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Abstract

In [1], we gave a method for constructing Bertrand curves from the
spherical curves in 3 dimensional Minkowski space. In this work, we
construct the Bertrand curves corresponding to a spacelike geodesic and
a null helix in Minkowski 4 spacetime.
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1 Preliminary Notes

In this section, we give basic notions of spacelike and null curves in Minkowski
4-space (see [2],[3] and [6]). Let R* = {(z1, 29,23, 74) : 71,2, 73,74 € R}
be a 4-dimensional vector space. For any vectors x = (x1,22,%3,74),y =
(Y1, Y2, Y3, y4) in RY the pseudo scalar product of z and y is defined to be
(m,y) = —21y1 + Toyo +w3y3+24y4. We call (R, (,)) a Minkowski 4-space. We
write R{ instead of (R?*, (,)). We say that a non-zero Vector r € R{ is spacelike,
lightlike (null) or timelike if (x,z) > 0, (z,z) = 0 or (z, x> < O respectively.
The norm of the vector x € R{ is defined by ||z|| = /| (z,z)|. For a vector
v € R} and a real number ¢, we define a hyperplane with pseudo normal v by
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HP(v,c) = {z € R} : (z,v) = c}. We call HP(v,c) a spacelike hyperplane,
a timelike hyperplane or a lightlike hyperplane if v is timelike, spacelike or
lightlike respectively. We also define de Sitter 3-space by S3 = {z € R} :
(z,x) = 1}. For any @ = (21, T2, 23, ¥4), Y = (Y1, Y2, Y3, Ya), 2 = (21, 22, 23, 24) in
R, we define a vector

—€1 €2 €3 €4
Ty Ty X3 Ta

Y1 Y2 Ys Ya
21 Z2 R3 24

TANYNzZ=

where (e1, e, €3,¢4) is the canonical basis of Rf. We can easily show that
(a,(x Ny A z)) =det(a,z,y, 2).

Let v : I — S} be a regular curve. We say that a regular curve 7 is
spacelike, timelike or null respectively, if 7/(t) is spacelike, timelike or null at
any t € I, where 7' = dvy/dt. Now we describe the explicit differential geometry
on spacelike and null curves in S3.

Let v be a spacelike regular curve, we can reparametrise v by the arclength
s = s(t). Hence, we may assume that 7(s) is a unit speed curve. So we have the
tangent vector t(s) = +/(s) with [[t(s)|| = 1. In the case when (t'(s),t'(s)) # 1,

/
we have a unit vector n(s) = £(s) =(s)

s =)

t(s) A n(s), then we have a pseudo orthonormal frame {v(s),#(s),n(s),e(s)}
of R} along . By the standard arguments, we can show the following Frenet-
Serret type formulae: Under the assumption that (t'(s),t'(s)) # 1,

Moreover, define e(s) = vy(s) A

Y (s) = t(s)
t'(s) = —7v(s)+rg(s)n(s)
n'(s) = ke(s)d(v(s))t(s)+14(s)e(s)
¢(s) = 74(s)n(s) (1)
where §(y(s)) = —sign(n(s)),
kg(s) = [[t'(s) +(s)ll
R = S (9.7 (9. (). 5)

Now let v : I — S% be a null curve. We will assume, in the sequel, that
the null curve we consider has no points at which the acceleration vector is
null. Hence (7 (t),~” (t)) is never zero. We say that a null curve v (¢) in R} is
parametrized by the pseudo-arc if (7" (¢),~” (t)) = 1. If a null curve satisfies
(v"(t) 7" (t)) # 0, then (" (¢) 7" (£)) > 0, and

t

u(t) = / O (£) " (£) Mt

to
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becomes the pseudo-arc parameter.

A null curve v (t) in R} with (v”(¢),~7”(¢)) # 0 is a Cartan curve if
{7 (t),7"(t),4" ()} is linearly independent for any ¢ . For a Cartan curve
v (t) in R} with pseudo-arc parameter ¢ , there exists a pseudo orthonormal
basis {L, N, Wy, W5} such that

L = +
L = W
N = —7+k51W1+k’2W2
W = —kL-N
W, = —kyL (2)

where <L, N) = 1,<L, W1> = <L, W2> = <N, W1> = <N, W2> = <W1,W2> =
0. We call {L,N,W;, W} as the Cartan frame and {k;, k2} as the Cartan
curvatures of . Since the Cartan frame is unique up to orientation, the number
of the Cartan curvatures is minimum and the Cartan curvatures are invariant
under Lorentz transformations, the set {L, N, W, Wy, ki, ks} corresponds to
the Frenet apparatus of a space curve. A direct computation shows that the
values of the Cartan curvatures are

1
kl — 2a2 ((7/,/7 ’Y”/> + QCLCL” o 4 (CLI) 2)
1
koy = 3 det(y’, ~' A" 7(4)) (3)

Theorem 1.1 Let v (t) in R} be a Cartan curve. Then v is a pseudo-
spherical curve iff ko is a nonzero constant.

Theorem 1.2 A Cartan curve v (t) in R} fully lies on a pseudo-sphere iff
there exists a fized point A such that for each t € I, (A —~(t),~ (t)) = 0.

2 Bertrand Curve Corresponding to A Space-
like Geodesic on S;

Theorem 2.1 Let 7y be a spacelike geodesic curve on S3. Then,

3 (s) = a/v(v)dv—l—acoth@/e(v)dvjtc
1s a Bertrand curve where a and 6 are constant numbers, ¢ is a constant vector.

Proof. We will use the frame {7(s),t(s),n(s), e(s)} of v given in the previous
section. In this frame, let we choose e (s) as a timelike vector (If e(s) is a
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spacelike vector, the proof is similar). Hence n (s) is spacelike and 6(7y(s)) =
—1. Using the equation (1), we can easily calculate that

¥ (s) = aly(s)+ cothbe (s))
5 (s) = alt(s) +cothfr, (s)n (s)
7 (s) = al— (s) + 5(3(s))ry ()7 (5t (5)

+ (kg (s) + coth 87/ (s)) n (s) + coth 877 (s) e (s)]

2

Since (¥ (s),7' (s)) = _sir?T%’ the curve ¥ is timelike. If we calculate the

first and second curvatures of 4 by using the equations in [8], we have
sinh 26, /1 + coth 2672
a
Asinh 6
ay/1+ coth 2677
where A = \/cosh29 (ng + 1) 2 — K2 (1 + coth297'2) Since 7, and k, are con-

—a sinh 6, /1 + coth 2077 a coth 26
stants, we can choose [ = and a = ,
/1 + coth207?

T(s) =

then we have ax + 7 = 1. Hence 7 is a Bertrand curve.

3 Bertrand Curve Corresponding to A Null
Helix on S}

Theorem 3.1 Let v be a null heliz on S}. Then,

7 (s) = a/L(v)dv+acoth6’/W2 (v)dv + ¢

1s a Bertrand curve where a and 6 are constant numbers, ¢ is a constant vector.
Proof.

¥ (t) = a[L(s)+ cothOWs (t)]

7' (t) = all — coth@ky) Wy (t)

/

( ) —

~ !

"(t) = alky(coth® —1) L (t) — (1 — cothOky) N (t)]

Since (¥ (t),7 (t)) = a®coth?@, the curve 7 is spacelike. If we calculate the
first and second curvatures of 7, we have
(1 — coth fks)

a coth 260

2 osh 20 — 1
) = \/ k7 cosh 20

cosh 6
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. cosh 30
Since k; and ko are constants, we can choose § = — and
\V k? cosh 26 — 1
a cosh 20 .
a = —  then we have ax + 7 = 1. Hence 7 is a Bertrand curve.

(1 — coth 0ks)
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