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Abstract

In [1], we gave a method for constructing Bertrand curves from the
spherical curves in 3 dimensional Minkowski space. In this work, we
construct the Bertrand curves corresponding to a spacelike geodesic and
a null helix in Minkowski 4 spacetime.

Mathematics Subject Classification: 53A35

Keywords: Bertrand curve, Minkowski space, Null helix, Spacelike geodesic.

1 Preliminary Notes

In this section, we give basic notions of spacelike and null curves in Minkowski
4-space (see [2] , [3] and [6]). Let R

4 = {(x1, x2, x3, x4) : x1, x2, x3, x4 ∈ R}
be a 4-dimensional vector space. For any vectors x = (x1, x2, x3, x4), y =
(y1, y2, y3, y4) in R

4, the pseudo scalar product of x and y is defined to be
〈x, y〉 = −x1y1+x2y2+x3y3+x4y4. We call (R4, 〈, 〉) a Minkowski 4-space. We
write R4

1 instead of (R4, 〈, 〉). We say that a non-zero vector x ∈ R
4
1 is spacelike,

lightlike (null) or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0 respectively.
The norm of the vector x ∈ R

4
1 is defined by ‖x‖ =

√

| 〈x, x〉 |. For a vector
v ∈ R

4
1 and a real number c, we define a hyperplane with pseudo normal v by
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HP (v, c) = {x ∈ R
4
1 : 〈x, v〉 = c}. We call HP (v, c) a spacelike hyperplane,

a timelike hyperplane or a lightlike hyperplane if v is timelike, spacelike or
lightlike respectively. We also define de Sitter 3-space by S3

1 = {x ∈ R
4
1 :

〈x, x〉 = 1}. For any x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), z = (z1, z2, z3, z4) in
R

4
1, we define a vector

x ∧ y ∧ z =

∣

∣

∣

∣

∣

∣

∣

∣

−e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣

∣

∣

∣

∣

∣

∣

∣

where (e1, e2, e3, e4) is the canonical basis of R
4
1. We can easily show that

〈a, (x ∧ y ∧ z)〉 = det(a, x, y, z).
Let γ : I −→ S3

1 be a regular curve. We say that a regular curve γ is
spacelike, timelike or null respectively, if γ′(t) is spacelike, timelike or null at
any t ∈ I, where γ′ = dγ/dt. Now we describe the explicit differential geometry
on spacelike and null curves in S3

1 .
Let γ be a spacelike regular curve, we can reparametrise γ by the arclength

s = s(t). Hence, we may assume that γ(s) is a unit speed curve. So we have the
tangent vector t(s) = γ′(s) with ‖t(s)‖ = 1. In the case when 〈t′(s), t′(s)〉 6= 1,

we have a unit vector n(s) =
t′(s)− γ(s)

‖t′(s)− γ(s)‖
. Moreover, define e(s) = γ(s) ∧

t(s) ∧ n(s), then we have a pseudo orthonormal frame {γ(s), t(s), n(s), e(s)}
of R4

1 along γ. By the standard arguments, we can show the following Frenet-
Serret type formulae: Under the assumption that 〈t′(s), t′(s)〉 6= 1,

γ′ (s) = t (s)

t′ (s) = −γ (s) + κg (s)n (s)

n′ (s) = κg (s) δ (γ (s)) t (s) + τg (s) e (s)

e′ (s) = τg (s)n (s) (1)

where δ(γ(s)) = −sign(n(s)),

κg(s) = ‖t′(s) + γ(s)‖

τg (s) =
δ (γ (s))

κ2
g (s)

det (γ (s) , γ′ (s) , γ′′ (s) , γ′′′ (s))

Now let γ : I −→ S3
1 be a null curve. We will assume, in the sequel, that

the null curve we consider has no points at which the acceleration vector is
null. Hence 〈γ′′ (t) , γ′′ (t)〉 is never zero. We say that a null curve γ (t) in R

4
1 is

parametrized by the pseudo-arc if 〈γ′′ (t) , γ′′ (t)〉 = 1. If a null curve satisfies
〈γ′′ (t) , γ′′ (t)〉 6= 0, then 〈γ′′ (t) , γ′′ (t)〉 > 0, and

u (t) =

t
∫

t0

〈γ′′ (t) , γ′′ (t)〉
1/4

dt
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becomes the pseudo-arc parameter.
A null curve γ (t) in R

4
1 with 〈γ′′ (t) , γ′′ (t)〉 6= 0 is a Cartan curve if

{γ′ (t) , γ′′ (t) , γ′′′ (t)} is linearly independent for any t . For a Cartan curve
γ (t) in R

4
1 with pseudo-arc parameter t , there exists a pseudo orthonormal

basis {L,N,W1,W2} such that

L = γ′

L′ = W1

N ′ = −γ + k1W1 + k2W2

W ′

1 = −k1L−N

W ′

2 = −k2L (2)

where 〈L,N〉 = 1, 〈L,W1〉 = 〈L,W2〉 = 〈N,W1〉 = 〈N,W2〉 = 〈W1,W2〉 =
0. We call {L,N,W1,W2} as the Cartan frame and {k1, k2} as the Cartan
curvatures of γ. Since the Cartan frame is unique up to orientation, the number
of the Cartan curvatures is minimum and the Cartan curvatures are invariant
under Lorentz transformations, the set {L,N,W1,W2, k1, k2} corresponds to
the Frenet apparatus of a space curve. A direct computation shows that the
values of the Cartan curvatures are

k1 =
1

2a2
(

〈γ′′′, γ′′′〉+ 2aa′′ − 4 (a′) 2
)

k2 = −
1

a4
det(γ′, γ′′, γ′′′, γ(4)) (3)

Theorem 1.1 Let γ (t) in R
4
1 be a Cartan curve. Then γ is a pseudo-

spherical curve iff k2 is a nonzero constant.

Theorem 1.2 A Cartan curve γ (t) in R
4
1 fully lies on a pseudo-sphere iff

there exists a fixed point A such that for each t ∈ I, 〈A− γ (t) , γ′ (t)〉 = 0.

2 Bertrand Curve Corresponding to A Space-

like Geodesic on S3
1

Theorem 2.1 Let γ be a spacelike geodesic curve on S3
1 . Then,

γ̃ (s) = a

∫

γ (υ)dυ + a coth θ

∫

e (υ)dυ + c

is a Bertrand curve where a and θ are constant numbers, c is a constant vector.

Proof. We will use the frame {γ(s), t(s), n(s), e(s)} of γ given in the previous
section. In this frame, let we choose e (s) as a timelike vector (If e (s) is a
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spacelike vector, the proof is similar). Hence n (s) is spacelike and δ(γ(s)) =
−1. Using the equation (1), we can easily calculate that

γ̃′ (s) = a [γ (s) + coth θe (s)]

γ̃′′ (s) = a [t (s) + coth θτg (s)n (s)]

γ̃′′′ (s) = a[−γ (s) + δ(γ(s))κg (s) τg (s) t (s)

+
(

κg (s) + coth θτ ′g (s)
)

n (s) + coth θτ 2g (s) e (s)]

Since 〈γ̃′ (s) , γ̃′ (s)〉 = −
a2

sinh 2θ
, the curve γ̃ is timelike. If we calculate the

first and second curvatures of γ̃ by using the equations in [8], we have

κ (s) =
sinh 2θ

√

1 + coth 2θτ 2g
a

τ (s) =
A sinh θ

a
√

1 + coth 2θτ 2g

where A =
√

cosh 2θ
(

τ 2g + 1
)

2 − κ2
g

(

1 + coth 2θτ 2g
)

. Since τg and κg are con-

stants, we can choose β =
−a sinh θ

√

1 + coth 2θτ 2g
A

and α =
a coth 2θ

√

1 + coth 2θτ 2g
,

then we have ακ+ βτ = 1. Hence γ̃ is a Bertrand curve.

3 Bertrand Curve Corresponding to A Null

Helix on S3
1

Theorem 3.1 Let γ be a null helix on S3
1 . Then,

γ̃ (s) = a

∫

L (υ)dυ + a coth θ

∫

W2 (υ) dυ + c

is a Bertrand curve where a and θ are constant numbers, c is a constant vector.

Proof.

γ̃′ (t) = a [L (s) + coth θW2 (t)]

γ̃′′ (t) = a [1− coth θk2]W1 (t)

γ̃′′′ (t) = a [k1 (coth θ − 1)L (t)− (1− coth θk2)N (t)]

Since 〈γ̃′ (t) , γ̃′ (t)〉 = a2 coth 2θ, the curve γ̃ is spacelike. If we calculate the
first and second curvatures of γ̃, we have

κ (t) =
(1− coth θk2)

a coth 2θ

τ (t) =

√

k2
1 cosh

2θ − 1

cosh θ
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Since k1 and k2 are constants, we can choose β = −
cosh 3θ

√

k2
1 cosh

2θ − 1
and

α =
a cosh 2θ

(1− coth θk2)
, then we have ακ+ βτ = 1. Hence γ̃ is a Bertrand curve.
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