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Abstract

In this paper, we will generate the wreath product M11wr M12 using

only two permutations. We will show the structure of some groups con-

taining the wreath productM11wr M12 . The structure of the group con-

structed is determined in terms of wreath product(M11wr M12))wrCk

. Some related cases are also included. Also, we will show that S132k+1

andA132k+1 can be generated using the wreath product(M11wr M12)wrCk

and a transposition in S132k+1 and an element of order 3 in A132k+1 .

We will also show thatS132k+1 and A132k+1 can be generated using the

wreath product M11wr M12 and an element of order k+1 .

1 Introduction

Hammas and Al-Amri [1], have shown that A2n+1 of degree 2n + 1 can be

generated using a copy of Sn and an element of order 3 in A2n+1 . They also

gave the symmetric generating set of Groups Akn+1and Skn+1 using Sn [5] .

Shafee [2] showed that the groups Akn+1 andSkn+1 can be generated using

the wreath product Amwr Sa and an element of order k+1. Also she showed
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how to generateSkn+1 and Akn+1symmetrically using n elements each of order

k+1.

In [3], Shafee and Al-Amri have shown that the groupsA110k+1 and S110k+1

can be generated using the wreath product L2(9)wr M11 and an element of

order k+1.

The Mathieu groups M11 and M12 are two groups of the well known simple

groups. In [6] as follows

M11 =< X, Y , Z |X11 = Y 5 = (XZ)3 = 1, XY = X4 = Y z = Y 2 > . (1)

M12 =< X, Y , Z |X11 = Y 2 = Z2 = (XY )3 = (XZ)3 = (Y Z)10 = 1, X2(Y Z)2X = (Y Z)2 > .

(2)

M11 can be generated using two permutations, the first is of order 11 and 4 as

follows :

M11 =< (1, 2, ..., 11)(1, 2, 3, 7, 6)(3, 4)(6, 8)(4, 8, 5, 9, 10) > . (3)

M12 can be generated using two permutations, the first is of order 11 and 8 as

follows :

M12 =< (1, 2, ..., 11)(1, 2, 3, 7, 6)(4, 8, 5, 9, 10)(1, 12)(2, 11)(3, 6)(4, 8)(5, 9)(7, 10) > .

(4)

Here we will generate the wreath product M11wrM12 using only two permu-

tations and we will show the structure of some groups containing the wreath

product M11wrM12 . The structure of the groups obtained is determined in

terms of wreath product (M11wrM12)wrCk .

Some related cases are also included. We will show that S132k+1 and A132k+1

can be generated using the wreath product(M11wrM12)wrCk and a trans-

position in S132k+1and an element of order in A132k+1 . We will also show

thatS132k+1 and A132k+1can be generated using the wreath product M11wrM12

and an element of order .

2 PRELIMINARY RESULTS

DEFINITION 2.1.[4] Let A and B be groups of permutations on non empty

sets Ω1 and Ω2, respectively, where Ω1 ∩ Ω2 = φ. The wreath product of A
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and B is denote by AwrB and defined as AwrB = AΩ2 ×θ B, i.e., the direct

product of |Ω2| copies of A and a mapping θ, where θ : B → Aut(AΩ2) is

defined by θy(x) = xy, for all x ∈ AΩ2 . It follows that

|AwrB| = (|A|)|Ω2||B|. (5)

THEOREM 2.2 [4] Let G be the group generated by the n-cycle (1, 2, · · · , n)

and the 2-cycle (n, a). If 1 < a < n, is an integer with n = am , then

G ∼= SmwrCa. (6)

.

THEOREM 2.3 [4] Let 1 ≤ a 6= b < n be any integers.Let n be an

ood integer and let G the group generated by the n-cycle (1, 2, · · · , n) and the

3-cycle (n, a, b). If hcf (n, a, b) = 1, then G ∼= An .While if n can be even

then

G ∼= Sn. (7)

THEOREM 2.4[4] Let 1 ≤ a ≤ n be any integer. LetG =≺ (1, 2, ..., n), (n, a) �
. If hcf(n, a) = 1. , then G ∼= Sn.

THEOREM 2.5 [4] Let 1 ≤ a 6= b < n be any integers.Let n be an

even integer and let G the group generated by the n-cycle (1, 2, · · · , n) and

the 3-cycle (n, a, b). Then

G ∼= An. (8)

3 THE RESULTS

THEOREM 3.1 The wreath product M11wrM12can be generated using two

permutations, the first is of order 132k and the second is of order 4.

Proof : LetG =≺ X, Y �,Where:X = (1, 2, 3, ..., 132), Y = (3, 4, 5, 6)(8, 11, 10, 9)(12, 22)

(13,26,15,24)(14,23,16,25)(17,27)

(18,31,20,29)(19,28,21,30)

(1,12,16,13)(2,9,24,29)(3,21,30,22)

(4,28,7,20)(5,25,18,11)(10,31,17,23)

which is the product of 12 cycles each of order 4 and two of transpositions

.
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Let α1 = ((XY )6[X, Y ]5)18. Then

α1 = (11, 22, 33, 44, 55, 66, 77,88,99,110,121,132)

which is a cycle of order 12. Let α2 = α−1
1 X.

It is easy to show that

α2= (1, 2, 3, . . . , 11)(12, 13, 14, . . . , 22) . . . (122,123, 124, . . . , 132),

which is the product of 12 cycles each of order 11.

Let:β1 = (Y 2)(XY )18= (9, 20)(12, 23)(31, 53)(34, 56),β2 = β1 Y
−1=(1, 9,

12, 20)(2, 6)(4, 5) (7, 8)(13, 17)(15, 16)(18, 19)(23, 31, 45, 53)(24, 28)(26,

27)(29, 30)(34, 42)(35, 39)(37, 38)(40, 41)(46, 50)(48, 49)(51, 52)(56, 64)(57,

61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71) (73, 74),β3 = (Y 3β2)2 =(1, 45)(12,

23),β4 = β
(α−1

2 α3
1)

3 =(11, 44)( 55, 66) and β5 = β
β
α−1
2

3
4 = (11, 132)(44, 55). Let

α3=β
β
(α−1

2
3 α1)

5 . Hence

α3 =(12, 24)(48, 60).

Let α4 = Y X−1α−1
3 X. We can conclude that

α4=(1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,31)(24,28) (26,27)(29,30)

(34,42)(35,39)(37,38)(40,41)(45,53)(46,50) (48,49) (51,52)(56,64)(57,61)(59,60)(62,63)(67,75)

(68,72)(70,71)(73,74),

which is a product of twenty eight transpositions.

Let K =≺ α2,α4� . Let θ : K →M12 be the mapping defined by

θ(12i+j) = j, ∀1 ≤ i ≤ 10 , ∀ 1 ≤ j ≤ 12 .

Since θ(α2) = (1, 2, . . . , 12) and θ(α4) = (1, 9)(2, 6)(4, 5)(7, 8), then

Ku θ(K) = M12 . Let H0 =≺ α1 , α3 �. Then H0 u M11. Moreover, K

conjugates H0 into H1 , H1 into H2 and so it conjugates H11 into H0 , where

Hi =≺ (i, 11+ i, 22+ i, 33+ i, 44+ i, 55+ i, 66+ i, 77+ i, 88+ i, 99+ i, 110+

i, 121 + i)(i, 11 + i)(22 + i, 44 + i) � ∀ 0 ≤ i ≤ 11

” . Hence we get M12wrM11 ⊆ G . On the other hand, since

X =α1α2 and Y =α4α
X
3 then G ⊆M12wrM11 .

Hence G = M12wrM11.♦

THEOREM 3.2 The wreath product (M12wrM11)wrCK can be gener-

ated using two permutations, the first is of order 132k and an involution, for

all integers K � 1.

Proof :

Let σ = (1, 2, ..., 132k),
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τ = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k),

If k=1, then we get the groupM12wrM11 which can be considered as the

trivial wreath product M12wrM11 wr<id>. Assume that k � 1 . Let α

=Π12
i=0τ

σik , we get an element δ =α45 =(k, 2k, 3k, . . . , 132k). Let GI =≺ δσ
i

, τσ
i � be the groups acts on the sets Γi ={ i, k+i, 2k+i,. . . , 131k+i }, for

all 1≤ i ≤ k . Since ∩ki=1Γi = φ , then we get the direct product G1 × G2

×...×Gk ,where, by Theorem 3.1 each Gi u M12wrM11. Let β = δ−1σ =(1, 2,

. . . , k)(k+1, k+2, . . . , 2k) . . . (76k+1, 76k+2, . . . , 132k). Let H =≺ β �u Ck

.H conjugates G1 into G2 ,G2 into G3 ,. . . andGk into G1. Hence we get the

wreath product (M12wrM11)wrCK ⊆ G . On the other hand, since δβ =

(1, 2, . . . , k, k+1, k+2, . . . , 2k, . . . , 131k+1, 131k+2, . . . , 132k) =σ , then

σ ∈ (M12wrM11)wrCK . Hence G =≺ σ, τ � u (M12wrM11)wrCK .♦

THEOREM 3.3 The wreath product (M12wrM11)wrSK can be gener-

ated by using three permutations, the first is of order 132k, the second and

the third are involutions , for all K≥ 2.

Proof: Let σ = (1, 2, ..., 132k),

τ = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k), µ = (k, a)(2k, k+a)(3k, 2k+

a)...(143k + 142k + a).

since by theorem 3.2≺ σ, τ �u(M12wrM11)wrCk and (1,2,...,k)(k+1,...,2k)...(131+1,...,132k)

∈(M12wrM11)wrCK then ≺ (1, ..., k)(k+ 1, ...., 2k)...(131k+ 1, ...., 132k, µ �u
Sk. Hence G =≺ σ, τ, µ �u (M12wrM11)wrSk. ♦

COROLLARY 3.4 The wreath product (M12wrM11))wrAk can be gen-

erated by using three permutations, the first is of order 132k, the second is an

involution and the third is of order 3, for all odd integers k 3.

Proof : The proof is similar to the previous one. ♦

THEOREM 3.5 The wreath product (M12wrM11))wr(SmwrCa) can be

generated by using three permutations, the first is of order 132k, the second
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and the third are involutions, where k = am be any integer with 1 < a < k.

Proof : Let σ = (1, 2, ..., 132k),

τ = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k), µ = (k, a)(2k, k+a)(3k, 2k+

a)...(132k + 131k + a).

since by theorem 3.2≺ σ, τ �u(M12wrM11))wrCk and (1,...,k)(k+1,...,2k)...(131+1,...,132k)

∈(M12wrM11)wrCK then ≺ (1, ..., k)(k+ 1, ...., 2k)...(131k+ 1, ...., 132k, µ �u
(SmwrCa). Hence G =≺ σ, τ, µ �u (M12wrM11))wr(SmwrCa).♦

THEOREM 3.6 S132K+1 and A132K+1can be generated using the wreath

product (M12wrM11)wrCk and a transposition in S132K+1 for all integers k

>1 and an element of order 11 in A132K+1 for all odd integrs k > 1.

Proof : Let σ = (1, 2, ..., 132k),

τ = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k),

µ = (132k + 1, 1) and µ\ = (1, k, 132k + 1) be four Permutations, of order

132k,2,2 and 3 respectively.

Let H =< σ, τ > .By theorem 3.2 H u (M12wrM11)wrCK .

Case 1: Let G =< σ, τ, µ\ >.Let α = σµ , then α = (1, 2, ..., 132k, 132k+1)

which is a cycle of order 132k+1. By theorem 2.4 G =< σ, τ, µ >=< α, µ >u
S132K+1.

Case 2: Let G =< σ, τ, µ\ > .By theorem 2.5 < σ, µ\ >u A132K+1.Since τ

is an even Permutation, then G u A132K+1.

THEOREM 3.7 .S132K+1 and A132K+1can be generated using the wreath

product M12wrM11 and an element of order k+1 inS132K+1 and A132K+1 for

all integers k ≥ 1.

Proof :Let G =< σ, τ, µ >, Where

σ = (1, 2, 3, ..., 132)(132(k − (k − 1)) + 1, ..., 132(k − (k − 1)) + 132)

...(132(k − 1) + 1, ..., 132(k − 1) + 132),
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τ = (1, 9)(2, 6)(4, 5(7, 8)(12, 20, 23, 31)(13, 17)(15, 16)(18, 19)(24, 28)

(26, 27)(29, 30)(34, 42, 56, 64, )(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)

(48, 49)(51, 52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74)...

(132(k − 1) + 1, 132(k − 1) + 9)...(132(k − 1) + 73, 132(k − 1) + 74),

and µ = (132, 154, ..., 132k, 132k+1),Where k− i. > 0, be three permutations

of order 132, 4 and k + 1 respectively.

Let H =< σ, τ > .Define the mapping θ as follows

θ(12(k − i) + j) = j ∀1 ≤ j ≤ 12

Hence H =< σ, τ >u M12wrM11.Let α = µσ it is easy to show that α =

(1, 2, ..., 132k, 132k + 1), Which is acycle of order 132k+1.

Let µι = µσ = (1, 133, ..., 132(k − 1) + 1, 132k + 1) and β = [µ, µ\] =

(1, 132, 132k + 1). Since h.c.f(1, 132, 132k + 1) = 1, then by theorem 2.3

G =< σ, τ, µ >u S132K+1 or A132K+1 depending on whether k is an odd or

an even integer respectively.♦.
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