On the Wreath product of Group

$M_{11}wrM_{12}$ by some other groups

Basmah H. Shafee

Department of Mathematics, Um Al -Qura University, Makkah, Saudi Arabia $e-mail: dr.basmah_1 391 @hotmail.com$

Mathematics Subject Classification: 20 B99

Keywords: Group presentaion, wreath product of groups, Mathieu group,.

Abstract

In this paper, we will generate the wreath product $M_{11}wr M_{12}$ using only two permutations. We will show the structure of some groups containing the wreath product $M_{11}wr M_{12}$. The structure of the group constructed is determined in terms of wreath product $(M_{11}wr M_{12})wrC_k$. Some related cases are also included. Also, we will show that S_{132k+1} and A_{132k+1} can be generated using the wreath product $(M_{11}wr M_{12})wrC_k$ and a transposition in S_{132k+1} and an element of order 3 in A_{132k+1} . We will also show that S_{132k+1} and A_{132k+1} can be generated using the wreath product $M_{11}wr M_{12}$ and an element of order k+1.

1 Introduction

Hammas and Al-Amri [1], have shown that A_{2n+1} of degree 2n + 1 can be generated using a copy of S_n and an element of order 3 in A_{2n+1} . They also gave the symmetric generating set of Groups A_{kn+1} and S_{kn+1} using S_n [5].

Shafee [2] showed that the groups A_{kn+1} and S_{kn+1} can be generated using the wreath product $A_m wr S_a$ and an element of order k+1. Also she showed how to generate S_{kn+1} and A_{kn+1} symmetrically using n elements each of order k+1.

In [3], Shafee and Al-Amri have shown that the groups A_{110k+1} and S_{110k+1} can be generated using the wreath product $L_2(9)wr M_{11}$ and an element of order k+1.

The Mathieu groups M_{11} and M_{12} are two groups of the well known simple groups. In [6] as follows

$$M_{11} = \langle X, Y , Z | X^{11} = Y^5 = (XZ)^3 = 1, X^Y = X^4 = Y^z = Y^2 \rangle .$$
(1)

$$M_{12} = \langle X, Y , Z | X^{11} = Y^2 = Z^2 = (XY)^3 = (XZ)^3 = (YZ)^{10} = 1, X^2(YZ)^2 X = (YZ)^2 \rangle .$$
(2)

 M_{11} can be generated using two permutations, the first is of order 11 and 4 as follows :

$$M_{11} = \langle (1, 2, ..., 11)(1, 2, 3, 7, 6)(3, 4)(6, 8)(4, 8, 5, 9, 10) \rangle .$$
(3)

 M_{12} can be generated using two permutations, the first is of order 11 and 8 as follows :

$$M_{12} = <(1, 2, ..., 11)(1, 2, 3, 7, 6)(4, 8, 5, 9, 10)(1, 12)(2, 11)(3, 6)(4, 8)(5, 9)(7, 10) >$$
(4)

Here we will generate the wreath product $M_{11}wrM_{12}$ using only two permutations and we will show the structure of some groups containing the wreath product $M_{11}wrM_{12}$. The structure of the groups obtained is determined in terms of wreath product $(M_{11}wrM_{12})wrC_k$.

Some related cases are also included. We will show that S_{132k+1} and A_{132k+1} can be generated using the wreath $\operatorname{product}(M_{11}wrM_{12})wrC_k$ and a transposition in S_{132k+1} and an element of order in A_{132k+1} . We will also show that S_{132k+1} and A_{132k+1} can be generated using the wreath product $M_{11}wrM_{12}$ and an element of order .

2 PRELIMINARY RESULTS

DEFINITION 2.1.[4] Let A and B be groups of permutations on non empty sets Ω_1 and Ω_2 , respectively, where $\Omega_1 \cap \Omega_2 = \phi$. The wreath product of A

780

and B is denote by AwrB and defined as $AwrB = A^{\Omega_2} \times_{\theta} B$, i.e., the direct product of $|\Omega_2|$ copies of A and a mapping θ , where $\theta : B \to Aut(A^{\Omega_2})$ is defined by $\theta_y(x) = x^y$, for all $x \in A^{\Omega_2}$. It follows that

$$|AwrB| = (|A|)^{|\Omega_2|}|B|.$$
 (5)

THEOREM 2.2 [4] Let G be the group generated by the n-cycle $(1, 2, \dots, n)$ and the 2-cycle (n, a). If 1 < a < n, is an integer with n = am, then

$$G \cong S_m w r C_a. \tag{6}$$

THEOREM 2.3 [4] Let $1 \le a \ne b < n$ be any integers. Let n be an ood integer and let G the group generated by the n-cycle $(1, 2, \dots, n)$ and the 3-cycle (n, a, b). If hcf(n, a, b) = 1, then $G \cong A_n$. While if n can be even then

$$G \cong S_n. \tag{7}$$

THEOREM 2.4[4] Let $1 \le a \le n$ be any integer. Let $G = \prec (1, 2, ..., n), (n, a) \succ$. If hcf(n, a) = 1, then $G \cong S_n$.

THEOREM 2.5 [4] Let $1 \le a \ne b < n$ be any integers. Let n be an even integer and let G the group generated by the n-cycle $(1, 2, \dots, n)$ and the 3-cycle (n, a, b). Then

$$G \cong A_n. \tag{8}$$

3 THE RESULTS

THEOREM 3.1 The wreath product $M_{11}wrM_{12}$ can be generated using two permutations, the first is of order 132k and the second is of order 4.

Proof: Let $G = \prec X, Y \succ$, Where: X = (1, 2, 3, ..., 132), Y = (3, 4, 5, 6)(8, 11, 10, 9)(12, 22)(13,26,15,24)(14,23,16,25)(17,27)

(18,31,20,29)(19,28,21,30)

(1,12,16,13)(2,9,24,29)(3,21,30,22)

(4,28,7,20)(5,25,18,11)(10,31,17,23)

which is the product of 12 cycles each of order 4 and two of transpositions

Let $\alpha_1 = ((XY)^6 [X, Y]^5)^{18}$. Then $\alpha_1 = (11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132)$ which is a cycle of order 12. Let $\alpha_2 = \alpha_1^{-1} X$. It is easy to show that $\alpha_2 = (1, 2, 3, \dots, 11)(12, 13, 14, \dots, 22) \dots (122, 123, 124, \dots, 132),$ which is the product of 12 cycles each of order 11. Let: $\beta_1 = (Y^2)^{(XY)^{18}} = (9, 20)(12, 23)(31, 53)(34, 56), \beta_2 = \beta_1 Y^{-1} = (1, 9, 56)$ $61)(59,\ 60)(62,\ 63)(67,\ 75)(68,\ 72)(70,\ 71)\ (73,\ 74), \beta_3=(Y^3\beta_2)^2=(1,\ 45)(12,\ 73)(12,\ 7$ 23), $\beta_4 = \beta_3^{(\alpha_2^{-1}\alpha_1^3)} = (11, 44)(55, 66) \text{ and } \beta_5 = \beta_4^{\beta_3^{\alpha_2^{-1}}} = (11, 132)(44, 55).$ Let $\alpha_3 = \beta_5^{\beta_3^{(\alpha_2^{-1}\alpha_1)}}$. Hence $\alpha 3 = (12, 24)(48, 60).$ Let $\alpha_4 = Y X^{-1} \alpha_3^{-1} X$. We can conclude that $\alpha_4 = (1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,31)(24,28)(26,27)(29,30)$ (34,42)(35,39)(37,38)(40,41)(45,53)(46,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74),which is a product of twenty eight transpositions.

Let $K = \prec \alpha_{2}, \alpha_{4\succ}$. Let $\theta: K \to M_{12}$ be the mapping defined by

 $\theta(12\mathbf{i}+\mathbf{j}) = \mathbf{j}, \forall 1 \le i \le 10, \forall 1 \le j \le 12.$

Since $\theta(\alpha_2) = (1, 2, ..., 12)$ and $\theta(\alpha_4) = (1, 9)(2, 6)(4, 5)(7, 8)$, then $K \cong \theta(K) = M_{12}$. Let $H_0 = \prec \alpha_1$, $\alpha_3 \succ$. Then $H_0 \cong M_{11}$. Moreover, K conjugates H_0 into H_1 , H_1 into H_2 and so it conjugates H_{11} into H_0 , where

 $H_i = \prec (i, 11+i, 22+i, 33+i, 44+i, 55+i, 66+i, 77+i, 88+i, 99+i, 110+i, 121+i)(i, 11+i)(22+i, 44+i) \succ \forall 0 \le i \le 11$

" . Hence we get $M_{12}wrM_{11} \subseteq G$. On the other hand, since

 $X = \alpha_1 \alpha_2$ and $Y = \alpha_4 \alpha_3^X$ then $G \subseteq M_{12} wr M_{11}$.

Hence $G = M_{12} wr M_{11}$.

THEOREM 3.2 The wreath product $(M_{12}wrM_{11})wrC_K$ can be generated using two permutations, the first is of order 132k and an involution, for all integers $K \succeq 1$.

Proof:

Let $\sigma = (1, 2, ..., 132k),$

782

 $\begin{aligned} \tau &= (k,9k)(2k,6k)(4k,5k)(7k,8k)(12k,20k,23k,31k)(13k,17k)(15,16k) \\ (18k,19k)(24k,28k)(26k,27k)(29k,30k)(34,42k,56k,64k)(35k.39k) \\ (37k,38k)(40k,41k)(45k,53k)(46k,50k)(48k,49k)(51k,52k)(57k,61k) \\ (59k,60k)(62k,63k)(67k,75k)(68k,72k)(70k,71k), \end{aligned}$

If k=1, then we get the group $M_{12}wrM_{11}$ which can be considered as the trivial wreath product $M_{12}wrM_{11}$ wr<id>. Assume that $k \succ 1$. Let $\alpha = \prod_{i=0}^{12} \tau^{\sigma^{ik}}$, we get an element $\delta = \alpha^{45} = (k, 2k, 3k, \ldots, 132k)$. Let $G_I = \prec \delta^{\sigma^i}$, $\tau^{\sigma^i} \succ$ be the groups acts on the sets $\Gamma_i = \{$ i, k+i, 2k+i, \ldots, 131k+i $\}$, for all $1 \le i \le k$. Since $\bigcap_{i=1}^k \Gamma_i = \phi$, then we get the direct product $G_1 \times G_2 \times \ldots \times G_k$, where, by Theorem 3.1 each $G_i \cong M_{12}wrM_{11}$. Let $\beta = \delta^{-1}\sigma = (1, 2, \ldots, k)(k+1, k+2, \ldots, 2k) \ldots$ (76k+1, 76k+2, ..., 132k). Let $H = \prec \beta \succ \cong C_k$. H conjugates G_1 into G_2 , G_2 into G_3 , ... and G_k into G_1 . Hence we get the wreath product $(M_{12}wrM_{11})wrC_K \subseteq G$. On the other hand, since $\delta\beta = (1, 2, \ldots, k, k+1, k+2, \ldots, 2k, \ldots, 131k+1, 131k+2, \ldots, 132k) = \sigma$, then $\sigma \in (M_{12}wrM_{11})wrC_K$. Hence $G = \prec \sigma, \tau \succ \cong (M_{12}wrM_{11})wrC_K.$

THEOREM 3.3 The wreath product $(M_{12}wrM_{11})wrS_K$ can be generated by using three permutations, the first is of order 132k, the second and the third are involutions, for all $K \ge 2$.

Proof: Let $\sigma = (1, 2, ..., 132k)$,

 $\tau = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)$

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34, 42k, 56k, 64k)(35k, 39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)

 $(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k), \mu = (k, a)(2k, k+a)(3k, 2k+a)(3k, 2k+a)(3k$

$$a)...(143k + 142k + a)$$

since by theorem $3.2 \prec \sigma, \tau \succ \cong (M_{12}wrM_{11})wrC_k$ and $(1,2,...,k)(k+1,...,2k)...(131+1,...,132k) \in (M_{12}wrM_{11})wrC_K$ then $\prec (1,...,k)(k+1,...,2k)...(131k+1,...,132k,\mu \succ \cong S_k$. Hence $G = \prec \sigma, \tau, \mu \succ \cong (M_{12}wrM_{11})wrS_k$.

COROLLARY 3.4 The wreath product $(M_{12}wrM_{11}))wrA_k$ can be generated by using three permutations, the first is of order 132k, the second is an involution and the third is of order 3, for all odd integers k \blacksquare 3. **Proof** : The proof is similar to the previous one. \Diamond

THEOREM 3.5 The wreath product $(M_{12}wrM_{11})wr(S_mwrC_a)$ can be generated by using three permutations, the first is of order 132k, the second

784

and the third are involutions, where k = am be any integer with 1 < a < k. **Proof**: Let $\sigma = (1, 2, ..., 132k)$,

$$\begin{split} \tau &= (k,9k)(2k,6k)(4k,5k)(7k,8k)(12k,20k,23k,31k)(13k,17k)(15,16k) \\ &(18k,19k)(24k,28k)(26k,27k)(29k,30k)(34,42k,56k,64k)(35k.39k) \\ &(37k,38k)(40k,41k)(45k,53k)(46k,50k)(48k,49k)(51k,52k)(57k,61k) \\ &(59k,60k)(62k,63k)(67k,75k)(68k,72k)(70k,71k), \mu = (k,a)(2k,k+a)(3k,2k+a)...(132k+131k+a). \end{split}$$

since by theorem $3.2 \prec \sigma, \tau \succ \cong (M_{12}wrM_{11}))wrC_k$ and $(1,...,k)(k+1,...,2k)...(131+1,...,132k) \in (M_{12}wrM_{11})wrC_k$ then $\prec (1,...,k)(k+1,...,2k)...(131k+1,...,132k,\mu \succ \cong (S_mwrC_a)$. Hence $G = \prec \sigma, \tau, \mu \succ \cong (M_{12}wrM_{11}))wr(S_mwrC_a).\Diamond$

THEOREM 3.6 S_{132K+1} and A_{132K+1} can be generated using the wreath product $(M_{12}wrM_{11})wrC_k$ and a transposition in S_{132K+1} for all integers k >1 and an element of order 11 in A_{132K+1} for all odd integrs k > 1. **Proof :** Let $\sigma = (1, 2, ..., 132k)$,

 $\tau = (k, 9k)(2k, 6k)(4k, 5k)(7k, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15, 16k)$

(18k, 19k)(24k, 28k)(26k, 27k)(29k, 30k)(34, 42k, 56k, 64k)(35k. 39k)

(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k, 52k)(57k, 61k)

(59k, 60k)(62k, 63k)(67k, 75k)(68k, 72k)(70k, 71k),

 $\mu = (132k + 1, 1)$ and $\mu^{\setminus} = (1, k, 132k + 1)$ be four Permutations, of order 132k,2,2 and 3 respectively.

Let $H = \langle \sigma, \tau \rangle$. By theorem 3.2 $H \cong (M_{12} wr M_{11}) wr C_K$.

Case 1: Let $G = \langle \sigma, \tau, \mu \rangle >$.Let $\alpha = \sigma \mu$, then $\alpha = (1, 2, ..., 132k, 132k+1)$ which is a cycle of order 132k+1. By theorem 2.4 $G = \langle \sigma, \tau, \mu \rangle = \langle \alpha, \mu \rangle \cong S_{132K+1}$.

Case 2: Let $G = \langle \sigma, \tau, \mu \rangle > .$ By theorem $2.5 < \sigma, \mu \rangle > \cong A_{132K+1}.$ Since τ is an even Permutation, then $G \cong A_{132K+1}$.

THEOREM 3.7 S_{132K+1} and A_{132K+1} can be generated using the wreath product $M_{12}wrM_{11}$ and an element of order k+1 in S_{132K+1} and A_{132K+1} for all integers k ≥ 1 .

Proof :Let $G = \langle \sigma, \tau, \mu \rangle$, Where

$$\sigma = (1, 2, 3, ..., 132)(132(k - (k - 1)) + 1, ..., 132(k - (k - 1)) + 132)$$

...(132(k - 1) + 1, ..., 132(k - 1) + 132),

On the Wreath product of Group $M_{11}wrM_{12}$ by some other groups

$$\tau = (1,9)(2,6)(4,5(7,8)(12,20,23,31)(13,17)(15,16)(18,19)(24,28)$$

$$(26,27)(29,30)(34,42,56,64,)(35,39)(37,38)(40,41)(45,53)(46,50)$$

$$(48,49)(51,52)(57,61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74)...$$

$$(132(k-1)+1,132(k-1)+9)...(132(k-1)+73,132(k-1)+74),$$

and $\mu = (132, 154, \dots, 132k, 132k+1)$, Where k - i > 0, be three permutations of order 132, 4 and k + 1 respectively.

Let $H = \langle \sigma, \tau \rangle$. Define the mapping θ as follows

$$\theta(12(k-i)+j) = j \ \forall 1 \le j \le 12$$

Hence $H = \langle \sigma, \tau \rangle \cong M_{12} wr M_{11}$. Let $\alpha = \mu \sigma$ it is easy to show that $\alpha = (1, 2, ..., 132k, 132k + 1)$, Which is acycle of order 132k+1.

Let $\mu \iota = \mu^{\sigma} = (1, 133, ..., 132(k - 1) + 1, 132k + 1)$ and $\beta = [\mu, \mu^{\setminus}] = (1, 132, 132k + 1)$. Since h.c.f(1, 132, 132k + 1) = 1, then by theorem 2.3 $G = \langle \sigma, \tau, \mu \rangle \approx S_{132K+1}$ or A_{132K+1} depending on whether k is an odd or an even integer respectively.

References

- [1] A.M. Hammas and I. R. AL-Amri, Symmetric generating set of the alternating groups A_{2n+1} , JKAU: Educ. Sci., 7(1994), 3-7.
- [2] B. H. Shafee, Symmetric generating set of the groups A_{kn+1} and S_{kn+1} using the wreath product A_m wr S_a , Far East Journal of Math.Sci.(FJMS),28(3)(2008)707-711.
- [3] B. H. Shafee and I.R.Al-Amri, On the Structure of Some Groups Containing $L_2(9)$ wr M_{11} , International Journal of Algebra, 6(17)(2012), 857-862.
- [4] Ibrahim R. Al-Amri; Computational Methods in Permutation Groups, Ph.D. Thesis, University of St. Andrews, September (1992).
- [5] Ibrahim R. Al-Amri, and A.M. Hammas, Symmetric generating set of groups A_{kn+1} and S_{kn+1} , JKAU:Sci., 7(1995)111-115.
- [6] J.H. Conway, R.C. Curtis, S.V. Norton, R.A. Parker, R.A. Wilson; Atlas of Finite Groups, Oxford Univ. Press, New York, (1985).