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Abstract

In this paper, we study the Hyers - Ulam stability and the Super-
stability of the functional equation
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1 Introduction

In 1940, S.M.Ulam [20] while he was giving a series of lectures in the University
of Wisconsin; he raised a question concerning the stability of homomorphism.

Let G; be a group and let G5 be a metric group with the metric d(.,.).
Given € > 0 does there exist a 6 > 0 such that if a mapping h : G; — Gs
satisfies the inequality d(h(zy),h(z)h(y)) < § for all z,y € G; . Then a
homomorphism H : G; — G exists with d(h(x), H(x)) < € for all z € G417
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The first partial solution to Ulam’s question was provided by D.H. Hyers [6].
Indeed, he proved the following celebrated theorem.

Theorem (D.H. Hyers): Assume that X and Y are Banach spaces. If a
function f : X — Y satisfies the inequality

[fz+y)— fl@) = fyl <e (1)
for some £ > 0 and for all x inX, then the limit

a(x) = lim 27" f(2"z)

n—oo

exist for each  in X and a : X — Y is the unique additive function such that

If(z) —a(x)]| <e

for any z € X, moreover, if f(tx) is continuous in ¢ for each filed z € E, then
a is linear.

From the above case, we say that the additive functional equation f(z+y) =
f(x) + f(y) has the Hyers-Ulam stability on (X,Y). D.H. Hyers explicity
constructed the additive function a : X — Y directly from the given function
f. This method is called a direct method and it is a powerful tool for studying
stability of functional equations.

Th.M.Rassias [15] proved the following substantial generalization of the
result of Hyers:

Theorem 1.1 Let X and Y be Banach spaces, let § € [0,00) , and let
P €|0,1). If a functional equation f: X — Y satisfies

£ +y) = F@) = FIl <0 (2l + Iyl

for all xz,y € X, then there is a unique additive mapping A: X — Y

20
2-2r

1f(z) = A(2)]| < I1f () 1I”

for all x € X. If in addition ,f(tx) is continuous in t for each fized x € X,
then A s linear.

Due to this fact, the cauchy functional equation f(z + y) = f(z) + f(y)
is said to have the Hyers - Ulam - Rassias stability properly on (X,Y). A
number of result concerning stability of different equations can be found in
[1,2,3,5,8]. Consider the following functional equations

flzy) = xf(y) +yf(x) (2)
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and

f(a?) = 2xf(x) (3)
which define multiplicative derivations and multiplicative Jordan derivations
in algebras. It may be observed that real - valued function f(z) = xzlogz be a
solution of the functional equation (2) and (3) on the interval (0,00). Extend
the result of (2), we obtain

flwyz) = xyf(2) +yzf (x) + 22f (y). (4)

During the 34th international Symposium on Functional Equations, Gy.
Maksa [13] posed the Hyers - Ulam Stability problem for the functional equa-
tion (2) on the interval (0,1]. The first result concerning the superstability
of this equation for functions between operator algebras was obtained by P.
Semrl [16]. On the other hand, Zs. Pales [14] remarked that the functional
equation (2) for real - valued functions on [1, 00) is stable in the sense of Hyers
and Ulam. The Hyers - Ulam Stability of the functional equations

h(ra? + 2x) = 2rah(z) + 2h(z) (5)
and
h(z +y+ rxy) = h(z) + h(y) + rzh(y) + ryh(zx) (6)

were invested by E.H.Lee, [.S. Chang and Y.S. Chang [12] relative to a Mul-
tiplicative derivation.

A generalized version of the Hyers Ulam Stability and Superstability of the
functional Equations

flx+y—zy) +af(y) +yflx) = flz)+ f(y) (7)

was investigated by Y.S. Jung [10].
In this paper, we study the Hyers-Ulam Stability and Superstability of the
functional equation

fle+y+z+ay+yz+xz+ xyz)
=f@)+ fy) + f(2) + (@ +y+ay)f(z) + (y+ 2 +y2)f(z)
+ (@4 z+22)f(y) (8)

Throughout this paper, let N denote the set of all natural numbers and R
denote the set of all real numbers.

2 Solutions of Equation(8)

In this section, we try to get the general solution of the functional equation
(8) in the interval (—1,00). Note that the function, f(z) = (z 4+ 1)In(x+1) is
the solution of the functional equation (8) on the interval (—1, c0).
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Theorem 2.1 Let X be a real (or complex) linear space. A function f :
(—1,00) = X satisfies the functional equation (8) for all x € (—1,00) if and
only if there exists a solution D : (0,00) — X of the functional equation (4)
such that f(x) = D(x + 1) for all v € (-1, 00).

Proof. Necessity. Define a mapping D : (0,00) — X by D(x) := f(x —1).
We claim that D is a the solution of the functional equation(4). Indeed,for all
x,y € (0,00), we have

D(zyz) = f(zyz —1)
=fe-D+@y-D+E-D+@@-Dy-1D+y-1E-1)
+@-DE-1D+@@-1y-1(E=-1))
= 2yD(2) + yzD(z) + zzD(y).

Hence D is a solution of the functional equation(4). From the definition of
D | we obtain f(z) = D(z + 1) for all x € (—1,00). The sufficiency part is
obvious.

3 Hyers - Ulam stability of Equation(8)

In the following Theorem, we state the result due to F.Skof [17] which is
concerning the stability of the additive functional equation f(x+y) = f(x) +
f(y) on a restricted domain.

Theorem 3.1 Let X be a real (or complex) Banach space.Given ¢ > 0, let
a mapping f : [0,c )= X satisfy the inequality

[f(z+y) = fl) = fFy)ll <0

for some 6 > 0 and for all x,y € [0,c) with x +y € [0,¢). Then there exists
additive mapping A : R — X such that

1f (z) = A(z)[| < 36
for all x € [0, ¢).

We now present our main theorem on the the Hyers - Ulam stability on the
interval (—1,0] of the functional equation (8). The proof is similar to the one
given in [19].

Theorem 3.2 Let X be a real (or complex) Banach space, and let
f:(=1,0] = X be a mapping statisfying the inquality

|f@+y+z+ay+yz+az+ayz) - f@) - Fly) - ()

— (@ +y+ay)f(z) = (y+2+y2)f @) — @+ z+29) )| <6 )
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for some 6 > 0 and for all z,y € (—1,0]. Then there exists a solution
H:(-1,0) — X of the functional equation(8) such that

If(x) = H(z)|| < (4e)d (10)
for all x,y € (—1,0].
Proof. Let g : (—1,0] — X be a mapping defined by

g(x) = j—ﬁ

for all z € (—1,0]. Then, by (8), we observe that g statisfies inequality

0
(x+1)(y+1)(z+1)

lg(z +y+2z+ay+yz+az) —g(x)—9g(y) —9()| <

for all z,y € (—1,0). Let us now define the mapping F': [0,00) — X by
F(=in(z+1)) = g(z)

for all x € (—1,0], then, by setting u = —In(z + 1), v = —In(y + 1) and
w = —In(z + 1), it will lead to

|Fu+v+w)— F(u) — F(v) — F(w)|| < de* (11)
for all u,v,w € (0, 00]. This means that
|Flu+v+w)— F(u) — F(v) — F(w)]| < de° (12)

for u,v,w € [0,¢) with u + v+ w < ¢, where ¢ > 1 is an arbitrary given
constant.

By using Theorem (9), we see that there exists an additive mapping A :
R — X such that ||F(u) — A(u)|| < 30e°, for all u € [0,¢). If we let ¢ — 1 in
the last inequality, then we obtain

1#(u) = A(u)]| < 3ed (13)
for all w € [0,1]. Moreover, from (11)it follows

|F(u+2)— F(u) —2F(1)]| < dev*2
|F(u+4) — F(u+2)—2F(1)]] < de*t?

| F(u+ 2k) — F(u+ 2k —2) — 2F(1) < devt2*
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for all uw € [0,1] and k € N. Summing up the above inequalities, we obtain
| F(u+ 2k) — F(u) — 2kF(1)]| < de.e"™? (1 +e 2 +ed 4 ... 4 e 2F2)

| F(u+ 2k) — F(u) — 2kF (1) < de.e" T (14)
for all w € [0,1] and k € N. From equation (13), we assert that
| F(v) — A(v)|| < 4de.e” (15)

for all v € [0, 00).
Infact, when v > 0 and k € NU{0}, we arrive that v — k € [0,1]. Then by
(13) and (14), we have

|1F(v) = A()|| < [[F(v) = F(v —2k) = 2kF (1)
+ ||F(v—2k) — A(v — 2k)|| + ||A(2k) — 2k F(1)]]
< de.e’ + 30e + 2k |A(1) — F(1)]]
< de.e’ 4+ 3de + 3de.v
< de(e" 4+ 3(1+v))
< 4de.e".

Hence, from (15) and using the definition of F, it follows that

lg(z) — A(=In(z 4+ 1)|| < 40e.e~n@H)
B 4de
o+l

for all x € (—1,0]. Again using the definition of f(x), we obtain

flz)
z+1

4éde
z+1

(16)

A(~In(z + 1)H <

for all z € (—1,0]. If we put H(z) = (z + 1)A(=In(z + 1)) for all z €
(—1,0], using Theorem (2.1) it can be easily verified that H is ia solution of
the functional equation (8). Using H(z) and equation (16) it will yield that

1f(x) = H(z)[| < (4e)o
for all x € (—1,0] . This proves the equation (10). Hence the proof of the
theorem is complete.
4 Superstability of Equation(8)

In this section, we will introduce the following Theorem (4.1) due to F.skof
[18] which is esential to prove the main Theorem.
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Theorem 4.1 Let X be a real (or complex) Banach space, and let ¢ > 0 be
a given constant. Suppose that a mapping f : R — X statisfies the inequality

1f(z+y) = flz) = FWI <o

for some § > 0 and for all x,y € R with |z|+ |y| > c¢. Then there ezists a
unique additive mapping A : R — X such that

If () = Alx) ]| <99

forall xz € R.
Now let us prove the main theorem of section which is the super stability of
the functional equation (8) on the interval [0, 00).

Theorem 4.2 Let X be a real (or complex) Banach space, and let
f:[0,00) = X be a mapping statisfying the inequality

|£@+y+2+ay+yz+ w4+ 2p2) - fl@) - 1) - £(2)
— @y f(E) = (y+ 2 +y)f @) - 0+ 2 +22)f )| <6 (17)

for some § > 0 and for all x,y € [0,00). Then f statisfies the functional
equation (8) for all z,y € [0, 00).

Proof. Defining the mapping g : [0,00) — X by g(z) = ];(—ff for all x € [0, 00)
as in the proof of Theorem (3.2) and define the mapping F' : [0,00) — X by
F(ln(zx 4+ 1) = g(x) for all z € [0,00) . Taking u = In(z + 1), v = In(y + 1),
and w = In(z + 1), we have

|F(u+v+w)— F(u) — F(v) — F(w)| < de~ (wtvtw) (18)

for all u, v, w € [0,00). From this, we claim that F' is additive. From (18) with
d, =de "(n € N), it gives [|[Fu+v+w)— F(u) — F(v) — F(w)|| <4, for
all u,v,w € [0,00) with u + v+ w > n.

Now define a mapping T : R — X by

T(u) = F(u) foru >0
B —F(—u) for u < 0.

From this, we observe that
[T (u+v) = T(u) = T()| < n

for all u,v € R with |u| + |v| > n. Therefore, by Theorem 4.1, there exists a
unique additive mapping A,, : R — X, such that

1T (u) = An(u)[| < 95, (19)
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for all u € R. Let m,n € N with n > m. Then the additive mapping
A, 1 R — X statisfies ||T(u) — A, (u)|| < 96, for all u € R. The uniqueness
argument now implies A, = A,, for all n € N with n > m > 0, and thus
Ay = Ay = ... = A, = ... Taking the limit in (19) as n — oo, it gives
T = A, = A; and this shows that F' is additive.

Now, according to the definitions of F' and g, we have % = F(In(zx +1))
for all x € [0,00), and hence by using Theorem (2.1) we see that f statisfies
the functional equation (8) for all z,y € [0,00). Since F' is additive and
D(z) = aF(In(x)) (x € [1,00)) is a solution of the functional equation (4).
This is completes the proof of the theorem.

5 Generalized version of the Hyers-Ulam Sta-
bility of Equation(8)

In this section, we are going to investigate a generlized version of the Hyers-
Ulam Stability of the followed equation (8) on the interval [0,1). In order
to prove our main Theorem, we need the following definition and proposition
which are proved by J. Tabor [19] concerning the stability of the additive
functional equation f(z +y) = f(z) + f(y) on the interval [0, c0).
Definition. A function g : [0,00) — [0, 00) is called exponentially increasing
if it is increasing and there exists 7 > 1 and h € [0, 00) such that g(z + h) >
vg(z). for all z € [0, 00).

Proposition 5.1. Suppose that g : [0,00) — [0,00) is exponentially increasing
with constants v and h as in Definition, and that g(0) > 0.

Let K =29 4 3 gnd let f [0,00) — X be an arbitrary function such that

g(0) " y-17
flx+y) = fl@) = fly) € gz +y)V

for all x € 0,00). Then there exists a unique additive function A : [0,00) = X
such that A(h) = f(h) and that

f(z) = A(x) € Kg(2)V

for all x € [0, 00).

Throughout this section, we assume that X is a sequentially complete topo-
logical vector space and V' is a closed convex, bounded and symmetric with
respect to zero subset of X. The proof of the following Theorem is very anal-
ogous to one given in [19].

Theorem 5.1 Let f:[0,1) — X be a function such that

flet+y+z+oy+yz+az+ayz) — f(x) - fly) — f(2)
—(r+y+ay)f(z) —(y+z+y2)f(x) — (x+2z+22)f(y) €V (20)



ON THE STABILITY OF THE FUNCTIONAL EQUATION 237

for all z,y € [0,1), and let z € (0,1) be an arbitrary fized. Then there exists a
unique function F., : [0,1) — X such that

F.(2) = f(2) (21)

Frx+y+z+ay+yz+xz+ayz) — (v +y+ zy)F.(z2)
—(y+2+y2)F(r) — (v + 2 +22)Fl(y) = Fao(2) + F.(y) + F.(2) (22)

and that
f(z)— F.(z) € K,V (23)

for all z,y € [0,1), where K. = 2 + 1.

Proof. Let K be a set of real numbers. By X® we denote the vector space of
all functions from K into X. We define the linear operator B : X1 — X0.00)
by the formula B(f)(z) = exp(x)f(1 + exp(—z)) for all x € [0, 00). Now from

the equation (20), we can show that f also satifies the following equation
B(f)(u+v+w) = B(f)(u) = B(f)(v) = B(f)(w) € exp(u+v+w)V

for u,v,w € [0, 00) and so they are equivalent. Obviously exp is exponentially
increasing with

h = —exp™'(1+2) = —In(l +2) =7 := exp(h) = 5. Therefore by
Proposition 5.1, there exists a unique
An(h) = B(f)(n) (24)
Ap(u+v+w) = Ap(u) + Ap(v) + An(w) (25)
B(f)(u) = An(u) € Kzexp(u)V (26)
for all z € [0, 00), where K, = 2%@ +:5h5= =+ 1

Let F, := B7'(A;). Then we can easily verify from (24), (25) and (26)
that F, satisfies (21), (22) and (23), respectively.

Now we claim that F, is unique. Suppose that there exists F. satisfying
(24), (25) and (26). Then B(F.) satifies (21), (22) and (23), hence B(F.) =
Aj, = B(F.). Since B is bijection, this implies that F, = F,. Hence the proof
of the theorem is complete.
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