2.12)

Making use of the first inequality in (2.1) for (2.12) cause the conclusion that

ψ′

1(x) >
1√

1 + x2
− 1√

1 + x2
= 0. (2.13)

for x ∈ (0, 1). Therefore, the first inequality in (2.9) follows from (2.10) and
(2.11) together with (2.13).

Let ψ2(x) = x − ψ(x). Then from lim
x→0+

ψ2(x) = 0 and ψ′

2(x) = 1 −
1/
√
1 + x2 > 0 the second inequality in (2.9) is obtained.

Lemma 2.4 Let λ = 1− 1/
[√

2 log(1 +
√
2)
]

= 0.1977 · · · and

F (x) = 4λx16 + 2(37λ− 2)x14 + (41− 36λ)x12 + 2(129λ− 65)x10

+4(46− 125λ)x8 − 2(170λ+ 29)x6 − (120λ+ 161)x4

+16(12− 37λ)x2 + 16(5λ− 4).
(2.14)

Then the inequality
F (x) < 0 (2.15)

holds for all x ∈ (0, 1/2].

Proof. Making use of the transform x2 = 1/t (t ∈ [4,+∞)) for F (x) we
get

F (x) = t−8F1(t), (2.16)

where

F1(t) = 16(5λ− 4)t8 + 16(12− 37λ)t7 − (120λ+ 161)t6

−2(170λ+ 29)t5 + 4(46− 125λ)t4 + 2(129λ− 65)t3

+(41− 36λ)t2 + 2(37λ− 2)t+ 4λ.
(2.17)
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Simple calculations of derivative yield

F ′

1(t) = 2[64(5λ− 4)t7 + 56(12− 37λ)t6 − 3(120λ+ 161)t5

−5(170λ+ 29)t4 + 8(46− 125λ)t3 + 3(129λ− 65)t2

+(41− 36λ)t+ (37λ− 2)],
(2.18)

F ′′

1 (t) = 2[448(5λ− 4)t6 + 336(12− 37λ)t5 − 15(120λ+ 161)t4

−20(170λ+ 29)t3 + 24(46− 125λ)t2 + 6(129λ− 65)t
+(41− 36λ)],

(2.19)

F ′′′

1 (t) = 12[448(5λ− 4)t5 + 280(12− 37λ)t4 − 10(120λ+ 161)t3

−10(170λ+ 29)t2 + 8(46− 125λ)t+ (129λ− 65)],
(2.20)

F
(4)
1 (t) = 24[1120(5λ− 4)t4 + 560(12− 37λ)t3 − 15(120λ

+161)t2 − 10(170λ+ 29)t+ 4(46− 125λ)],
(2.21)

F
(5)
1 (t) = 240[448(5λ− 4)t3 + 168(12− 37λ)t2

−3(120λ+ 161)t− (170λ+ 29)],
(2.22)

F
(6)
1 (t) = 720[448(5λ− 4)t2 + 112(12− 37λ)t− (120λ+ 161)] (2.23)

and

F
(7)
1 (t) = 80640[8(5λ− 4)t+ (12− 37λ)]. (2.24)

Noticing that 0 < λ < 1/5, from (2.17)-(2.24) we have

F1(4) = −4[(1351973λ+ 432000)] < 0, (2.25)

F ′

1(4) = −2[(3888187λ+ 1952910)] < 0, (2.26)

F ′′

1 (4) = −2[(4278668λ+ 3850479)] < 0, (2.27)

F ′′′

1 (4) = −12[(466271λ+ 1081121)] < 0, (2.28)

F
(4)
1 (4) = 96[17855λ− 189104] < 0, (2.29)

F
(5)
1 (4) = 720[14098λ− 28131] < 0, (2.30)

F
(6)
1 (4) = 720[19144λ− 23457] < 0, (2.31)

and

F
(7)
1 (t) < −967680(2t− 1) < 0 (2.32)

for all t ∈ [4,+∞).

From(2.32) we clearly see that F
(6)
1 (t) is strictly decreasing in [4,+∞).

Therefore, the conclusion of lemma 2.4 follows easily from (2.25)-(2.31) and

(2.16) together with the monotonicity of F
(6)
1 (t).
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Lemma 2.5 Let λ = 1− 1/
[√

2 log(1 +
√
2)
]

= 0.1977 · · · and

H(x) = 8λx14 + 12(14λ− 3)x12 + 15(11− 21λ)x10 + (809λ
−403)x8 + (707− 1773λ)x6 + 3(361λ− 271)x4

+4(127− 335λ)x2 + 32(5λ− 4).
(2.33)

Then the inequality
H(x) < 0 (2.34)

holds for all x ∈ (1/2, 1).

Proof. Let x2 = t (t ∈ (1/4, 1)). Then

H(x) = 8λt7 + 12(14λ− 3)t6 + 15(11− 21λ)t5 + (809λ− 403)t4

+(707− 1773λ)t3 + 3(361λ− 271)t2 + 4(127− 335λ)t
+32(5λ− 4)

= H1(t).

(2.35)

Simple calculations of derivative yield

H ′

1(t) = 56λt6 + 72(14λ− 3)t5 + 75(11− 21λ)t4 + 4(809λ− 403)t3

+3(707− 1773λ)t2 + 6(361λ− 271)t+ 4(127− 335λ),
(2.36)

H ′′

1 (t) = 6[56λt5 + 60(14λ− 3)t4 + 50(11− 21λ)t3 + 2(809λ
−403)t2 + (707− 1173λ)t+ (361λ− 271)],

(2.37)

and

H ′′′

1 (t) = 6[280λt4 + 240(14λ− 3)t3 + 150(11− 21λ)t2

+4(809λ− 403)t+ (707− 1173λ)].
(2.38)

Whereafter, making use of the transform t = 1/u (u ∈ (1, 4)) for H ′′′

1 (t) one
has

H ′′′

1 (t) = 6u−4H2(u), (2.39)

where

H2(u) = (707− 1173λ)u4 + 4(809λ− 403)u3 + 150(11
−21λ)u2 + 240(14λ− 3)u+ 280λ.

(2.40)

Again calculations of derivative result in

H ′

2(u) = 4[(707− 1173λ)u3 + 3(809λ− 403)u2

+75(11− 21λ)u+ 60(14λ− 3)],
(2.41)

H ′′

2 (u) = 12[(707− 1173λ)u2 + 2(809λ− 403)u+ 25(11− 21λ)], (2.42)

and
H ′′′

2 (u) = 24[(707− 1173λ)u+ (809λ− 403)]. (2.43)



Optimal Bounds for Neuman-Sándor mean 89

Noticing that 49/250 < λ < 1/5, from (2.35)− (2.37) and (2.40)− (2.43) one
has

lim
t→ 1

4

+
H1(t) = − 45

2048
(6013λ+ 1920) < 0, lim

t→1−
H1(t) = −1200λ < 0, (2.44)

lim
t→ 1

4

+
H ′

1(t) =
1

512
(108486− 555791λ) < 0,

lim
t→1−

H ′

1(t) = −1768λ < 0,
(2.45)

lim
t→ 1

4

+
H ′′

1 (t) =
3

64
(743λ− 17502) < 0, lim

t→1−
H ′′

1 (t) = 312λ > 0, (2.46)

lim
u→1+

H2(u) = 1953λ+ 25 > 0, (2.47)

lim
u→1+

H ′

2(u) = 4(143− 81λ) > 0, (2.48)

lim
u→1+

H ′′

2 (u) = 96(22− 85λ) > 0, (2.49)

and

H ′′′

2 (u) > 24[351u− 247] > 0 (2.50)

for all u ∈ (1, 4).
From (2.50) we clearly see that H ′′

2 (u) is strictly increasing in (1, 4). Thus
H2(u) > 0 for u ∈ (1, 4) follows from (2.47)-(2.49) and the monotonicity of
H ′′

2 (u). From (2.39) and H2(u) > 0 we know that H ′′′

1 (t) > 0 for t ∈ (1/4, 1),
hence H ′′

1 (t) is strictly increasing in (1/4, 1). It follows from (2.46) together
with the monotonicity ofH ′′

1 (t) that there exists t0 ∈ (1/4, 1) such thatH ′′

1 (t) <
0 for t ∈ (1/4, t0) and H

′′

1 (t) > 0 for t ∈ (t0, 1), thus H
′

1(t) is strictly decreasing
in (1/4, t0) and strictly increasing in [t0, 1). From (2.45) and the monotonicity
of H ′

1(t) we affirm H ′

1(t) < 0 for t ∈ (1/4, 1), so that H1(t) is strictly decreasing
in (1/4, 1). Therefore, the inequality H(x) < 0 follows from (2.44) and (2.35)
together with the monotonicity of H1(t).

3 Main Results

Theorem 3.1 The double inequality

αG(a, b) + (1− α)Q(a, b) < M(a, b) < βG(a, b) + (1− β)Q(a, b) (1)

holds for all a, b > 0 with a 6= b if and only if α ≥ 1/3 and β ≤ 1 −
1/
[√

2 log(1 +
√
2)
]

= 0.1977 · · ·.
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Proof. Without loss of generality, we assume that a > b > 0. Let x =
(a− b)/(a + b) ∈ (0, 1) and λ = 1− 1/

[√
2 log(1 +

√
2)
]

= 0.1977 · · ·. Then

G(a, b)

A(a, b)
=

√
1− x2,

M(a, b)

A(a, b)
=

x

sinh−1(x)
,
Q(a, b)

A(a, b)
=

√
1 + x2. (3.1)

Firstly, we prove that

1

3
G(a, b) +

2

3
Q(a, b) < M(a, b). (3.2)

Equations (3.1) lead to

G(a, b)

3A(a, b)
+

2Q(a, b)

3A(a, b)
− M(a, b)

A(a, b)

=
1

3

√
1− x2 +

2

3

√
1 + x2 − x

sinh−1(x)
= d(x)

(3.3)

Simple computations yield

lim
x→0+

d(x) = 0, (3.4)

and

d′(x) = − x

3
√
1− x2

+
2x

3
√
1 + x2

− 1

sinh−1(x)

+
x

√
1 + x2

[

sinh−1(x)
]2

=
2

3
xf(x)− 1

3
xg(x) + ϕ(x),

(3.5)

where f(x), g(x) and ϕ(x) are defined as in Lemma 2.1 and Lemma 2.2, re-
spectively.

From (3.5), lemma 2.1 and lemma 2.2 one has

d′(x) <
2

3
x(1− x2

2
+

3

8
x4)− 1

3
x(1 +

x2

2
) + (−x

3
+

17

90
x3)

= −x
3

2
(1− x2

60
)

< 0

(3.6)

for all x ∈ (0, 1). Therefore, inequality (3.2) follows from (3.3) and (3.4)
together with (3.6).

Secondly, we prove that

λG(a, b) + (1− λ)Q(a, b) > M(a, b). (3.7)
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Equations (3.1) lead to

λG(a, b)

A(a, b)
+

(1− λ)Q(a, b)

A(a, b)
− M(a, b)

A(a, b)

= λ
√
1− x2 + (1− λ)

√
1 + x2 − x

log(x+
√
1 + x2)

=
D(x)

log(x+
√
1 + x2)

,

(3.8)

where

D(x) =
[

λ
√
1− x2 + (1− λ)

√
1 + x2

]

log(x+
√
1 + x2)− x. (3.9)

Some tedious, but not difficult, calculations lead to

lim
x→0+

D(x) = 0, lim
x→1−

D(x) = 0, (3.10)

D′(x) = x

(

1− λ√
1 + x2

− λ√
1− x2

)

log(x+
√
1 + x2)

+
λ(1− x2)√

1− x4
− λ,

(3.11)

lim
x→0+

D′(x) = 0, lim
x→1−

D′(x) = −∞, (3.12)

D′′(x) =

[

1− λ

(1 + x2)3/2
− λ

(1− x2)3/2

]

log(x+
√
1 + x2)

− λx(3 + x2)

(1 + x2)
√
1− x4

+
(1− λ)x

1 + x2
,

(3.13)

lim
x→0+

D′′(x) = 0, lim
x→1−

D′′(x) = −∞, (3.14)

D′′(
1

3
) =

27

2

(

1− λ

5
√
10

− λ

8
√
2

)

log(

√
10 + 1

3
) +

3

10
− 3λ

10
− 21λ

10
√
5

>
27

2









1− 1

5
5
√
10

−
1

5
8
√
2









log(

√
10 + 1

3
) +

3

10
− 3

50
− 21

50
√
5

= 0.1976 · · · > 0,

(3.15)

D′′′(x) = −3x

[

1− λ

(1 + x2)5/2
− λ

(1− x2)5/2

]

log(x+
√
1 + x2)

−λ(x
6 + 8x4 − x2 + 4)

(1 + x2)(1− x4)3/2
+

(1− λ)(2− x2)

(1 + x2)2
,

(3.16)
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and

D(4)(x) = 3

[

(1− λ)(4x2 − 1)

(1 + x2)7/2
− λ(4x2 + 1)

(1− x2)7/2

]

log(x+
√
1 + x2)

−λx(2x
8 + 33x6 − 7x4 + 75x2 − 7)

(1 + x2)(1− x4)5/2

+
(1− λ)x(2x2 − 13)

(1 + x2)3
.

(3.17)

In order to discuss D(4)(x) is positive or negative, we divide the range of
variable x into two intervals (0,1/2] and (1/2,1).

For x ∈ (0, 1/2], (3.17) is rewritten into

D(4)(x) = 3

[

(1− λ)(4x2 − 1)

(1 + x2)3
f(x)− λ(4x2 + 1)

(1− x2)3
g(x)

]

ψ(x)

+
7λx(1 + x4)

(1 + x2)(1− x4)3
h(x)− λx3(2x6 + 33x4 + 75)

(1 + x2)(1− x4)2
k(x)

+
(1− λ)x(2x2 − 13)

(1 + x2)3
,

(3.18)

where f(x), g(x), ψ(x), h(x) and k(x) are defined as in Lemma 2.1 and 2.3,
respectively. From (3.18), lemma 2.1 and lemma 2.3 one has

D(4)(x) < 3

[

(1− λ)(4x2 − 1)

(1 + x2)3
(1− x2

2
)− λ(4x2 + 1)

(1− x2)3

]

(x− x3

6
)

−λx
3(2x6 + 33x4 + 75)

(1 + x2)(1− x4)2
(1 +

x4

2
) +

7λx(1 + x4)

(1 + x2)(1− x4)3
·

(1− x4

2
) +

(1− λ)x(2x2 − 13)

(1 + x2)3

=
x

4(1 + x2)4(1− x2)3
F (x),

(3.19)

where F (x) is defined as in lemma 2.4. It fllows from (3.19) and lemma 2.4
that

D(4)(x) < 0. (3.20)

For x ∈ (1/2, 1), (3.17) is rewritten into

D(4)(x) = 3

[

(1− λ)(4x2 − 1)

(1 + x2)3
f(x)ψ(x)− λ(4x2 + 1)

(1− x2)3
g(x)ψ(x)

]

−λx(2x
8 + 33x6 − 7x4 + 75x2 − 7)

(1 + x2)(1− x4)2
k(x)

+
(1− λ)x(2x2 − 13)

(1 + x2)3
,

(3.21)
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where f(x), g(x), h(x) and ψ(x) are defined as in lemma 2.1 and 2.3, respec-
tively. From (3.21), lemma 2.1 and lemma 2.3 together with the fact that

2x8+33x6−7x4+75x2−7 > 2(0)8+33(0)6−7 · 14+75(1/2)2−7 = 19/4 > 0,

one has

D(4)(x) < 3
[(1− λ)(4x2 − 1)

(1 + x2)3
(1− x2

2
+

3x4

8
)x− λ(4x2 + 1)

(1− x2)3
(1+

x2

2
)(x− x3

6
)
]

− λx(2x8 + 33x6 − 7x4 + 75x2 − 7)

(1 + x2)(1− x4)2
·

(1 +
x4

2
) +

(1− λ)x(2x2 − 13)

(1 + x2)3

=
x

8(1− x4)3
H(x),

(3.22)

where H(x) is defined as in Lemma 2.5. It follows from (3.22) and Lemma 2.5
that

D(4)(x) < 0. (3.23)

Synthesizing the above two cases we affirm that D(4)(x) < 0 for all x ∈
(0, 1), hence the function D′′(x) is concave in (0,1). It follows from (3.14) and
(3.15) together with the concavity of D′′(x) that there exists x0 ∈ (0, 1) such
that D′′(x) > 0 for x ∈ (0, x0) and D′′(x) < 0 for x ∈ (x0, 1), hence D

′(x)
is strictly increasing in (0, x0) and strictly decreasing in [x0, 1). From (3.12)
together with the monotonicity of D′(x) we know that there exists x1 ∈ (x0, 1)
such that D′(x) > 0 for x ∈ (0, x1) and D

′(x) < 0 for x ∈ (x1, 1), so that D(x)
is strictly increasing in (0, x1) and strictly decreasing in [x1, 1). It follows from
(3.10) together with the monotonicity of D(x) that

D(x) > 0 (3.24)

for all x ∈ (0, 1). Therefore, the inequality (3.7) follows from (3.8) and (3.24).
At least, we prove that 1/3G(a, b) + 2/3Q(a, b) is the best possible lower

convex combination bound and λG(a, b) + (1 − λ)Q(a, b) is the best possible
upper convex combination bound of the geometric and quadratic means for
the Neuman-Sándor mean.

From equations (3.1) one has

Q(a, b)−M(a, b)

Q(a, b)−G(a, b)
=

√
1 + x2 log(x+

√
1 + x2)− x

(
√
1 + x2 −

√
1− x2) log(x+

√
1 + x2)

= B(x).

(3.25)

It is easy to calculate that

lim
x→0+

B(x) =
1

3
, (3.26)
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and
lim
x→1−

B(x) = λ. (3.27)

If α < 1/3, then equations (3.25) and (3.26) lead to conclusion that there
exists δ1 = δ1(α) ∈ (0, 1) such that M(a, b) < αG(a, b) + (1 − α)Q(a, b) for
(a− b)/(a + b) ∈ (0, δ1).

If β > λ, then equations (3.25) and (3.27) imply the conclusion that there
exists δ2 = δ2(β) ∈ (0, 1) such that M(a, b) > βG(a, b) + (1 − β)Q(a, b) for
(a− b)/(a + b) ∈ (1− δ2, 1).
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