On The Special Curves in
 Minkowski 4 Spacetime

Gül Güner
Karadeniz Technical University
Department of Mathematics
Trabzon, Turkey
gguner@ktu.edu.tr
\section*{F. Nejat Ekmekci}
Ankara University
Department of Mathematics
Ankara, Turkey
ekmekci@science.ankara.edu.tr

Abstract

In [1], we gave a method for constructing Bertrand curves from the spherical curves in 3 dimensional Minkowski space. In this work, we construct the Bertrand curves corresponding to a spacelike geodesic and a null helix in Minkowski 4 spacetime.

Mathematics Subject Classification: 53A35

Keywords: Bertrand curve, Minkowski space, Null helix, Spacelike geodesic.

1 Preliminary Notes

In this section, we give basic notions of spacelike and null curves in Minkowski 4 -space (see [2], [3] and [6]). Let $\mathbb{R}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}$ be a 4 -dimensional vector space. For any vectors $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=$ $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in \mathbb{R}^{4}, the pseudo scalar product of x and y is defined to be $\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}$. We call ($\left.\mathbb{R}^{4},\langle\rangle,\right)$ a Minkowski 4 -space. We write \mathbb{R}_{1}^{4} instead of $\left(\mathbb{R}^{4},\langle\rangle,\right)$. We say that a non-zero vector $x \in \mathbb{R}_{1}^{4}$ is spacelike, lightlike (null) or timelike if $\langle x, x\rangle>0,\langle x, x\rangle=0$ or $\langle x, x\rangle<0$ respectively. The norm of the vector $x \in \mathbb{R}_{1}^{4}$ is defined by $\|x\|=\sqrt{|\langle x, x\rangle|}$. For a vector $v \in \mathbb{R}_{1}^{4}$ and a real number c, we define a hyperplane with pseudo normal v by
$H P(v, c)=\left\{x \in \mathbb{R}_{1}^{4}:\langle x, v\rangle=c\right\}$. We call $H P(v, c)$ a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is timelike, spacelike or lightlike respectively. We also define de Sitter 3 -space by $S_{1}^{3}=\left\{x \in \mathbb{R}_{1}^{4}\right.$: $\langle x, x\rangle=1\}$. For any $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ in \mathbb{R}_{1}^{4}, we define a vector

$$
x \wedge y \wedge z=\left|\begin{array}{cccc}
-e_{1} & e_{2} & e_{3} & e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right|
$$

where $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is the canonical basis of \mathbb{R}_{1}^{4}. We can easily show that $\langle a,(x \wedge y \wedge z)\rangle=\operatorname{det}(a, x, y, z)$.

Let $\gamma: I \longrightarrow S_{1}^{3}$ be a regular curve. We say that a regular curve γ is spacelike, timelike or null respectively, if $\gamma^{\prime}(t)$ is spacelike, timelike or null at any $t \in I$, where $\gamma^{\prime}=d \gamma / d t$. Now we describe the explicit differential geometry on spacelike and null curves in S_{1}^{3}.

Let γ be a spacelike regular curve, we can reparametrise γ by the arclength $s=s(t)$. Hence, we may assume that $\gamma(s)$ is a unit speed curve. So we have the tangent vector $t(s)=\gamma^{\prime}(s)$ with $\|t(s)\|=1$. In the case when $\left\langle t^{\prime}(s), t^{\prime}(s)\right\rangle \neq 1$, we have a unit vector $n(s)=\frac{t^{\prime}(s)-\gamma(s)}{\left\|t^{\prime}(s)-\gamma(s)\right\|}$. Moreover, define $e(s)=\gamma(s) \wedge$ $t(s) \wedge n(s)$, then we have a pseudo orthonormal frame $\{\gamma(s), t(s), n(s), e(s)\}$ of \mathbb{R}_{1}^{4} along γ. By the standard arguments, we can show the following FrenetSerret type formulae: Under the assumption that $\left\langle t^{\prime}(s), t^{\prime}(s)\right\rangle \neq 1$,

$$
\begin{align*}
\gamma^{\prime}(s) & =t(s) \\
t^{\prime}(s) & =-\gamma(s)+\kappa_{g}(s) n(s) \\
n^{\prime}(s) & =\kappa_{g}(s) \delta(\gamma(s)) t(s)+\tau_{g}(s) e(s) \\
e^{\prime}(s) & =\tau_{g}(s) n(s) \tag{1}
\end{align*}
$$

where $\delta(\gamma(s))=-\operatorname{sign}(n(s))$,

$$
\begin{aligned}
\kappa_{g}(s) & =\left\|t^{\prime}(s)+\gamma(s)\right\| \\
\tau_{g}(s) & =\frac{\delta(\gamma(s))}{\kappa_{g}^{2}(s)} \operatorname{det}\left(\gamma(s), \gamma^{\prime}(s), \gamma^{\prime \prime}(s), \gamma^{\prime \prime \prime}(s)\right)
\end{aligned}
$$

Now let $\gamma: I \longrightarrow S_{1}^{3}$ be a null curve. We will assume, in the sequel, that the null curve we consider has no points at which the acceleration vector is null. Hence $\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime \prime}(t)\right\rangle$ is never zero. We say that a null curve $\gamma(t)$ in \mathbb{R}_{1}^{4} is parametrized by the pseudo-arc if $\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime \prime}(t)\right\rangle=1$. If a null curve satisfies $\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime \prime}(t)\right\rangle \neq 0$, then $\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime \prime}(t)\right\rangle>0$, and

$$
u(t)=\int_{t_{0}}^{t}\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime \prime}(t)\right\rangle^{1 / 4} d t
$$

becomes the pseudo-arc parameter.
A null curve $\gamma(t)$ in \mathbb{R}_{1}^{4} with $\left\langle\gamma^{\prime \prime}(t), \gamma^{\prime \prime}(t)\right\rangle \neq 0$ is a Cartan curve if $\left\{\gamma^{\prime}(t), \gamma^{\prime \prime}(t), \gamma^{\prime \prime \prime}(t)\right\}$ is linearly independent for any t. For a Cartan curve $\gamma(t)$ in \mathbb{R}_{1}^{4} with pseudo-arc parameter t, there exists a pseudo orthonormal basis $\left\{L, N, W_{1}, W_{2}\right\}$ such that

$$
\begin{align*}
L & =\gamma^{\prime} \\
L^{\prime} & =W_{1} \\
N^{\prime} & =-\gamma+k_{1} W_{1}+k_{2} W_{2} \\
W_{1}^{\prime} & =-k_{1} L-N \\
W_{2}^{\prime} & =-k_{2} L \tag{2}
\end{align*}
$$

where $\langle L, N\rangle=1,\left\langle L, W_{1}\right\rangle=\left\langle L, W_{2}\right\rangle=\left\langle N, W_{1}\right\rangle=\left\langle N, W_{2}\right\rangle=\left\langle W_{1}, W_{2}\right\rangle=$ 0 . We call $\left\{L, N, W_{1}, W_{2}\right\}$ as the Cartan frame and $\left\{k_{1}, k_{2}\right\}$ as the Cartan curvatures of γ. Since the Cartan frame is unique up to orientation, the number of the Cartan curvatures is minimum and the Cartan curvatures are invariant under Lorentz transformations, the set $\left\{L, N, W_{1}, W_{2}, k_{1}, k_{2}\right\}$ corresponds to the Frenet apparatus of a space curve. A direct computation shows that the values of the Cartan curvatures are

$$
\begin{align*}
& k_{1}=\frac{1}{2 a^{2}}\left(\left\langle\gamma^{\prime \prime \prime}, \gamma^{\prime \prime \prime}\right\rangle+2 a a^{\prime \prime}-4\left(a^{\prime}\right)^{2}\right) \\
& k_{2}=-\frac{1}{a^{4}} \operatorname{det}\left(\gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{\prime \prime \prime}, \gamma^{(4)}\right) \tag{3}
\end{align*}
$$

Theorem 1.1 Let $\gamma(t)$ in \mathbb{R}_{1}^{4} be a Cartan curve. Then γ is a pseudospherical curve iff k_{2} is a nonzero constant.

Theorem 1.2 A Cartan curve $\gamma(t)$ in \mathbb{R}_{1}^{4} fully lies on a pseudo-sphere iff there exists a fixed point A such that for each $t \in I,\left\langle A-\gamma(t), \gamma^{\prime}(t)\right\rangle=0$.

2 Bertrand Curve Corresponding to A Spacelike Geodesic on S_{1}^{3}

Theorem 2.1 Let γ be a spacelike geodesic curve on S_{1}^{3}. Then,

$$
\tilde{\gamma}(s)=a \int \gamma(v) d v+a \operatorname{coth} \theta \int e(v) d v+c
$$

is a Bertrand curve where a and θ are constant numbers, c is a constant vector.
Proof. We will use the frame $\{\gamma(s), t(s), n(s), e(s)\}$ of γ given in the previous section. In this frame, let we choose $e(s)$ as a timelike vector (If $e(s)$ is a
spacelike vector, the proof is similar). Hence $n(s)$ is spacelike and $\delta(\gamma(s))=$ -1 . Using the equation (1), we can easily calculate that

$$
\begin{aligned}
\tilde{\gamma}^{\prime}(s)= & a[\gamma(s)+\operatorname{coth} \theta e(s)] \\
\tilde{\gamma}^{\prime \prime}(s)= & a\left[t(s)+\operatorname{coth} \theta \tau_{g}(s) n(s)\right] \\
\tilde{\gamma}^{\prime \prime \prime}(s)= & a\left[-\gamma(s)+\delta(\gamma(s)) \kappa_{g}(s) \tau_{g}(s) t(s)\right. \\
& \left.+\left(\kappa_{g}(s)+\operatorname{coth} \theta \tau_{g}^{\prime}(s)\right) n(s)+\operatorname{coth} \theta \tau_{g}^{2}(s) e(s)\right]
\end{aligned}
$$

Since $\left\langle\tilde{\gamma}^{\prime}(s), \tilde{\gamma}^{\prime}(s)\right\rangle=-\frac{a^{2}}{\sinh ^{2} \theta}$, the curve $\tilde{\gamma}$ is timelike. If we calculate the first and second curvatures of $\tilde{\gamma}$ by using the equations in [8], we have

$$
\begin{aligned}
\kappa(s) & =\frac{\sinh ^{2} \theta \sqrt{1+\operatorname{coth}^{2} \theta \tau_{g}^{2}}}{a} \\
\tau(s) & =\frac{A \sinh \theta}{a \sqrt{1+\operatorname{coth}^{2} \theta \tau_{g}^{2}}}
\end{aligned}
$$

where $A=\sqrt{\cosh ^{2} \theta\left(\tau_{g}^{2}+1\right)^{2}-\kappa_{g}^{2}\left(1+\operatorname{coth}^{2} \theta \tau_{g}^{2}\right)}$. Since τ_{g} and κ_{g} are constants, we can choose $\beta=\frac{-a \sinh \theta \sqrt{1+\operatorname{coth}^{2} \theta \tau_{g}^{2}}}{A}$ and $\alpha=\frac{a \operatorname{coth}^{2} \theta}{\sqrt{1+\operatorname{coth}^{2} \theta \tau_{g}^{2}}}$, then we have $\alpha \kappa+\beta \tau=1$. Hence $\tilde{\gamma}$ is a Bertrand curve.

3 Bertrand Curve Corresponding to A Null Helix on S_{1}^{3}

Theorem 3.1 Let γ be a null helix on S_{1}^{3}. Then,

$$
\tilde{\gamma}(s)=a \int L(v) d v+a \operatorname{coth} \theta \int W_{2}(v) d v+c
$$

is a Bertrand curve where a and θ are constant numbers, c is a constant vector.

Proof.

$$
\begin{aligned}
\tilde{\gamma}^{\prime}(t) & =a\left[L(s)+\operatorname{coth} \theta W_{2}(t)\right] \\
\tilde{\gamma}^{\prime \prime}(t) & =a\left[1-\operatorname{coth} \theta k_{2}\right] W_{1}(t) \\
\tilde{\gamma}^{\prime \prime \prime}(t) & =a\left[k_{1}(\operatorname{coth} \theta-1) L(t)-\left(1-\operatorname{coth} \theta k_{2}\right) N(t)\right]
\end{aligned}
$$

Since $\left\langle\tilde{\gamma}^{\prime}(t), \tilde{\gamma}^{\prime}(t)\right\rangle=a^{2} \operatorname{coth}^{2} \theta$, the curve $\tilde{\gamma}$ is spacelike. If we calculate the first and second curvatures of $\tilde{\gamma}$, we have

$$
\begin{aligned}
& \kappa(t)=\frac{\left(1-\operatorname{coth} \theta k_{2}\right)}{a \operatorname{coth}^{2} \theta} \\
& \tau(t)=\frac{\sqrt{k_{1}^{2} \cosh ^{2} \theta-1}}{\cosh \theta}
\end{aligned}
$$

Since k_{1} and k_{2} are constants, we can choose $\beta=-\frac{\cosh ^{3} \theta}{\sqrt{k_{1}^{2} \cosh ^{2} \theta-1}}$ and $\alpha=\frac{a \cosh ^{2} \theta}{\left(1-\operatorname{coth} \theta k_{2}\right)}$, then we have $\alpha \kappa+\beta \tau=1$. Hence $\tilde{\gamma}$ is a Bertrand curve.

References

[1] Güner, G., Ekmekci, N., On the Spherical curves and Bertrand curves in Minkowski-3 space, J. Math. Comput. Sci. 2, 4, 2012, 898-906.
[2] Çöken, A. C., Çiftçi Ü., On The Cartan Curvatures of a Null Curve in Minkowski Spacetime, Geometriae Dedicata, 114, 2005, 71-78.
[3] Ferrandez, A., Gimenez, A., Lucas, P., Characterization of null curves in Lorentz-Minkowski spaces, Publicaciones de la RSME, 3, 2001, 221-226.
[4] Liu, H., Curves in the Lightlike Cone, Contributions to Algebra and Geometry, 1, 2004, 291-303.
[5] İlarslan, K., Nesovic, E., Some Characterizations of Null, Pseudo Null and Partially Null Rectifying Curves in Minkowski Space-Time, Taiwanese Journal of Mathematics, 5, 2008, 1035-1044.
[6] Fusho, T., Izumiya, S., Lightlike surfaces of spacelike curves in de Sitter 3 -space, 2006.
[7] Matsuda, H., Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50, 2003, 41-58.
[8] Yılmaz, S., Turgut, M., On the Differential Geometry of the Curves in Minkowski Space-time II, Int. J. Contemp. Math. Sciences, 3, 2, 2009.

Received: October, 2014

