On trans hyperbolic Sasakian manifolds

Pankaj
Mathematics Section, Department of Information Technology
Salalah College of Technology, Salalah-211, Oman
email: pankaj.fellow@yahoo.co.in

Rajendra Prasad
Department of Mathematics and Astronomy
University of Lucknow, Lucknow-226007 (India)
email: rp_manpur@rediffmail.com

Abstract

After finding some basic results on trans hyperbolic Sasakian manifold, we find explicit formulae for Ricci operator, Ricci tensor and curvature tensor in a three-dimensional trans hyperbolic Sasakian manifold. It is also proved that, in a three-dimensional trans hyperbolic Sasakian manifold $Q \varphi=\varphi Q$ if $\operatorname{grad} \beta=-\varphi(\operatorname{grad} \alpha)$. Finally we find expression for Ricci tensor in three-dimensional trans hyperbolic Sasakian manifold in case of the manifold being η-Einstein or Ricci semi symmetric.

Mathematics Subject Classification: 53C20, 53C25
Keywords: trans hyperbolic Sasakian manifold, Ricci tensor, Ricci operator, curvature tensor, η-Einstein, Ricci semi symmetric

1 Introduction

In a Gray-Hervella classification of almost Hermitian manifolds [7], there appears a class W_{4} of Hermitian manifolds which are closely related to locally conformal Kähler manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [13] if the product manifold $M \times R$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}$ [11] coincides with the class of transSasakian structures of type (α, β). It is known that a trans-Sasakian structure of type $(0,0),(\alpha, 0)$ and $(0, \beta)$ are cosympletic [1], α-Sasakian $[2,16]$ and β Kenmotsu $[2,10]$ respectively. Thus trans-Sasakian manifold of type (α, β) is a generalization of Sasakian, α-Sasakian, Kenmotsu and β-Kenmotsu manifolds. An almost contact metric structure (ϕ, ξ, η, g) on M is called a trans-Sasakian
structure [13] if $(M \times R, J, G)$ belongs to the class W_{4}, where J is the almost complex structure on $M \times R$ defined by

$$
\begin{equation*}
J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) f \frac{d}{d t}\right) \tag{1}
\end{equation*}
$$

for all vector fields on M and smooth functions f on $M \times R$, and G is the product metric on $M \times R$. This may be expressed by the condition

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha\{g(X, Y) \xi-\eta(Y) X\}+\beta\{g(\varphi X, Y) \xi-\eta(Y) \varphi X\}, \tag{2}
\end{equation*}
$$

where ∇ is Levi-Civita connection of Riemannian metric g and α and β are smooth functions on M. Recently it was studied by several geometers. JeongSik Kim et al [8] has studied generalized Ricci-recurrent trans-Sasakian manifold. While in [4], Ricci-operator, Ricci-tensor and curvature tensor are found for three-dimensional trans-Sasakian manifold. Prasad et al [15] studied some curvature tensors on trans-Sasakian manifold.

On the other hand almost contact hyperbolic (f, g, η, ξ)-structure was introduced by Upadhyay and dube[18]. Further it was studied by number of authors $[17,14,9,3]$ etc. The purpose of the present paper is to study Ricci tensor in a trans-hyperbolic Sasakian manifold. Section-2 is devoted to some necessary preliminaries. In section-3 some basic results are given. The Ricci operator, the Ricci-tensor and the curvature tensor in a three-dimensional trans hyperbolic Sasakian manifold are found in section-4. In the section, it is also proved that If $\operatorname{grad} \beta=-\varphi(\operatorname{grad} \alpha)$ in a three-dimensional trans hyperbolic Sasakian manifold, then the Ricci operator and the structure tensor commute i.e., $Q \varphi=\varphi Q$. Finally in section- 5 and 6 , we find expression for Ricci tensor in three-dimensional trans hyperbolic Sasakian manifold in case of the manifold being η-Einstein or Ricci semi symmetric.

2 Preliminary

Let us consider a $(2 n+1)$-dimensional complete real differentiable manifold M with fundamental tensor field φ of type $(1,1)$, fundamental time like vector field ξ, a 1 -form η, such that for every vector field X, we have

$$
\begin{align*}
\varphi^{2} & =I+\eta \circ \xi \tag{3}\\
\eta(\xi) & =-1(\xi \text { is time like vector field }), \tag{4}\\
\varphi(\xi) & =0 \tag{5}\\
\eta \circ \varphi & =0 \tag{6}\\
\operatorname{rank}(\varphi) & =2 n, \tag{7}
\end{align*}
$$

where I is the identity endomorphism of the tangent bundle of M. Then M is called almost hyperbolic contact manifold [18]. An almost hyperbolic contact
manifold M is said to be an almost hyperbolic contact metric manifold if a semi-Riemannian metric g satisfies

$$
\begin{align*}
g(\phi X, \phi Y) & =-g(X, Y)-\eta(X) \cdot \eta(Y) \tag{8}\\
g(\phi X, Y) & =-g(X, \phi Y) \tag{9}\\
g(X, \xi) & =\eta(X) \tag{10}
\end{align*}
$$

The structure (φ, ξ, η, g) on M is called almost hyperbolic contact metric structure. An almost hyperbolic contact metric manifold M is called a trans hyperbolic Sasakian manifold [3] if equation (2) is satisfied in it. From equation (2), it follows that

$$
\begin{align*}
\nabla_{X} \xi & =-\alpha \varphi X-\beta[X+\eta(X) \xi] \tag{11}\\
\left(\nabla_{X} \eta\right) Y & =-\alpha g(\varphi X, Y)+\beta g(\varphi X, \varphi Y) \tag{12}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, e_{(2 n+1)}=\xi\right\}$ is a local orthonormal basis of vector fields in a $(2 n+1)$-dimensional semi-Riemannian manifold. In a semi-Riemannian manifold, the semi-Riemannian metric g satisfies

$$
\begin{equation*}
g\left(e_{i}, e_{j}\right)=\varepsilon_{i} \delta_{i j}(\text { summation with respect toi }), \tag{13}
\end{equation*}
$$

here ε_{i} is signature of the basis. For spacelike, null and timelike vector fields, the signature $\varepsilon_{i}=g\left(e_{i}, e_{i}\right)$ is defined as follows:

1. e_{i} is spacelike then $\varepsilon_{i}=g\left(e_{i}, e_{i}\right)>0$,
2. e_{i} is null then $\varepsilon_{i}=g\left(e_{i}, e_{i}\right)=0$,
3. e_{i} is timelike then $\varepsilon_{i}=g\left(e_{i}, e_{i}\right)<o$.

Here note that e_{i} is non-zero vector field and a zero vector field is always spacelike.

In an orthonormal basis of an almost hyperbolic contact metric manifold only ξ is timelike and remaining all are spacelike. Thus Ricci tensor and scaler curvature of an almost hyperbolic contact metric manifold are defined as follows.

$$
\begin{align*}
& S(X, Y)=\sum_{i=1}^{2 n+1} \varepsilon_{i} g\left(R\left(e_{i}, X\right) Y, e_{i}\right) \\
&=\sum_{i=1}^{2 n} g\left(R\left(e_{i}, X\right) Y, e_{i}\right)-g(R(\xi, X) Y, \xi), \tag{14}\\
& \tau=\sum_{i=1}^{2 n+1} \varepsilon_{i} S\left(e_{i}, e_{i}\right)=\sum_{i=1}^{2 n} S\left(e_{i}, e_{i}\right)-S(\xi, \xi) . \tag{15}
\end{align*}
$$

3 Some basic results on trans hyperbolic Sasakian manifold

We begin with the following lemma.
Lemma 3.1 In a trans hyperbolic Sasakian manifold, we have

$$
\begin{align*}
R(X, Y) \xi= & \left(\alpha^{2}+\beta^{2}\right)(\eta(Y) X-\eta(X) Y) \\
& 2 \alpha \beta(\eta(Y) \varphi X-\eta(X) \varphi Y)+(Y \alpha) \varphi X \\
& -(X \alpha) \varphi Y+(Y \beta) \varphi^{2} X-(X \beta) \varphi^{2} Y, \tag{16}
\end{align*}
$$

where R is the curvature tensor.
Proof: In a Riemannian manifold, it is known that

$$
\begin{equation*}
R(X, Y) \xi=\nabla_{X} \nabla_{Y} \xi-\nabla_{Y} \nabla_{X} \xi-\nabla_{[X, Y]} \xi . \tag{17}
\end{equation*}
$$

Taking account of equations (2), (11) and (17), we get the result.
Now in view of $g(R(X, Y) \xi, Z)=g(R(\xi, Z) X, Y)$, equation (16) implies

$$
\begin{align*}
R(\xi, X) Y= & \left(\alpha^{2}+\beta^{2}\right)(g(X, Y) \xi-\eta(Y) X) \\
& 2 \alpha \beta(\eta(Y) \varphi X-g(\varphi X, Y) \xi)+(Y \alpha) \varphi X \\
& -(\operatorname{grad\alpha }) g(\varphi X, X)-(Y \beta) \varphi^{2} X \\
& +(\operatorname{grad} \beta)(g(X, Y)+\eta(X) \eta(Y)) . \tag{18}
\end{align*}
$$

On taking $Y=\xi$ in the above equation, we have

$$
\begin{align*}
R(\xi, X) \xi= & \left(\alpha^{2}+\beta^{2}-\xi \beta\right)(X+\eta(X) \xi) \\
& -(2 \alpha \beta-\xi \alpha) \varphi X \tag{19}
\end{align*}
$$

Again from equation (16), we have

$$
\begin{align*}
R(\xi, X) \xi= & \left(\alpha^{2}+\beta^{2}-\xi \beta\right)(X+\eta(X) \xi) \\
& +(2 \alpha \beta-\xi \alpha) \varphi X . \tag{20}
\end{align*}
$$

In view of equations (19) and (20), we have following theorem:
Theorem 3.2 In a trans hyperbolic Sasakian manifold, we have

$$
\begin{align*}
R(\xi, X) \xi & =\left(\alpha^{2}+\beta^{2}-\xi \beta\right)(X+\eta(X) \xi) \tag{21}\\
2 \alpha \beta-\xi \alpha & =0 \tag{22}
\end{align*}
$$

Now in view of equation (22), we have following corollary:

Corollary 3.3 A trans hyperbolic Sasakian manifold of type (α, β) with α a non-zero constant is always hyperbolic α-Sasakian.

Using equations (14), (16) and (21), we can state following proposition.
Proposition 3.4 In a trans hyperbolic Sasakian manifold, we have

$$
\begin{align*}
S(X, \xi)= & \left(2 n\left(\alpha^{2}+\beta^{2}\right)-\xi \beta\right) \eta(X) \\
& +(2 n-1)(X \beta)-(\varphi X) \alpha, \tag{23}\\
Q \xi= & \left(2 n\left(\alpha^{2}+\beta^{2}\right)-\xi \beta\right) \xi \\
+ & (2 n-1)(\operatorname{grad} \beta)+\varphi(\operatorname{grad} \alpha), \tag{24}
\end{align*}
$$

where S is Ricci tensor and Q is Ricci operator.
Remark 3.5 If in a trans hyperbolic Sasakian manifold of kind $(\alpha, \beta) \varphi(\operatorname{grad} \alpha)+$ $(2 n-1)$ grad $\beta=0$, then
$\xi \beta=g(\xi, \operatorname{grad} \beta)=-\frac{1}{(2 n-1)} g(\xi, \varphi(\operatorname{grad} \alpha))=0$.
Hence

$$
\begin{align*}
S(X, \xi) & =2 n\left(\alpha^{2}+\beta^{2}\right) \eta(X) \tag{25}\\
Q \xi & =2 n\left(\alpha^{2}+\beta^{2}\right) \xi \tag{26}
\end{align*}
$$

Remark 3.6 If in a trans hyperbolic Sasakian manifold of kind $(\alpha, \beta) \varphi(\operatorname{grad} \alpha)+$ $(2 n-1)$ grad $\beta=(2 n-1)(\xi \beta)$, then

$$
\begin{align*}
S(X, \xi) & =2 n\left(\alpha^{2}+\beta^{2}+\xi \beta\right) \eta(X) \tag{27}\\
Q \xi & =2 n\left(\alpha^{2}+\beta^{2}+\xi \beta\right) \xi \tag{28}
\end{align*}
$$

4 Three dimensional trans hyperbolic Sasakian manifold

We begin with the definition:
Definition 4.1 The Weyl conformal curvature tensor C of type $(1,3)$ of an $(2 n+1)$-dimensional manifold M is defined by

$$
\begin{align*}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{2 n-1}[S(Y, Z) X-S(X, Z) Y \\
& +g(Y, Z) Q X-g(X, Z) Q Y] \\
& +\frac{\tau}{(2 n)(2 n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{29}
\end{align*}
$$

where R, S, Q, τ denotes respectively the Riemannian curvature tensor, Riccitensor of type (0,2), the Ricci-operator and the scalar curvature of the manifold.

In a three-dimensional trans hyperbolic Sasakian manifold, we have from Proposition 3.4

$$
\begin{gather*}
S(X, \xi)=\left(2\left(\alpha^{2}+\beta^{2}\right)-\xi \beta\right) \eta(X)+X \beta-(\phi X) \alpha, \tag{30}\\
S(\xi, \xi)=-2\left(\alpha^{2}+\beta^{2}-\xi \beta\right) \tag{31}\\
Q \xi=\left(2\left(\alpha^{2}+\beta^{2}\right)-\xi \beta\right) \xi+\operatorname{grad} \beta+\phi(\operatorname{grad} \alpha) . \tag{32}
\end{gather*}
$$

Lemma 4.2 In a three-dimensional trans hyperbolic Sasakian manifold, the Ricci-operator is given by

$$
\begin{align*}
Q X= & \left(\frac{\tau}{2}+\xi \beta-\left(\alpha^{2}+\beta^{2}\right)\right) X \\
& +\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(X) \xi \\
& -(\varphi(\operatorname{grad} \alpha)+\operatorname{grad} \beta) \eta(X)-(X \beta-(\varphi X) \alpha) \xi . \tag{33}
\end{align*}
$$

Proof: We know that the Weyl conformal curvature tensor vanishes in three-dimensional Riemannian manifold, therefore from equation (29)

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X \\
& -S(X, Z) Y-\frac{\tau}{2}(g(Y, Z) X-g(X, Z) Y) \tag{34}
\end{align*}
$$

On taking $X=Z=\xi$ and using equations (4) and (10), we have

$$
\begin{align*}
R(\xi, Y) \xi= & \eta(Y) Q \xi+Q Y+S(Y, \xi) \xi-S(\xi, \xi) Y \\
& -\frac{\tau}{2}(Y+\eta(Y) \xi) \tag{35}
\end{align*}
$$

Using equations (21), (30), (31) and (32) in the above equation, we get the equation (33).

Theorem 4.3 In a three-dimensional trans hyperbolic Sasakian manifold, the Ricci-tensor and curvature tensor are given respectively as

$$
\begin{align*}
S(X, Y)= & \left(\frac{\tau}{2}+\xi \beta-\left(\alpha^{2}+\beta^{2}\right)\right) g(X, Y) \\
& +\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(X) \eta(Y) \\
& -((Y \beta)-(\varphi Y) \alpha) \eta(X) \\
& -((X \beta)-(\varphi X) \alpha) \eta(Y), \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{\tau}{2}+2 \xi \beta-2\left(\alpha^{2}+\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y \\
& +g(Y, Z)\left\{\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -((X \beta)-(\varphi X) \alpha) \xi-(\varphi(\operatorname{grad} \alpha)+\operatorname{grad} \beta) \eta(X)\} \\
& -g(X, Z)\left\{\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -((Y \beta)-(\varphi Y) \alpha) \xi-(\varphi(\operatorname{grad\alpha })+\operatorname{grad} \beta) \eta(Y)\} \\
& +\left\{\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(Y) \eta(Z)\right. \\
& -((Y \beta)-(\varphi Y) \alpha) \eta(Z)-((Z \beta)-(\varphi Z) \alpha) \eta(Y)\} X \\
& +\left\{\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(X) \eta(Z)\right. \\
& -((X \beta)-(\varphi X) \alpha) \eta(Z) \\
& -((Z \beta)-(\varphi Z) \alpha) \eta(X)\} Y . \tag{37}
\end{align*}
$$

Proof: Using equation (33) and taking account of $S(X, Y)=g(Q X, Y)$, we get the equation (36) and using equations (33),(36) in the equation (34), we have the equation (37).

Proposition 4.4 Let M be a three-dimensional trans hyperbolic Sasakian manifold of type (α, β). If grad $\beta=-\varphi(\operatorname{grad} \alpha)$, then the Ricci operator and the structure tensor commute i.e., $Q \varphi=\varphi Q$.

Proof: If $\operatorname{grad} \beta=-\varphi(\operatorname{grad} \alpha)$, then

$$
\begin{align*}
X \beta & =g(X, \operatorname{grad} \beta) \\
& =g(X,-\varphi(\operatorname{grad} \beta)) \\
& =g(\varphi X,(\operatorname{grad} \beta)) \\
& =(\varphi X) \beta \text { i.e. } \\
X \beta & =(\varphi X) \beta . \tag{38}
\end{align*}
$$

From equation (38), we can get

$$
\begin{equation*}
\xi \beta=0 \tag{39}
\end{equation*}
$$

In virtue of equations (38) and (39), equation (33) reduces to

$$
\begin{align*}
Q X= & \left(\frac{\tau}{2}-\left(\alpha^{2}+\beta^{2}\right)\right) X \\
& +\left(\frac{\tau}{2}-3\left(\alpha^{2}+\beta^{2}\right)\right) \eta(X) \xi \tag{40}
\end{align*}
$$

Replace X by φX in equation (40) and using (6), we get

$$
\begin{equation*}
(Q \varphi) X=\left(\frac{\tau}{2}-\left(\alpha^{2}+\beta^{2}\right)\right) \varphi X \tag{41}
\end{equation*}
$$

Now operating φ in the equation (40) and using equation (5), we get

$$
\begin{equation*}
(\varphi Q) X=\left(\frac{\tau}{2}-\left(\alpha^{2}+\beta^{2}\right)\right) \varphi X \tag{42}
\end{equation*}
$$

In view of equations (41) and (42), we have the result.

5 Three dimensional η-Einstein trans hyperbolic Sasakian manifold

In this section we prove following theorem.
Theorem 5.1 In a three-dimensional η-Einstein trans hyperbolic Sasakian manifold, the Ricci-tensor S is

$$
\begin{align*}
S(X, Y)= & \left(\frac{\tau}{2}-\xi \beta+\left(\alpha^{2}+\beta^{2}\right)\right) g(X, Y) \\
& +\left(\frac{\tau}{2}+\xi \beta-\left(\alpha^{2}+\beta^{2}\right)\right) \eta(X) \eta(Y) \tag{43}
\end{align*}
$$

Proof: For an η-Einstein manifold, the Ricci tensor S is of the form

$$
\begin{equation*}
S(X . Y)=a g(X . Y)+b \eta(X) \eta(Y), \tag{44}
\end{equation*}
$$

where a and b are the smooth functions. Contracting equation (44), we get

$$
\begin{equation*}
\tau=a+b \tag{45}
\end{equation*}
$$

Now taking $X=Y=\xi$ in the equation (36), we get

$$
\begin{equation*}
b-a=2\left(\xi \beta-\left(\alpha^{2}+\beta^{2}\right)\right) . \tag{46}
\end{equation*}
$$

First we find the values of a and b from (46) and (45) and put in equation (44), we get the result.

6 Three dimensional Ricci-semi-symmetric trans hyperbolic Sasakian manifold

A Riemannian manifold M is said to be Ricci-semi-symmetric if

$$
\begin{equation*}
R(X, Y) \cdot S=0 \tag{47}
\end{equation*}
$$

The above condition is equivalent to

$$
\begin{equation*}
S(R(X, Y) U, V)+S(U, R(X, Y) V)=0 \tag{48}
\end{equation*}
$$

In particular we have

$$
\begin{equation*}
S(R(\xi, X) \xi, Y)+S(\xi, R(\xi, X) Y)=0 \tag{49}
\end{equation*}
$$

Taking account of equations (18) and (21) in the above equation, we have

$$
\begin{align*}
\left(\alpha^{2}+\beta^{2}-\xi \beta\right) S(X, Y)= & -\left(\alpha^{2}+\beta^{2}-\xi \beta\right) \eta(X) S(\xi, Y) \\
& -\left(\alpha^{2}+\beta^{2}\right) g(X, Y) S(\xi, \xi) \\
& +\left(\alpha^{2}+\beta^{2}\right) \eta(Y) S(\xi, X) \\
& +2 \alpha \beta \eta(Y) S(\xi, \varphi X) \\
& +2 \alpha \beta g(\varphi X, Y) S(\xi, \xi) \\
& +g(\varphi X, Y) S(\xi, \operatorname{grad\alpha } \alpha) \\
& -(Y \alpha) S(\xi, \varphi X)+(Y \beta) S\left(\xi, \varphi^{2} X\right) \\
& +g(\varphi X, \varphi Y) S(\xi, \operatorname{grad} \beta) . \tag{50}
\end{align*}
$$

Since S is symmetric, from the above equation we also have

$$
\begin{align*}
\left(\alpha^{2}+\beta^{2}-\xi \beta\right) S(X, Y)= & -\left(\alpha^{2}+\beta^{2}-\xi \beta\right) \eta(Y) S(\xi, X) \\
& -\left(\alpha^{2}+\beta^{2}\right) g(X, Y) S(\xi, \xi) \\
& +\left(\alpha^{2}+\beta^{2}\right) \eta(X) S(\xi, Y) \\
& +2 \alpha \beta \eta(X) S(\xi, \varphi Y) \\
& -2 \alpha \beta g(\varphi X, Y) S(\xi, \xi) \\
& -g(\varphi X, Y) S(\xi, \operatorname{grad\alpha } \alpha) \\
& -(X \alpha) S(\xi, \varphi Y)+(X \beta) S\left(\xi, \varphi^{2} Y\right) \\
& +g(\varphi X, \varphi Y) S(\xi, \operatorname{grad} \beta) \tag{51}
\end{align*}
$$

Adding (50) and (51), we get

$$
\begin{align*}
2\left(\alpha^{2}+\beta^{2}-\xi \beta\right) S(X, Y)= & \xi \beta(\eta(Y) S(\xi, X)+\eta(Y) S(\xi, X)) \\
& -2\left(\alpha^{2}+\beta^{2}\right) g(X, Y) S(\xi, \xi) \\
& +2 \alpha \beta(\eta(Y) S(\xi, \varphi X)+\eta(X) S(\xi, \varphi Y)) \\
& -(X \alpha) S(\xi, \varphi Y)+(X \beta) S\left(\xi, \varphi^{2} Y\right) \\
& -(Y \alpha) S(\xi, \varphi X)+(Y \beta) S\left(\xi, \varphi^{2} X\right) \\
& +2 g(\varphi X, \varphi Y) S(\xi, \operatorname{grad} \beta) . \tag{52}
\end{align*}
$$

Using equations (3), (30), (31 and (33), we have

$$
\left(\alpha^{2}+\beta^{2}-\xi \beta\right) S(X, Y)=\left\{\left(2\left(\alpha^{2}+\beta^{2}\right)-\xi \beta\right)^{2}-2\left(\alpha^{2}+\beta^{2}\right)^{2}\right.
$$

$$
\begin{align*}
& \left.-\|\operatorname{grad} \beta\|^{2}-\varphi(\operatorname{grad} \alpha) \beta\right\} g(X, Y) \\
& +\left\{4 \alpha^{2} \beta^{2}-\|\operatorname{grad\beta }\|^{2}\right. \\
& -\varphi(\operatorname{grad\alpha } \beta\} \eta(X) \eta(Y) \\
& +\left\{\left(Y \beta-\frac{1}{2}(\varphi Y) \alpha\right) \xi \beta+\alpha \beta(\varphi Y) \beta\right\} \eta(X) \\
& +\left\{\left(X \beta-\frac{1}{2}(\varphi X) \alpha\right) \xi \beta+\alpha \beta(\varphi X) \beta\right\} \eta(Y) \\
& +(X \alpha)(Y \alpha)+(X \beta)(Y \beta) \\
& -\frac{1}{2}\{(X \alpha)(\varphi Y) \beta+(X \beta)(\varphi Y) \alpha \\
& +(Y \alpha)(\varphi X) \beta+(Y \beta)(\varphi X) \alpha\} . \tag{53}
\end{align*}
$$

Hence we have following theorem:
Theorem 6.1 In a three-dimensional Ricci-semi-symmetric trans hyperbolic Sasakian manifold, the Ricci-tensor S satisfies the equation (53).

ACKNOWLEDGEMENTS. The authors wish to express his sincere thanks and gratitude to the referee for accepting the paper.

References

[1] Blair, D.E., Contact manifolds in Riemannian geometry, lecture Notes in Math. 509, springer Verlag, 1976.
[2] Blair, D.E., Riemannian geometry of Contact and Symplectic manifolds, Birkhauser Boston,2002.
[3] Bhatt, L. and Dube, K. K., On CR-submanifolds of trans hyperbolic Sasakian manifold, Acta Cienc. Indica 29, No.-1(2003), 91-96.
[4] De, U.C. and Tripathi, M.M.,Ricci tensor in 3-dimensional transSasakian Manifolds, Kyungpook Math.J.,2,247-255(2005).
[5] De, U.C and Shaikh, A.A., Differential Geometry of manifolds, Narosa Publishing House, 2007.
[6] De, U.C and Shaikh, A.A., Complex manifolds and contact manifolds, Narosa Publishing House, 2009.
[7] Gray, A. and Hervella, L. A., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(4)(1980), 35-58.
[8] Jeong-Sik Kim, Prasad, R. and Tripathi, M.M., On generalized Ricci recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39 (2002), No. 6 pp. 953-961.
[9] Joshi, N. K. and Dube, K. K., Semi invariant submanifolds of an almost r-contact hyperbolic metric manifold, Demonstratio Math. 34, No.1(2001), 135-143.
[10] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
[11] Marrero, J.C., The local structure of trans-Sasakian manifold, Ann. Mat. Pura Appl.,162(4)(1992),77-86.
[12] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[13] Oubiña, J.A., New Classes of almost contact metric structures, Pub. Math. Debrecen 32(1985), 187-193.
[14] Pal, R. B., Submanifolds of hyperbolic contact metric manifold, Acta Cien. Indica 21(1995), 399-404.
[15] Prasad, R., Pankaj, Tripathi, M.M. and Shukla, S.S., On some special type of trans-Sasakian Manifolds, Riv. Mat. Univ. Parma 2,2009(Accepted).
[16] Sasaki, S., On differentiable manifolds with certain structure which are closed related to an almost contact structure, Tohoku Math. Journal. 12 (1960), 459-476.
[17] Sinha, B.B. and Singh, R.N. Conformal infinitesimal transformations of almost contact metric structure, Indian J. Pure appl. math. 15(6)(1984), 609-612.
[18] Upadhyay, M. D. and Dube, K. K., Almost contact hyperbolic (f, g, η, ξ)-structure, Acta Math. Acad. Scient. Hung. 28,(1976), 13-15.

Received: October, 2014

