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Abstract

In this paper, we study the Hyers - Ulam stability and the Super-
stability of the functional equation

f(x+ y + z + xy + yz + xz + xyz)
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1 Introduction

In 1940, S.M.Ulam [20] while he was giving a series of lectures in the University
of Wisconsin; he raised a question concerning the stability of homomorphism.

Let G1 be a group and let G2 be a metric group with the metric d(., .).
Given ε > 0 does there exist a δ > 0 such that if a mapping h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 . Then a
homomorphism H : G1 → G2 exists with d(h(x), H(x)) < ε for all x ∈ G1?
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The first partial solution to Ulam’s question was provided by D.H. Hyers [6].
Indeed, he proved the following celebrated theorem.
Theorem (D.H. Hyers): Assume that X and Y are Banach spaces. If a
function f : X → Y satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε (1)

for some ε ≥ 0 and for all x inX , then the limit

a(x) = lim
n→∞

2−nf(2nx)

exist for each x in X and a : X → Y is the unique additive function such that

‖f(x)− a(x)‖ ≤ ε

for any x ∈ X , moreover, if f(tx) is continuous in t for each filed x ∈ E, then
a is linear.

From the above case, we say that the additive functional equation f(x+y) =
f(x) + f(y) has the Hyers-Ulam stability on (X, Y ). D.H. Hyers explicity
constructed the additive function a : X → Y directly from the given function
f . This method is called a direct method and it is a powerful tool for studying
stability of functional equations.

Th.M.Rassias [15] proved the following substantial generalization of the
result of Hyers:

Theorem 1.1 Let X and Y be Banach spaces, let θ ∈ [0,∞) , and let
P ∈ [0, 1). If a functional equation f : X → Y satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(

‖x‖
p

+ ‖y‖
p
)

for all x, y ∈ X, then there is a unique additive mapping A : X → Y

‖f(x)− A(x)‖ ≤
2θ

2− 2p
‖f(x)‖p

for all x ∈ X. If in addition ,f(tx) is continuous in t for each fixed x ∈ X,
then A is linear.

Due to this fact, the cauchy functional equation f(x + y) = f(x) + f(y)
is said to have the Hyers - Ulam - Rassias stability properly on (X, Y ). A
number of result concerning stability of different equations can be found in
[1, 2, 3, 5, 8]. Consider the following functional equations

f(xy) = xf(y) + yf(x) (2)
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and
f(x2) = 2xf(x) (3)

which define multiplicative derivations and multiplicative Jordan derivations
in algebras. It may be observed that real - valued function f(x) = xlogx be a
solution of the functional equation (2) and (3) on the interval (0,∞). Extend
the result of (2), we obtain

f(xyz) = xyf(z) + yzf(x) + xzf(y). (4)

During the 34th international Symposium on Functional Equations, Gy.
Maksa [13] posed the Hyers - Ulam Stability problem for the functional equa-
tion (2) on the interval (0, 1]. The first result concerning the superstability
of this equation for functions between operator algebras was obtained by P.
Semrl [16]. On the other hand, Zs. Pales [14] remarked that the functional
equation (2) for real - valued functions on [1,∞) is stable in the sense of Hyers
and Ulam. The Hyers - Ulam Stability of the functional equations

h(rx2 + 2x) = 2rxh(x) + 2h(x) (5)

and
h(x+ y + rxy) = h(x) + h(y) + rxh(y) + ryh(x) (6)

were invested by E.H.Lee, I.S. Chang and Y.S. Chang [12] relative to a Mul-
tiplicative derivation.

A generalized version of the Hyers Ulam Stability and Superstability of the
functional Equations

f(x+ y − xy) + xf(y) + yf(x) = f(x) + f(y) (7)

was investigated by Y.S. Jung [10].
In this paper, we study the Hyers-Ulam Stability and Superstability of the

functional equation

f(x+ y + z + xy + yz + xz + xyz)

= f(x) + f(y) + f(z) + (x+ y + xy)f(z) + (y + z + yz)f(x)

+ (x+ z + xz)f(y). (8)

Throughout this paper, let N denote the set of all natural numbers and R

denote the set of all real numbers.

2 Solutions of Equation(8)

In this section, we try to get the general solution of the functional equation
(8) in the interval (−1,∞). Note that the function, f(x) = (x+1)ln(x+1) is
the solution of the functional equation (8) on the interval (−1,∞).
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Theorem 2.1 Let X be a real (or complex) linear space. A function f :
(−1,∞) → X satisfies the functional equation (8) for all x ∈ (−1,∞) if and
only if there exists a solution D : (0,∞) → X of the functional equation (4)
such that f(x) = D(x+ 1) for all x ∈ (−1,∞).

Proof. Necessity. Define a mapping D : (0,∞) → X by D(x) := f(x − 1).
We claim that D is a the solution of the functional equation(4). Indeed,for all
x, y ∈ (0,∞), we have

D(xyz) = f(xyz − 1)

= f((x− 1) + (y − 1) + (z − 1) + (x− 1)(y − 1) + (y − 1)(z − 1)

+ (x− 1)(z − 1) + (x− 1)(y − 1)(z − 1))

= xyD(z) + yzD(x) + xzD(y).

Hence D is a solution of the functional equation(4). From the definition of
D , we obtain f(x) = D(x + 1) for all x ∈ (−1,∞). The sufficiency part is
obvious.

3 Hyers - Ulam stability of Equation(8)

In the following Theorem, we state the result due to F.Skof [17] which is
concerning the stability of the additive functional equation f(x+ y) = f(x) +
f(y) on a restricted domain.

Theorem 3.1 Let X be a real (or complex) Banach space.Given c > 0, let
a mapping f : [0,c )→ X satisfy the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for some δ ≥ 0 and for all x, y ∈ [0, c) with x + y ∈ [0, c). Then there exists
additive mapping A : R → X such that

‖f(x)−A(x)‖ ≤ 3δ

for all x ∈ [0, c).

We now present our main theorem on the the Hyers - Ulam stability on the
interval (−1, 0] of the functional equation (8). The proof is similar to the one
given in [19].

Theorem 3.2 Let X be a real (or complex) Banach space, and let
f : (−1, 0] → X be a mapping statisfying the inquality
∥

∥

∥
f(x+ y + z + xy + yz + xz + xyz)− f(x)− f(y)− f(z)

− (x+ y + xy)f(z)− (y + z + yz)f(x)− (x+ z + xz)f(y)
∥

∥

∥
≤ δ (9)
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for some δ > 0 and for all x, y ∈ (−1, 0]. Then there exists a solution
H : (−1, 0) → X of the functional equation(8) such that

‖f(x)−H(x)‖ ≤ (4e)δ (10)

for all x, y ∈ (−1, 0].

Proof. Let g : (−1, 0] → X be a mapping defined by

g(x) =
f(x)

x+ 1

for all x ∈ (−1, 0]. Then, by (8), we observe that g statisfies inequality

‖g(x+ y + z + xy + yz + xz)− g(x)− g(y)− g(z)‖ ≤
δ

(x+ 1)(y + 1)(z + 1)

for all x, y ∈ (−1, 0). Let us now define the mapping F : [0,∞) → X by

F (−ln(x + 1)) = g(x)

for all x ∈ (−1, 0], then, by setting u = −ln(x + 1), v = −ln(y + 1) and
w = −ln(z + 1), it will lead to

‖F (u+ v + w)− F (u)− F (v)− F (w)‖ ≤ δeu+v+w (11)

for all u, v, w ∈ (0,∞]. This means that

‖F (u+ v + w)− F (u)− F (v)− F (w)‖ ≤ δec (12)

for u, v, w ∈ [0, c) with u + v + w < c, where c > 1 is an arbitrary given
constant.

By using Theorem (9), we see that there exists an additive mapping A :
R → X such that ‖F (u)−A(u)‖ ≤ 3δec, for all u ∈ [0, c). If we let c → 1 in
the last inequality, then we obtain

‖F (u)− A(u)‖ ≤ 3eδ (13)

for all u ∈ [0, 1]. Moreover, from (11)it follows

‖F (u+ 2)− F (u)− 2F (1)‖ ≤ δeu+2

‖F (u+ 4)− F (u+ 2)− 2F (1)‖ ≤ δeu+4

. . .

. . .

. . .
‖F (u+ 2k)− F (u+ 2k − 2)− 2F (1)‖ ≤ δeu+2k
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for all u ∈ [0, 1] and k ∈ N . Summing up the above inequalities, we obtain
‖F (u+ 2k)− F (u)− 2kF (1)‖ ≤ δe.eu+2k(1 + e−2 + e−4 + ...+ e−2k+2)

‖F (u+ 2k)− F (u)− 2kF (1)‖ ≤ δe.eu+2k (14)

for all u ∈ [0, 1] and k ∈ N . From equation (13), we assert that

‖F (v)− A(v)‖ ≤ 4δe.ev (15)

for all v ∈ [0,∞).
Infact, when v ≥ 0 and k ∈ NU{0}, we arrive that v − k ∈ [0, 1]. Then by

(13) and (14), we have

‖F (v)− A(v)‖ ≤ ‖F (v)− F (v − 2k)− 2kF (1)‖

+ ‖F (v − 2k)− A(v − 2k)‖+ ‖A(2k)− 2kF (1)‖

≤ δe.ev + 3δe+ 2k ‖A(1)− F (1)‖

≤ δe.ev + 3δe+ 3δe.v

≤ δe(ev + 3(1 + v))

≤ 4δe.ev.

Hence, from (15) and using the definition of F , it follows that

‖g(x)− A(−ln(x+ 1)‖ ≤ 4δe.e−ln(x+)

=
4δe

x+ 1

for all x ∈ (−1, 0]. Again using the definition of f(x), we obtain
∥

∥

∥

∥

f(x)

x+ 1
− A(−ln(x + 1)

∥

∥

∥

∥

≤
4δe

x+ 1
(16)

for all x ∈ (−1, 0]. If we put H(x) = (x + 1)A(−ln(x + 1)) for all x ∈
(−1, 0], using Theorem (2.1) it can be easily verified that H is ia solution of
the functional equation (8). Using H(x) and equation (16) it will yield that

‖f(x)−H(x)‖ ≤ (4e)δ

for all x ∈ (−1, 0] . This proves the equation (10). Hence the proof of the
theorem is complete.

4 Superstability of Equation(8)

In this section, we will introduce the following Theorem (4.1) due to F.skof
[18] which is esential to prove the main Theorem.
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Theorem 4.1 Let X be a real (or complex) Banach space, and let c > 0 be
a given constant. Suppose that a mapping f : R → X statisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for some δ ≥ 0 and for all x, y ∈ R with |x| + |y| > c. Then there exists a
unique additive mapping A : R → X such that

‖f(x)−A(x)‖ ≤ 9δ

for all x ∈ R.
Now let us prove the main theorem of section which is the super stability of

the functional equation (8) on the interval [0,∞).

Theorem 4.2 Let X be a real (or complex) Banach space, and let
f : [0,∞) → X be a mapping statisfying the inequality
∥

∥

∥
f(x+ y + z + xy + yz + xz + xyz)− f(x)− f(y)− f(z)

− (x+ y + xy)f(z)− (y + z + yz)f(x)− (x+ z + xz)f(y)
∥

∥

∥
≤ δ (17)

for some δ > 0 and for all x, y ∈ [0,∞). Then f statisfies the functional
equation (8) for all x, y ∈ [0,∞).

Proof. Defining the mapping g : [0,∞) → X by g(x) = f(x)
x+1

for all x ∈ [0,∞)
as in the proof of Theorem (3.2) and define the mapping F : [0,∞) → X by
F (ln(x + 1) = g(x) for all x ∈ [0,∞) . Taking u = ln(x + 1), v = ln(y + 1),
and w = ln(z + 1), we have

‖F (u+ v + w)− F (u)− F (v)− F (w)‖ ≤ δe−(u+v+w) (18)

for all u, v, w ∈ [0,∞). From this, we claim that F is additive. From (18) with
δn = δe−n(n ∈ N), it gives ‖F (u+ v + w)− F (u)− F (v)− F (w)‖ ≤ δn for
all u, v, w ∈ [0,∞) with u+ v + w > n.

Now define a mapping T : R → X by

T (u) =

{

F (u) for u ≥ 0

−F (−u) for u < 0.

From this, we observe that

‖T (u+ v)− T (u)− T (v)‖ ≤ δn

for all u, v ∈ R with |u| + |v| > n. Therefore, by Theorem 4.1, there exists a
unique additive mapping An : R → X , such that

‖T (u)− An(u)‖ ≤ 9δn (19)
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for all u ∈ R. Let m,n ∈ N with n > m. Then the additive mapping
An : R → X statisfies ‖T (u)− An(u)‖ ≤ 9δm for all u ∈ R. The uniqueness
argument now implies An = Am for all n ∈ N with n > m > 0, and thus
A1 = A2 = ... = An = ... Taking the limit in (19) as n → ∞, it gives
T = An = A1 and this shows that F is additive.

Now, according to the definitions of F and g, we have f(x)
x+1

= F (ln(x+ 1))
for all x ∈ [0,∞), and hence by using Theorem (2.1) we see that f statisfies
the functional equation (8) for all x, y ∈ [0,∞). Since F is additive and
D(x) = xF (ln(x)) (x ∈ [1,∞)) is a solution of the functional equation (4).
This is completes the proof of the theorem.

5 Generalized version of the Hyers-Ulam Sta-

bility of Equation(8)

In this section, we are going to investigate a generlized version of the Hyers-
Ulam Stability of the followed equation (8) on the interval [0, 1). In order
to prove our main Theorem, we need the following definition and proposition
which are proved by J. Tabor [19] concerning the stability of the additive
functional equation f(x+ y) = f(x) + f(y) on the interval [0,∞).
Definition. A function g : [0,∞) → [0,∞) is called exponentially increasing
if it is increasing and there exists γ > 1 and h ∈ [0,∞) such that g(x+ h) ≥
γg(x). for all x ∈ [0,∞).
Proposition 5.1. Suppose that g : [0,∞) → [0,∞) is exponentially increasing
with constants γ and h as in Definition, and that g(0) > 0.

Let K = 2 g(h)
g(0)

+ γ

γ−1
, and let f : [0,∞) → X be an arbitrary function such that

f(x+ y)− f(x)− f(y) ∈ g(x+ y)V

for all x ∈ 0,∞). Then there exists a unique additive function A : [0,∞) → X

such that A(h) = f(h) and that

f(x)−A(x) ∈ Kg(x)V

for all x ∈ [0,∞).
Throughout this section, we assume thatX is a sequentially complete topo-

logical vector space and V is a closed convex, bounded and symmetric with
respect to zero subset of X . The proof of the following Theorem is very anal-
ogous to one given in [19].

Theorem 5.1 Let f : [0, 1) → X be a function such that

f(x+ y + z + xy + yz + xz + xyz)− f(x)− f(y)− f(z)

− (x+ y + xy)f(z)− (y + z + yz)f(x)− (x+ z + xz)f(y) ∈ V (20)
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for all x, y ∈ [0, 1), and let z ∈ (0, 1) be an arbitrary fixed. Then there exists a
unique function Fz : [0, 1) → X such that

Fz(z) = f(z) (21)

Fz(x+ y + z + xy + yz + xz + xyz)− (x+ y + xy)Fz(z)

− (y + z + yz)Fz(x)− (x+ z + xz)Fz(y) = Fz(x) + Fz(y) + Fz(z) (22)

and that
f(x)− Fz(x) ∈ KzV (23)

for all x, y ∈ [0, 1), where Kz =
2

1+z
+ 1

z
.

Proof. Let K be a set of real numbers. By XK we denote the vector space of
all functions from K into X . We define the linear operator B : X [0,1) → X [0,∞)

by the formula B(f)(x) = exp(x)f(1 + exp(−x)) for all x ∈ [0,∞). Now from
the equation (20), we can show that f also satifies the following equation

B(f)(u+ v + w)− B(f)(u)− B(f)(v)− B(f)(w) ∈ exp(u+ v + w)V

for u, v, w ∈ [0,∞) and so they are equivalent. Obviously exp is exponentially
increasing with
h := −exp−1(1 + z) = −ln(1 + z) =, γ := exp(h) = 1

1+z
. Therefore by

Proposition 5.1, there exists a unique

Ah(h) = B(f)(h) (24)

Ah(u+ v + w) = Ah(u) + Ah(v) + Ah(w) (25)

B(f)(u)−Ah(u) ∈ Kzexp(u)V (26)

for all x ∈ [0,∞), where Kz = 2 exp(h)
1+z

+ γ

γ−1
= 2

1+z
+ 1

z
.

Let Fz := B−1(Ah). Then we can easily verify from (24), (25) and (26)
that Fz satisfies (21), (22) and (23), respectively.

Now we claim that Fz is unique. Suppose that there exists F
′

z satisfying
(24), (25) and (26). Then B(F

′

z) satifies (21), (22) and (23), hence B(F
′

z) =
Ah = B(Fz). Since B is bijection, this implies that F

′

z = Fz. Hence the proof
of the theorem is complete.
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