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Abstract

In this paper, we will generate the wreath product Mijwr Mo using
only two permutations. We will show the structure of some groups con-
taining the wreath product Miiwr Mys . The structure of the group con-
structed is determined in terms of wreath product(Myjwr Mis))wrCy
. Some related cases are also included. Also, we will show that Sy32%41
and Aj39k11 can be generated using the wreath product(Mi;wr Mg)wrCy
and a transposition in Sisory1 and an element of order 3 in Ajgopy1 -
We will also show thatSisert+1 and Aj30r41 can be generated using the
wreath product Miiwr Mis and an element of order k+1 .

1 Introduction

Hammas and Al-Amri [1], have shown that Ay, 1 of degree 2n + 1 can be
generated using a copy of S,, and an element of order 3 in Ay, . They also
gave the symmetric generating set of Groups Ay, 1and Sk, .1 using S, [5] .
Shafee [2] showed that the groups Ag,.1 andSk,+1 can be generated using
the wreath product A,,wr S, and an element of order k+1. Also she showed
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how to generateSy, 1 and Ay, isymmetrically using n elements each of order
k+1.

In [3], Shafee and Al-Amri have shown that the groupsAjjors1 and Stiox11
can be generated using the wreath product Lo(9)wr Mj; and an element of
order k—+1.

The Mathieu groups M;; and M5 are two groups of the well known simple

groups. In [6] as follows

My =<X,Y  Z|X"=Y"=(XZ2P=1,X Y =X'=Y"=Y?>. (1)

My =< XY  Z| X" =Y?*=2=(XY)=(X2P?=(Y2) =1, X3(YZ2)’X

(2)

M, can be generated using two permutations, the first is of order 11 and 4 as

follows :
My =< (1,2,..,11)(1,2,3,7,6)(3,4)(6,8)(4,8,5,9,10) > . (3)

M5 can be generated using two permutations, the first is of order 11 and 8 as

follows :

My =< (1,2,...,11)(1,2,3,7,6)(4,8,5,9, 10)(1, 12)(2, 11)(3, 6)(4, 8)(5, 9)(7, 10) > .

(4)

Here we will generate the wreath product Mjwr M5 using only two permu-
tations and we will show the structure of some groups containing the wreath
product My wrMis . The structure of the groups obtained is determined in
terms of wreath product (MyywrMig)wrCy .

Some related cases are also included. We will show that Si39,1 and Aq30x41
can be generated using the wreath product(MjjwrMiy)wrCy and a trans-
position in Sizgriand an element of order in Ajszopi1 . We will also show
thatSi3ar1 and Ajzor1can be generated using the wreath product Myjwr Mo

and an element of order .

2 PRELIMINARY RESULTS

DEFINITION 2.1.[4] Let A and B be groups of permutations on non empty
sets 1 and €y, respectively, where Q; N )y = ¢. The wreath product of A

(YZ)? >.
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and B is denote by AwrB and defined as AwrB = A% x, B, i.e., the direct
product of || copies of A and a mapping 6, where 6 : B — Aut(A®) is
defined by 6,(z) = 2V, for all x € A%. It follows that

| AwrB| = (|A])/| B]. (5)
THEOREM 2.2 [4] Let G be the group generated by the n-cycle (1,2,--+ ,n)

and the 2-cycle (n,a). If 1 < a <n, is an integer with n = am , then

G= SmU)TCa. (6)

THEOREM 2.3 [4] Let 1 < a # b < n be any integers.Let n be an
ood integer and let G the group generated by the n-cycle (1,2,--- n) and the
3-cycle (n,a,b). If hef (n,a,b) =1, then G = A, .While if n can be even
then

G=~S,. (7)

THEOREM 2.4[4] Let 1 < a <n beany integer. Let G =< (1,2,...,n), (n,a) =
If hef(n,a) =1. , then G = 5,.

THEOREM 2.5 [4] Let 1 < a # b < n be any integers.Let n be an
even integer and let G the group generated by the n-cycle (1,2,---,n) and
the 3-cycle (n,a,b). Then

G = A,. (8)

3 THE RESULTS

THEOREM 3.1 The wreath product MyywrMiscan be generated using two
permutations, the first is of order 132k and the second is of order 4.
Proof: Let G =< X, Y = Where: X = (1,2,3,...,132), Y = (3,4,5,6)(8,11,10,9)(12, 22)
(13,26,15,24)(14,23,16,25)(17,27)
(18,31,20,29)(19,28,21,30)
(1,12,16,13)(2,9,24,29)(3,21,30,22)
(4,28,7,20)(5,25,18,11)(10,31,17,23)

which is the product of 12 cycles each of order 4 and two of transpositions
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Let a; = ((XY)%[X,Y]%)!8. Then

ap = (11, 22, 33, 44, 55, 66, 77,88,99,110,121,132)

which is a cycle of order 12. Let ay = o] ' X.

It is easy to show that

an=(1,2,3, ..., 11)(12, 13, 14, ..., 22) ... (122,123, 124, ..., 132),

which is the product of 12 cycles each of order 11.

Let:f; = (Y2)X®= (9, 20)(12, 23)(31, 53)(34, 56),6; = (1 Y '=(1, 9,
12, 20)(2, 6)(4, 5) (7, 8)(13, 17)(15, 16)(18, 19)(23, 31, 45, 53)(24, 28)(26,
27)(29, 30)(34, 42)(35, 39)(37, 38)(40, 41)(46, 50)(48, 49)(51, 52)(56, 64)(57
61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71) (73, 74), 53 = (Y?B,)* =(1, 45)(12

23), 54 ﬁ(% o) =(11, 44)( 55, 66) and S5 = 53 = (11, 132)(44, 55). Let

Y

3= B a) . Hence

a3 =(12, 24)(48, 60).

Let ay = YX'az'X. We can conclude that

ay=(1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,31)(24,28) (26,27)(29,30)
(34,42)(35,39)(37,38)(40,41)(45,53)(46,50) (48,49) (51,52)(56,64)(57,61)(59,60)(62,63)(67,75)
(68,72)(70,71)(73,74),

which is a product of twenty eight transpositions.

Let K =< as a4, . Let 0 : K — M, be the mapping defined by

0(12i4j) =j, V1 <i<10,V1<j<12.

Since O(ay) = (1, 2, ..., 12) and O(ay) = (1, 9)(2, 6)(4, 5)(7, 8), then
K= 0(K) = Myy . Let Hy =< a3 , ag >=. Then Hy &= M;;. Moreover, K
conjugates Hy into Hy , Hy into Hs and so it conjugates Hy; into Hy , where

H; =< (4,114,224, 33414,44+14,55+1,66+14,77+14,88 417,99+, 110+
0,121 4+ 4) (i, 11 +2)(22 + 0,44 4+4) = V0 <i <11

7 . Hence we get My;wrM;; C GG . On the other hand, since

X =ajag and Y :a4a§( then G C MiywrMy; .

Hence G = MiswrM;1.0

THEOREM 3.2 The wreath product (MjowrMi;)wrCyk can be gener-
ated using two permutations, the first is of order 132k and an involution, for
all integers K > 1.

Proof :
Let o= (1,2, ..., 132k),
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7 = (k, 9k)(2k, 6k)(4k, 5k)(Tk, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)

(18k, 19k)(24k, 28k) (26K, 27k) (29K, 30k ) (34, 42k, 56k, 64k) (35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k) (48K, 49k)(51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k) (68K, 72k)(70k, 71k),

If k=1, then we get the groupMiowrM;; which can be considered as the
trivial wreath product MipwrM;; wr<id>. Assume that £ = 1 . Let «
—=I112,7°" we get an element § =a® =(k, 2k, 3k, ..., 132k). Let G; =< &'
.77 > be the groups acts on the sets I; ={ i, k+i, 2k+i,..., 131k+i }, for
all 1< ¢ < k. Since ﬂleFi = ¢ , then we get the direct product G; x Go
X... X Gy ,where, by Theorem 3.1 each G; & MpwrM;. Let f =610 =(1, 2,
oo k) (k+1, k+2, L0, 2k) L. (TEk+L, T6k+2, L., 132k). Let H =< 8 == C
.H conjugates G into G5 ,G5 into Gj3 ,...andGj into GG;. Hence we get the
wreath product (MiwrMy)wrCx C G . On the other hand, since 65 =
(1,2, ..., k k+1, k+2, ..., 2k, ..., 131k+1, 131k+2, ..., 132k) =c , then
o € (MyawrM)wrCk. Hence G =< 0,7 = = (MywrMi;)wrCg.O

THEOREM 3.3 The wreath product (MiswrM;)wrSk can be gener-
ated by using three permutations, the first is of order 132k, the second and
the third are involutions , for all K> 2.

Proof: Let 0 =(1,2,...,132k),

T = (k,9k)(2k, 6k)(4k, 5k)(Tk, 8k)(12k, 20k, 23k, 31k)(13k, 17k) (15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k) (29K, 30k) (34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k) (45k, 53k) (46K, 50k ) (48K, 49k)(51k, 52k) (57k, 61k)

(59k, 60k) (62K, 63k) (67k, 75k) (68K, T2k)(T0k, T1k), p = (k, a)(2k, k+a)(3k, 2k+

a)...(143k + 142k + a).

since by theorem 3.2 < o, 7 =& (Mwr M1 )wrCy and (1,2,....k) (k+1,...,2k)
€(Miwr My )wrCy then < (1,..., k) (k+1,....,2k)...(131k + 1, ...., 132k, p ==
Sk. Hence G =< o, 7, u == (MiswrMyi)wrSg. O

COROLLARY 3.4 The wreath product (MjswrMiq))wrAy can be gen-

erated by using three permutations, the first is of order 132k, the second is an
involution and the third is of order 3, for all odd integers k W 3.

Proof : The proof is similar to the previous one. ¢

THEOREM 3.5 The wreath product (MiswrMiy))wr(S,wrC,) can be

generated by using three permutations, the first is of order 132k, the second

.(13141,...,132Kk)
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and the third are involutions, where k£ = am be any integer with 1 < a < k.
Proof : Let o= (1,2,...,132k),

T = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k) (15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k) (34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k) (48K, 49k) (51K, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k) (68K, 72k)(70k, 71k), n = (k, a)(2k, k+a)(3k, 2k+
a)...(132k + 131k + a).

since by theorem 3.2 < o, 7 == (MwrM;))wrCy and (1,....k) (k+1,...,2k)...(131+1,
€(Myswr My )wrCyk then < (1,...,k)(k+1,....,2k)...(131k + 1, ..., 132k, p >=
(SmwrCy). Hence G =< 0,7, p == (MygwrMiy))wr(S,wrC,).0

THEOREM 3.6 Si32x11 and Ajssi1can be generated using the wreath
product (MiowrMi;)wrCy and a transposition in Sigary1 for all integers k

>1 and an element of order 11 in Aj3s5,1 for all odd integrs k > 1.
Proof : Let o= (1,2,...,132k),

T = (k,9k)(2k, 6k)(4k, 5k)(Tk, 8k)(12k, 20k, 23k, 31k)(13k, 17k) (15, 16k)

(18k, 19k)(24k, 28k)(26k, 27k) (29K, 30k) (34, 42k, 56k, 64k)(35k.39k)

(37k, 38k)(40k, 41k)(45k, 53k) (46K, 50k) (48K, 49k) (51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k),

p=(132k +1,1) and p\ = (1, k, 132k + 1) be four Permutations, of order
132k,2,2 and 3 respectively.

Let H =< 0,7 > .By theorem 3.2 H &= (MywrM;;)wrCk.

Case 1: Let G =< 0,7, " >.Let @ = oy, then o = (1,2, ..., 132k, 132k+1)
which is a cycle of order 132k+1. By theorem 2.4 G =< 0,7, 0 >=< a, u >=
S132K+1-

Case 2: Let G =< o, T, u\ > By theorem 2.5 < o, u\ >R Ayzopy1.9ince T
is an even Permutation, then G = Ay30x11.

THEOREM 3.7 .S1325 11 and Ajzax1can be generated using the wreath
product MjowrMi; and an element of order k+1 inSy3sx 1 and Ajzoxiq for
all integers k > 1.

Proof :Let G =< 0,7, u >, Where

o=(1,2,3,..,132)(132(k — (k — 1)) + 1, ..., 132(k — (k — 1)) + 132)
(13206 — 1) 41, ..., 132(k — 1) + 132),

..., 132k)
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7 =1(1,9)(2,6)(4,5(7,8)(12,20,23,31)(13,17)(15,16)(18,19)(24, 28)
(26,27)(29,30)(34, 42, 56,64, )(35,39)(37, 38)(40,41)(45, 53) (46, 50)
(48,49)(51,52)(57,61)(59,60)(62,63)(67,75)(68, 72)(70,71)(73,74)...
(132(k — 1)+ 1,132(k — 1) +9)...(132(k — 1) + 73,132(k — 1) 4+ 74),

and p = (132,154, ..., 132k, 132k + 1),Where k —i. > 0, be three permutations

of order 132,4 and k + 1 respectively.
Let H =< 0,7 > .Define the mapping 6 as follows

0(12(k — i) +j) = j V1 < j < 12

Hence H =< o,7 >& MjswrM;y,.Let o = po it is easy to show that o =
(1,2,...,132k, 132k + 1), Which is acycle of order 132k+1.

Let o = p® = (1,133,..,132(k — 1) + 1,132k + 1) and 3 = [u,p'\] =
(1,132,132k + 1). Since h.c.f(1,132,132k + 1) = 1, then by theorem 2.3
G =< 0,7, >= Si39x 11 or Ai3ax+1 depending on whether k is an odd or
an even integer respectively.Q.
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