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ABSTRACT

been established.

26A33, 33C65, 44A10.

In this paper we have made an attempt to establish a triple integral relation between weyl type three dimensional
Saigo-Maeda operator of fractional integration and the three dimensional H-transform. Some special cases have also
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INTRODUCTION

Saxena, Gupta and Kumbhat [16] studied two dimensional
Weyl fractional calculus. Nishimoto and Saxena [8] gave the
generalization of results given by Arora, Raina and Koul [1],
Saxena, Gupta and Kumbhat [16], and Raina and Kiryakova
[12] by proving the theorems associated with two dimensional
G-transforms. Saxena, Ram and Goree [14] proved a theorem on
two dimensional generalized H-transforms involving Weyl type two
dimensional Saigo operators. Saxena, Ram and Suthar [13] studied
the generalized fractional integration operators associated with the
Appell Function F, as kernel, introduced recently by Saigo and
Maeda [10]. Chaurasia and Srivastava [19] established a

two dimensional H -transforms involving polynomials of general

theorem on

class with Weyl type two dimensional Saigo operators. Chaurasia
and Jain [18] evaluated certain triple integral relations, and derived
a theorem on three dimensional H -transforms associated with the
three dimensional Saigo operators of Weyl type.

In this paper we drive a relationship between H-transforms and
the Saigo-Maeda operators of Weyl type of three dimensions. The
results obtained here provide extension of Saigo results, Saxena

and Ram [9], Saxena and Ram [12] and Chaurasia and Jain [18].

DEFINITIONS: The Fox’s H-function [2, 3, 4] is in the form of
Mellin-Barnes type [7] integral in following way
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Where 0 < n < p, 0 <m < qare nonnegative integers; A and B, are
positive; a,( j=1,....p) and b, (j=L,..., q) are real or complex, such
thatA(b+v)¢B(a )L 1)(v,A 0,1,...; h=12,..., m;
j=1 2 ,n)Lisa sultaéle contour separating the simple poles of

integrand h(s) in (2.2).

Now we define generalized fractional calculus operators as follows:
Let e, ", 5, f",y € C and x > O then the fractional calculus
operators in generalized form of arbitrary order involving Appell
function F,, due to Saigo and Maeda [10] in the kernel are defined
by the following equations:
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The Saigo-Maeda operators are extensions of the Saigo operators
defined as follows:

a.p. (x)
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(2.10)
Following Chaurasia and Jain [18] we denote by u, the class of
functions f(x) on R, which are infinitely partialy differentiable with
any order behaving as O(|x|*) when x >  for all &. Similarly
R, * R,

4

by u,, we denote the class of functions f(x,y) on the
which are infinitely partialy differentiable with any order behaving
as O(| x| y[*) when x >, y > forall §(i=12)

On the same lines we denote by u;, the class of functions
flx,3,2) defined on the R, * R, * R,, which are infinitely partialy
differentiable with any order behaving as O(|x[%|y[®|z[®)

when x>, y>o z>oforallé (i=123)

The Saigo-Maeda operator of Weyl type three dimensional
fractional integration of order Re(a) > 0, Re(y) > 0 (i =1,2,3) is
defined in the class u, by
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THREE DIMENSIONAL LAPLACE TRANSFORM AND
H-TRANSFORM: The Laplace transform h(p,q,r) of a function

F(x, v, 2) € ugiswrittenas [13]: let Re(p)>0,Re(q) > 0,Re(r)>0
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(3.1

Similarly, the Laplace transform of
f[a x?—b? H(x—b),c y2 —dzH(y—d),e 22 —sz(z—f)}
is defined by F(x,y,z), H(t) denotes Heaviside’s unit step function.

By the three dimensional H-transform ¢ (p,q,r)of a function
F(x,y,z), we mean the following repeated integral involving three
different H-functions:
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Here we assume that

b>0,d>0,f >0,k >0,k >0,k3 >0;
@ (p,q,r)exists and belongs to u,. The generality of the
H-function, the equation (3.3) provides a generalization of
a number of integral transforms like the three-dimensional
Laplace, Stieltjes, Hankel, Whittaker and G-transforms.

RELATION BETWEEN THREE-DIMENSIONAL
H-TRANSFORMS IN TERMS OF THREE-DIMENSIONAL
SAIGO-MAEDA OPERATORS OF WEYL TYPE

In this section we evaluate three-dimensional H-transform
o(p,q,7r) of F(x,y,z) which will be needed for proof of the theorem
considered in this section. We have
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Where it is assumed that ¢(p,q,7) exists and belongs to u,, the
parameters k, > 0, k, > 0, k; > 0 and other conditions on the

additional parameters ay,1, 5, 81,71:02.%2. B2, 2720433, B3 B 35
corresponding to those integral involved exists.

Theorem 4.1: Let @ (p,q,r)be given by (3.3) then for
Re(71)>0,Re(,) > 0,Re(y3)>0,d >0,d >0, f >0,k >0, ky >0, k3 >0

there holds the formula

] 01,881 ] 03,55, ,721 @3,05.85.573 (4.2)

- “lo(p.g.0]=p1(p.q.7)

p,© r,0

Where ¢(p,q,7) is given by (4.1).

Proof: Let Re(}/l) >0, Re(;/z) > 0,Re(;f3) >0, then in view of (3.3),
we find that
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On interchanging the order of integration and evaluating the u,

v, w-integrals, we get
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Equation (4.4) can be established by means of the following
formula [18]
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a,b,c,...

Where  Re(y)>0,Re(p)>0,Re(y+ p—a - B)>0and FL/ represents

the ratio of the product of several gamma functions i.e.

F(a)r(b)r(c)... {a,b,c,..}
it el Al S AR ’
r'(d)T(e)T(f)... def,..
The left hand side of (4.3) becomes
M, +3,N;; My+3,N,; M;+3,N; . .
PA3.0,43.P, 3.0, + 3P 43,0y 13LF (622230 18D, 7)
=1 (p,q.7)
Which is required right hand side of the equation (4.2).

As far as the three-dimensional Weyl type Saigo-Maeda operators

I‘Zl’alﬁwﬁl,}’lI0’2,0‘2,ﬂz’ﬁz’hlababﬂsyﬂsw}’s preserve the class u, it

X,0 Y, ®

follows that ¢ (p,g,r) also belongs to u,.
SPECIAL CASES: By putting @y =a, =a; =0, in theorem 4.1

Z,0

and use the identity ( lz;ﬂ,O,—n»ﬂ’,af)( x)= ( sz,m f)( x) - Theorem

reduced in to the form of two dimensional and one dimensional
analogue.
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