Mathematica Aeterna, Vol. 3, 2013, no. 9, 779-785

On the Wreath product of Group $M_{11} w r M_{12}$ by some other groups

Basmah H. Shafee
Department of Mathematics, Um Al -Qura University, Makkah, Saudi Arabia e-mail:dr.basmah1391@hotmail.com

Mathematics Subject Classification: 20 B99

Keywords: Group presentaion, wreath product of groups, Mathieu group,.

Abstract

In this paper, we will generate the wreath product $M_{11} w r M_{12}$ using only two permutations. We will show the structure of some groups containing the wreath product $M_{11} w r M_{12}$. The structure of the group constructed is determined in terms of wreath product($\left.\left.M_{11} w r M_{12}\right)\right) w r C_{k}$. Some related cases are also included. Also, we will show that $S_{132 k+1}$ and $A_{132 k+1}$ can be generated using the wreath product($\left.M_{11} w r M_{12}\right) w r C_{k}$ and a transposition in $S_{132 k+1}$ and an element of order 3 in $A_{132 k+1}$. We will also show that $S_{132 k+1}$ and $A_{132 k+1}$ can be generated using the wreath product M_{11} wr M_{12} and an element of order k+1.

1 Introduction

Hammas and Al-Amri [1], have shown that $A_{2 n+1}$ of degree $2 n+1$ can be generated using a copy of S_{n} and an element of order 3 in $A_{2 n+1}$. They also gave the symmetric generating set of Groups $A_{k n+1}$ and $S_{k n+1}$ using S_{n} [5].

Shafee [2] showed that the groups $A_{k n+1}$ and $S_{k n+1}$ can be generated using the wreath product $A_{m} w r S_{a}$ and an element of order k+1. Also she showed
how to generate $S_{k n+1}$ and $A_{k n+1}$ symmetrically using n elements each of order $\mathrm{k}+1$.

In [3], Shafee and Al-Amri have shown that the groups $A_{110 k+1}$ and $S_{110 k+1}$ can be generated using the wreath product $L_{2}(9) w r M_{11}$ and an element of order $\mathrm{k}+1$.

The Mathieu groups M_{11} and M_{12} are two groups of the well known simple groups. In [6] as follows

$$
\begin{align*}
& M_{11}=<X, Y, Z \mid X^{11}=Y^{5}=(X Z)^{3}=1, X^{Y}=X^{4}=Y^{z}=Y^{2}> \tag{1}\\
& M_{12}=<X, Y, Z \mid X^{11}=Y^{2}=Z^{2}=(X Y)^{3}=(X Z)^{3}=(Y Z)^{10}=1, X^{2}(Y Z)^{2} X=(Y Z)^{2}> \tag{2}
\end{align*}
$$

M_{11} can be generated using two permutations, the first is of order 11 and 4 as follows:

$$
\begin{equation*}
M_{11}=<(1,2, \ldots, 11)(1,2,3,7,6)(3,4)(6,8)(4,8,5,9,10)> \tag{3}
\end{equation*}
$$

M_{12} can be generated using two permutations, the first is of order 11 and 8 as follows:
$M_{12}=<(1,2, \ldots, 11)(1,2,3,7,6)(4,8,5,9,10)(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)>$.

Here we will generate the wreath product $M_{11} w r M_{12}$ using only two permutations and we will show the structure of some groups containing the wreath product $M_{11} w r M_{12}$. The structure of the groups obtained is determined in terms of wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$.

Some related cases are also included. We will show that $S_{132 k+1}$ and $A_{132 k+1}$ can be generated using the wreath product $\left(M_{11} w r M_{12}\right) w r C_{k}$ and a transposition in $S_{132 k+1}$ and an element of order in $A_{132 k+1}$. We will also show that $S_{132 k+1}$ and $A_{132 k+1}$ can be generated using the wreath product $M_{11} w r M_{12}$ and an element of order .

2 PRELIMINARY RESULTS

DEFINITION 2.1.[4] Let A and B be groups of permutations on non empty sets Ω_{1} and Ω_{2}, respectively, where $\Omega_{1} \cap \Omega_{2}=\phi$. The wreath product of A
and B is denote by $A w r B$ and defined as $A w r B=A^{\Omega_{2}} \times_{\theta} B$, i.e., the direct product of $\left|\Omega_{2}\right|$ copies of A and a mapping θ, where $\theta: B \rightarrow \operatorname{Aut}\left(A^{\Omega_{2}}\right)$ is defined by $\theta_{y}(x)=x^{y}$, for all $x \in A^{\Omega_{2}}$. It follows that

$$
\begin{equation*}
|A w r B|=(|A|)^{\left|\Omega_{2}\right|}|B| . \tag{5}
\end{equation*}
$$

THEOREM 2.2 [4] Let G be the group generated by the n-cycle $(1,2, \cdots, n)$ and the 2-cycle (n, a). If $1<a<n$, is an integer with $n=a m$, then

$$
\begin{equation*}
G \cong S_{m} w r C_{a} \tag{6}
\end{equation*}
$$

THEOREM 2.3 [4] Let $1 \leq a \neq b<n$ be any integers. Let n be an ood integer and let G the group generated by the n-cycle $(1,2, \cdots, n)$ and the 3 -cycle (n, a, b). If $h c f(n, a, b)=1$, then $G \cong A_{n}$. While if n can be even then

$$
\begin{equation*}
G \cong S_{n} \tag{7}
\end{equation*}
$$

THEOREM 2.4[4] Let $1 \leq a \leq n$ be any integer. Let $G=\prec(1,2, \ldots, n),(n, a) \succ$. If $h c f(n, a)=1$., then $G \cong S_{n}$.

THEOREM 2.5 [4] Let $1 \leq a \neq b<n$ be any integers. Let n be an even integer and let G the group generated by the n-cycle $(1,2, \cdots, n)$ and the 3-cycle (n, a, b). Then

$$
\begin{equation*}
G \cong A_{n} \tag{8}
\end{equation*}
$$

3 THE RESULTS

THEOREM 3.1 The wreath product $M_{11} w r M_{12}$ can be generated using two permutations, the first is of order $132 k$ and the second is of order 4.
Proof: Let $G=\prec X, Y \succ$,Where: $X=(1,2,3, \ldots, 132), Y=(3,4,5,6)(8,11,10,9)(12,22)$
$(13,26,15,24)(14,23,16,25)(17,27)$
$(18,31,20,29)(19,28,21,30)$
$(1,12,16,13)(2,9,24,29)(3,21,30,22)$
$(4,28,7,20)(5,25,18,11)(10,31,17,23)$
which is the product of 12 cycles each of order 4 and two of transpositions

Let $\alpha_{1}=\left((X Y)^{6}[X, Y]^{5}\right)^{18}$. Then
$\alpha_{1}=(11,22,33,44,55,66,77,88,99,110,121,132)$
which is a cycle of order 12 . Let $\alpha_{2}=\alpha_{1}^{-1} X$.
It is easy to show that
$\alpha_{2}=(1,2,3, \ldots, 11)(12,13,14, \ldots, 22) \ldots(122,123,124, \ldots, 132)$,
which is the product of 12 cycles each of order 11 .
Let: $\beta_{1}=\left(Y^{2}\right)^{(X Y)^{18}}=(9,20)(12,23)(31,53)(34,56), \beta_{2}=\beta_{1} Y^{-1}=(1,9$, $12,20)(2,6)(4,5)(7,8)(13,17)(15,16)(18,19)(23,31,45,53)(24,28)(26$, $27)(29,30)(34,42)(35,39)(37,38)(40,41)(46,50)(48,49)(51,52)(56,64)(57$, $61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74), \beta_{3}=\left(Y^{3} \beta_{2}\right)^{2}=(1,45)(12$, $23), \beta_{4}=\beta_{3}^{\left(\alpha_{2}^{-1} \alpha_{1}^{3}\right)}=(11,44)(55,66)$ and $\beta_{5}=\beta_{4}^{\beta_{3}^{\alpha_{2}^{-1}}}=(11,132)(44,55)$. Let $\alpha_{3}=\beta_{5}^{\left.\beta_{3}^{\left(\alpha_{2}^{-1}\right.} \alpha_{1}\right)}$. Hence
$\alpha 3=(12,24)(48,60)$.
Let $\alpha_{4}=Y X^{-1} \alpha_{3}^{-1} X$. We can conclude that
$\alpha_{4}=(1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,31)(24,28)(26,27)(29,30)$
$(34,42)(35,39)(37,38)(40,41)(45,53)(46,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)$
$(68,72)(70,71)(73,74)$,
which is a product of twenty eight transpositions.
Let $K=\prec \alpha_{2,} \alpha_{4 \succ}$. Let $\theta: K \rightarrow M_{12}$ be the mapping defined by
$\theta(12 \mathrm{i}+\mathrm{j})=\mathrm{j}, \forall 1 \leq i \leq 10, \forall 1 \leq j \leq 12$.
Since $\theta\left(\alpha_{2}\right)=(1,2, \ldots, 12)$ and $\theta\left(\alpha_{4}\right)=(1,9)(2,6)(4,5)(7,8)$, then $\mathrm{K} \cong \theta(K)=M_{12}$. Let $H_{0}=\prec \alpha_{1}, \alpha_{3} \succ$. Then $H_{0} \cong M_{11}$. Moreover, K conjugates H_{0} into H_{1}, H_{1} into H_{2} and so it conjugates H_{11} into H_{0}, where
$H_{i}=\prec(i, 11+i, 22+i, 33+i, 44+i, 55+i, 66+i, 77+i, 88+i, 99+i, 110+$ $i, 121+i)(i, 11+i)(22+i, 44+i) \succ \forall 0 \leq i \leq 11$
". Hence we get $M_{12} w r M_{11} \subseteq G$. On the other hand, since
$\mathrm{X}=\alpha_{1} \alpha_{2}$ and $\mathrm{Y}=\alpha_{4} \alpha_{3}^{X}$ then $G \subseteq M_{12} w r M_{11}$.
Hence $G=M_{12} w r M_{11} \cdot \diamond$

THEOREM 3.2 The wreath product $\left(M_{12} w r M_{11}\right) w r C_{K}$ can be generated using two permutations, the first is of order $132 k$ and an involution, for all integers $K \succeq 1$.

Proof :

Let $\sigma=(1,2, \ldots, 132 k)$,
$\tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k, 17 k)(15,16 k)$
$(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34,42 k, 56 k, 64 k)(35 k .39 k)$
$(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)$
$(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k, 71 k)$,
If $\mathrm{k}=1$, then we get the group M_{12} wr M_{11} which can be considered as the trivial wreath product $M_{12} w r M_{11} \mathrm{wr}<\mathrm{id}>$. Assume that $k \succ 1$. Let α $=\Pi_{i=0}^{12} \tau^{\sigma^{i k}}$, we get an element $\delta=\alpha^{45}=(\mathrm{k}, 2 \mathrm{k}, 3 \mathrm{k}, \ldots, 132 \mathrm{k})$. Let $G_{I}=\prec \delta^{\sigma^{i}}$, $\tau^{\sigma^{i}} \succ$ be the groups acts on the sets $\Gamma_{i}=\{\mathrm{i}, \mathrm{k}+\mathrm{i}, 2 \mathrm{k}+\mathrm{i}, \ldots, 131 \mathrm{k}+\mathrm{i}\}$, for all $1 \leq i \leq k$. Since $\cap_{i=1}^{k} \Gamma_{i}=\phi$, then we get the direct product $G_{1} \times G_{2}$ $\times \ldots \times G_{k}$, where, by Theorem 3.1 each $G_{i} \approx M_{12} w r M_{11}$. Let $\beta=\delta^{-1} \sigma=(1,2$, $\ldots, \mathrm{k})(\mathrm{k}+1, \mathrm{k}+2, \ldots, 2 \mathrm{k}) \ldots(76 \mathrm{k}+1,76 \mathrm{k}+2, \ldots, 132 \mathrm{k})$. Let $H=\prec \beta \succ \approx C_{k}$. H conjugates G_{1} into G_{2}, G_{2} into G_{3}, \ldots and G_{k} into G_{1}. Hence we get the wreath product $\left(M_{12} w r M_{11}\right) w r C_{K} \subseteq G$. On the other hand, since $\delta \beta=$ $(1,2, \ldots, \mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, 2 \mathrm{k}, \ldots, 131 \mathrm{k}+1,131 \mathrm{k}+2, \ldots, 132 \mathrm{k})=\sigma$, then $\sigma \in\left(M_{12} w r M_{11}\right) w r C_{K}$. Hence $G=\prec \sigma, \tau \succ \approx\left(M_{12} w r M_{11}\right) w r C_{K} . \diamond$

THEOREM 3.3 The wreath product $\left(M_{12} w r M_{11}\right) w r S_{K}$ can be generated by using three permutations, the first is of order 132 k , the second and the third are involutions, for all $\mathrm{K} \geq 2$.
Proof: Let $\sigma=(1,2, \ldots, 132 k)$,
$\tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k, 17 k)(15,16 k)$
$(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34,42 k, 56 k, 64 k)(35 k .39 k)$
$(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)$
$(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k, 71 k), \mu=(k, a)(2 k, k+a)(3 k, 2 k+$
a) $\ldots(143 k+142 k+a)$.
since by theorem $3.2 \prec \sigma, \tau \succ \approx\left(M_{12} w r M_{11}\right) w r C_{k}$ and $(1,2, \ldots, \mathrm{k})(\mathrm{k}+1, \ldots, 2 \mathrm{k}) \ldots(131+1, \ldots, 132 \mathrm{k})$
$\in\left(M_{12} w r M_{11}\right) w r C_{K}$ then $\prec(1, \ldots, k)(k+1, \ldots, 2 k) \ldots(131 k+1, \ldots ., 132 k, \mu \succ \approx$ S_{k}. Hence $G=\prec \sigma, \tau, \mu \succ \approx\left(M_{12} w r M_{11}\right) w r S_{k} . \diamond$

COROLLARY 3.4 The wreath product $\left.\left(M_{12} w r M_{11}\right)\right) w r A_{k}$ can be generated by using three permutations, the first is of order 132 k , the second is an involution and the third is of order 3 , for all odd integers $\mathrm{k} \square 3$.
Proof : The proof is similar to the previous one. \diamond

THEOREM 3.5 The wreath product $\left.\left(M_{12} w r M_{11}\right)\right) w r\left(S_{m} w r C_{a}\right)$ can be generated by using three permutations, the first is of order 132 k , the second
and the third are involutions, where $k=a m$ be any integer with $1<a<k$.
Proof : Let $\quad \sigma=(1,2, \ldots, 132 k)$,
$\tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k, 17 k)(15,16 k)$
$(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34,42 k, 56 k, 64 k)(35 k .39 k)$
$(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)$
$(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k, 71 k), \mu=(k, a)(2 k, k+a)(3 k, 2 k+$ a) $\ldots(132 k+131 k+a)$.
since by theorem $\left.3.2 \prec \sigma, \tau \succ \approx\left(M_{12} w r M_{11}\right)\right) w r C_{k}$ and $(1, \ldots, \mathrm{k})(\mathrm{k}+1, \ldots, 2 \mathrm{k}) \ldots(131+1, \ldots, 132 \mathrm{k})$ $\in\left(M_{12} w r M_{11}\right) w r C_{K}$ then $\prec(1, \ldots, k)(k+1, \ldots, 2 k) \ldots(131 k+1, \ldots, 132 k, \mu \succ \approx$ $\left(S_{m} w r C_{a}\right)$. Hence $\left.G=\prec \sigma, \tau, \mu \succ \approx\left(M_{12} w r M_{11}\right)\right) w r\left(S_{m} w r C_{a}\right) . \diamond$

THEOREM 3.6 $S_{132 K+1}$ and $A_{132 K+1}$ can be generated using the wreath product $\left(M_{12} w r M_{11}\right) w r C_{k}$ and a transposition in $S_{132 K+1}$ for all integers k >1 and an element of order 11 in $A_{132 K+1}$ for all odd integrs $\mathrm{k}>1$.
Proof : Let $\sigma=(1,2, \ldots, 132 k)$,
$\tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k, 17 k)(15,16 k)$
$(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34,42 k, 56 k, 64 k)(35 k .39 k)$
$(37 k, 38 k)(40 k, 41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)$
$(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k, 71 k)$,
$\mu=(132 k+1,1)$ and $\mu \backslash=(1, k, 132 k+1)$ be four Permutations, of order $132 \mathrm{k}, 2,2$ and 3 respectively.
Let $H=<\sigma, \tau>$.By theorem $3.2 H \approx\left(M_{12} w r M_{11}\right) w r C_{K}$.
Case 1: Let $G=<\sigma, \tau, \mu \gg$.Let $\alpha=\sigma \mu$, then $\alpha=(1,2, \ldots, 132 k, 132 k+1)$ which is a cycle of order $132 \mathrm{k}+1$. By theorem 2.4 $G=<\sigma, \tau, \mu>=<\alpha, \mu>\approx$ $S_{132 \mathrm{~K}+1}$.

Case 2: Let $G=<\sigma, \tau, \mu \backslash>$.By theorem $2.5<\sigma, \mu \backslash>\approx A_{132 K+1}$. Since τ is an even Permutation, then $G \approx A_{132 K+1}$.

THEOREM 3.7. $S_{132 K+1}$ and $A_{132 K+1}$ can be generated using the wreath product $M_{12} w r M_{11}$ and an element of order $\mathrm{k}+1 \mathrm{in} S_{132 K+1}$ and $A_{132 K+1}$ for all integers $\mathrm{k} \geq 1$.
Proof :Let $G=<\sigma, \tau, \mu>$, Where

$$
\begin{aligned}
& \sigma=(1,2,3, \ldots, 132)(132(k-(k-1))+1, \ldots, 132(k-(k-1))+132) \\
& \quad \ldots(132(k-1)+1, \ldots, 132(k-1)+132)
\end{aligned}
$$

$$
\begin{gathered}
\tau=(1,9)(2,6)(4,5(7,8)(12,20,23,31)(13,17)(15,16)(18,19)(24,28) \\
(26,27)(29,30)(34,42,56,64,)(35,39)(37,38)(40,41)(45,53)(46,50) \\
(48,49)(51,52)(57,61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74) \ldots \\
(132(k-1)+1,132(k-1)+9) \ldots(132(k-1)+73,132(k-1)+74)
\end{gathered}
$$

and $\mu=(132,154, \ldots, 132 k, 132 k+1)$, Where $k-i .>0$, be three permutations of order 132,4 and $k+1$ respectively.
Let $H=<\sigma, \tau>$.Define the mapping θ as follows

$$
\theta(12(k-i)+j)=j \forall 1 \leq j \leq 12
$$

Hence $H=<\sigma, \tau>\approx M_{12} w r M_{11}$. Let $\alpha=\mu \sigma$ it is easy to show that $\alpha=$ $(1,2, \ldots, 132 k, 132 k+1)$, Which is acycle of order $132 \mathrm{k}+1$.
Let $\mu \iota=\mu^{\sigma}=(1,133, \ldots, 132(k-1)+1,132 k+1)$ and $\beta=[\mu, \mu]=$ $(1,132,132 k+1)$. Since h.c. $f(1,132,132 k+1)=1$, then by theorem 2.3 $G=<\sigma, \tau, \mu>\approx S_{132 K+1}$ or $A_{132 K+1}$ depending on whether k is an odd or an even integer respectively. \rangle.

References

[1] A.M. Hammas and I. R. AL-Amri,Symmetric generating set of the alternating groups $A_{2 n+1}$,JKAU:Educ.Sci.,7(1994),3-7.
[2] B. H. Shafee, Symmetric generating set of the groups $A_{k n+1}$ and $S_{k n+1}$ using the wreath product A_{m} wr S_{a}, Far East Journal of Math.Sci.(FJMS),28(3)(2008)707-711.
[3] B. H. Shafee and I.R.Al-Amri, On the Structure of Some Groups Containing $L_{2}(9)$ wr M_{11},International Journal of Algebra, 6(17)(2012), 857-862.
[4] Ibrahim R. Al-Amri; Computational Methods in Permutation Groups, Ph.D. Thesis, University of St. Andrews, September (1992).
[5] Ibrahim R. Al-Amri, and A.M. Hammas, Symmetric generating set of groups $A_{k n+1}$ and $S_{k n+1}$, JKAU:Sci., $7(1995) 111-115$.
[6] J.H. Conway, R.C. Curtis, S.V. Norton, R.A. Parker, R.A. Wilson; Atlas of Finite Groups, Oxford Univ. Press, New York, (1985).

