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Abstract

Fuzzy Banach space is considered. The concepts of fuzzy complete-

ness, fuzzy minimality, fuzzy biorthogonality, fuzzy basicity and fuzzy

space of coefficients are introduced. Weakly completeness of fuzzy space

of coefficients with regard to fuzzy norm and weakly basicity of canon-

ical system in this space are proved. Weakly basicity criterion in fuzzy

Banach space is presented in terms of coefficient operator.
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1 Introduction

The concept of the space of coefficients belongs to the theory of bases. As
is known, every basis in a Banach space has a Banach space of coefficients
which is isomorphic to an initial one (see, e.g., [1;2]). Every nondegenerate
system (to be defined later) in a Banach space generates the corresponding
Banach space of coefficients with canonical basis (see, e.g., [2;3]). Therefore,
space of coefficients plays an important role in the study of approximative
properties of systems. It has very important applications in various fields of
science, such as solid body physics, molecular physics, multiple production
of particles, aviation, medicine, biology, data compression, etc (see, e.g., [4;5]
and references within). All these applications are closely related to wavelet
analysis, and there arose a great interest in them lately [see, e.g., 5]. It is well
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known that many topological spaces are nonnormable. Therefore, the study of
various properties of the space of coefficients in topological spaces is of special
scientific interest.

Applications in various branches of mathematics and natural sciences have
lately induced a strong interest toward the study of different research problems
in terms of fuzzy structures. More details on this topic can be found in [6-9]
and references therein. A large number of research works is appearing these
days which deal with the concept of fuzzy set-numbers, and fuzzification of
many classical theories has also been made. The concept of Schauder basis in
intuitionistic fuzzy normed space and some results related to this concept have
recently been studied in [10-12;23-27]. These works introduced the concepts of
strongly and weakly intuitionistic fuzzy (Schauder) basis in intuitionistic fuzzy
banach spaces (IFBS in short). Some of their properties are revealed. The
concepts of strongly and weakly intuitionistic fuzzy approximation properties
(sif-AP and wif-AP in short, respectively) are also introduced in these works.
It is proved that if the intuitionistic fuzzy space has a wif-basis, then it has
a wif-AP. All the results in these works are obtained on condition that IFBS
admits equivalent topology using the family of norms generated by t-norm and
t-conorm (we will define them later).

In our work, we define the basic concepts of classical basis theory in in-
tuitionistic fuzzy normed spaces (IFNS in short). Concepts of weakly and
strongly fuzzy spaces of coefficients are introduced. Weakly completeness of
these spaces with regard to fuzzy norm and weakly basicity of canonical sys-
tem in them are proved. Weakly basicity criterion in fuzzy Banach space is
presented in terms of coefficient operator.

In Section 2, we recall some notations and concepts. In Section 3, we state
main results. We first define fuzzy space of coefficients and then introduce
the corresponding fuzzy norms. We prove that for nondegenerate system the
corresponding fuzzy space of coefficients is weakly fuzzy complete. Moreover,
we show that the canonical system forms a weakly basis for this space.

2 Some preliminary notations and concepts

We will use the usual notations: N will denote the set of all positive integers,
R will be the set of all real numbers, C will be the set of complex numbers
and K will denote a field of scalars (K ≡R, or K ≡C), R+ ≡ (0,+∞). We
state some concepts and facts from IFNS theory to be used later.

Definition 2.1. Let X be a linear space over a field K. Functions µ ; ν :
X × R → [0 , 1] are called fuzzy norms on X if the following conditions hold:

1. µ (x; t) = 0 , ∀t ≤ 0 , ∀x ∈ X ;
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2. µ (x; t) = 1 , ∀t > 0 ⇒ x = 0;

3. µ (cx; t) = µ
(

x; t
|c|

)

, ∀c 6= 0 ;

4. µ (x; · ) : R → [0, 1] is a non-decreasing function of t for ∀x ∈ X and
lim
t→∞

µ (x; t) = 1, ∀x ∈ X;

5. µ (x+ y; s+ t) ≥ min{µ (x; s) ; µ (y; t)} , ∀x, y ∈ X , ∀s, t ∈ R;

6. ν (x; t) = 1 , ∀t ≤ 0 , ∀x ∈ X ;

7. ν (x; t) = 0, ∀t < 0 ⇒ x = 0;

8. ν (cx; t) = ν
(

x; t
|c|

)

, ∀c 6= 0 ;

9. ν (x; · ) : R → [0, 1] is a non-increasing function of t for ∀x ∈ X and
lim
t→∞

ν (x; t) = 0, ∀x ∈ X;

10. ν (x+ y; s+ t) ≤ max{ν (x; s) ; ν (y; t)} , ∀x, y ∈ X , ∀s, t ∈ R;

11. µ (x; t) + ν (x; t) ≤ 1, ∀x ∈ X , ∀t ∈ R.

Then the triplet (X ;µ; ν) is called an intuitionistic fuzzy normed space.

The above concepts allow to introduce the following kinds of convergence
(or topology) in IFNS:

Definition 2.2. Let (X ;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X

be some sequence. Then it is said to be strongly intuitionistic fuzzy convergent
to x ∈ X (denoted by xn

s
→x, n → ∞ or s- lim

n→∞
xn = x in short) if and only

if for ∀ε > 0, ∃n0 = n0 (ε) : µ (xn − x; t) ≥ 1 − ε, ν(xn − x; t) ≤ ε , ∀n ≥
n0 , ∀t ∈ R.

Definition 2.3. Let (X ;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X

be some sequence. Then it is said to be weakly intuitionistic fuzzy convergent
to x ∈ X(denoted by xn

w
→x, n → ∞, or w- lim

n→∞
xn = x in short) if and only

if for ∀t ∈ R+ , ∀ε > 0, ∃n0 = n0 (ε; t) : µ (xn − x; t) ≥ 1 − ε, ν(xn − x; t) ≤
ε , ∀n ≥ n0 .

More details on these concepts can be found in [12-22].
Let (X ;µ; ν) be an IFNS, and let M ⊂ X be some set. By L [M ] we denote

the linear span of M in X . The weakly (strongly) intuitionistic fuzzy conver-
gent closure of L [M ] will be denoted by Lw [M ] (Ls [M ]). If X is complete
with respect to the weakly (strongly) intuitionistic fuzzy convergence, then we
will call it intuitionistic fuzzy weakly (strongly) Banach space ( IFBwS or Xw
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(IFBsS or Xs) in short). Let X be an IFBwS (IFBsS). We denote by X∗
w

(X∗
s ) the linear space of linear and continuous in IFBwS (IFBsS) functional

over the same field K.
Now we define the corresponding concepts of basis theory for IFNS. Let

{xn}n∈N ⊂ X be some system.

Definition 2.4. System {xn}n∈N is said w-complete (s-complete) in Xw (in

Xs), if Lw

[

{xn}n∈N
]

≡ Xw (Ls

[

{xn}n∈N
]

≡ Xs).

Definition 2.5. System {x∗
n}n∈N ⊂ X∗

w ({x∗
n}n∈N ⊂ X∗

s ) is called w-
biorthogonal (s-biorthogonal) to the system {xn}n∈N , if x

∗
n (xk) = δnk , ∀n, k ∈

N , where δnk is the Kronecker symbol.

Definition 2.6. System {xn}n∈N ⊂ Xw ({xn}n∈N ⊂ Xs) is called w-linearly
(s-linearly) independent in X, if

∑∞
n=1 λnxn = 0 in Xw (in Xs) implies λn =

0 , ∀n ∈ N .

Definition 2.7. System {xn}n∈N ⊂ Xw ({xn}n∈N ⊂ Xs) is called w-basis
(s-basis) for Xw (forXs) if ∀x ∈ X, ∃!{λn}n∈N ⊂ K :

∑∞
n=1 λnxn = x in Xw

(in Xs).

We will also need the following concept.

Definition 2.8. System {xn}n∈N ⊂ X is called nondegenerate , if xn 6=
0, ∀n ∈ N .

3 Main results

3.1. Space of coefficients. Let X be an IFNS and let {xn}n∈N ⊂ X be
some system. Assume that

K
w
x̄ ≡

{

{λn}n∈N ⊂ C :

∞
∑

n=1

λnxn converges in Xw

}

;

K
s
x̄ ≡

{

{λn}n∈N ⊂ C :
∞
∑

n=1

λnxn converges in Xs

}

.

It is not difficult to see that, K w
x̄ and K s

x̄ are linear spaces with regard
to component-specific summation and component-specific multiplication by a
scalar. Take ∀λ ≡ {λn}n∈N ∈ K w

x̄ and assume

µK

(

λ̄; t
)

= inf
m

µ

(

m
∑

n=1

λnxn; t

)

; νK
(

λ̄; t
)

= sup
m

ν

(

m
∑

n=1

λnxn; t

)

.
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Let’s show that µK and νK satisfy the conditions 1)-11).
1) It is clear that µK

(

λ̄; t
)

= 0, ∀t ≤ 0.
2) Let µK

(

λ̄; t
)

= 1, ∀t > 0. Hence , µ (
∑m

n=1 λnxn; t) = 1, ∀m ∈ N, ∀t >
0.
Suppose that the system {xn}n∈N is nondegenerate. It follows from the above-
stated relations that for m = 1 we have µ (λ1x1; t) = 1, ∀t > 0. Hence, λ1x1 =
0 ⇒ λ1 = 0. Continuing this process, we get at the end of this process
thatλn = 0, ∀n ∈ N , i.e. λ̄ = 0.

3) The validity of relation µK

(

Aλ̄; t
)

= µK

(

λ̄; t
|c|

)

, ∀c 6= 0, is beyond any

doubt.
4) As µ (x; ·) is a non-degenerate function on R, it is not difficult to see

that µK

(

λ̄; ·
)

has the same property. Let’s show that lim
t→∞

µK

(

λ̄; t
)

= 1. Take

∀ε > 0. It is clear that ∃t0 > 0 : µ (S; t0) ≥ 1 − ε. Let Sm =
∑m

n=1 λnxnand
w- lim

m→∞
Sm = S ∈ Xw. Then it follows from the definition of lim

m
w that

∃m0 (ε; t0) : µ (Sm − S; t0) ≥ 1− ε, ∀m ≥ m0 (ε; t0). Property 4. implies

µ (Sm; 2t0) = µ (Sm − S + S; t0 + t0) ≥ min {µ (Sm − S; t0) ; µ (S; t0)} .

As a result we get

µ (Sm; t0) ≥ 1− ε, ∀m ≥ m0 (ε; t0) . (1)

As µ (x; ·) is a non-decreasing function of t, it follows from (1) that

µ (Sm; t) ≥ 1− ε, ∀m ≥ m0 (ε; t0) , ∀t ≥ t0. (2)

We have

µK

(

λ̄; t
)

= inf
m

µ (Sm; t) = min

{

µ (S1; t) ; ...;µ (Sm0−1; t) ; inf
m≥m0

µ (Sm; t)

}

,

(3)
where m0 = m0 (ε; t0). As lim

t→∞
µ (Sk; t) = 1 for ∀k ∈ N , ∃tk (ε) ; ∀t ≥ tk (ε) :

µ (Sk; t) ≥ 1−ε , k = 1, m0 − 1. Let t0ε = max
{

tk (ε) , k = 1, m0 − 1
}

. Then
it is clear that

µ (Sk; t) ≥ 1− ε, ∀t ≥ t0ε. (4)

It follows from (2) and (3) that

inf
m≥m0

µ (Sm; t) ≥ 1− ε, ∀t ≥ t0.

Let tε = max {t0; t
0
ε}. Hence we obtain from (3) and (4)

µK

(

λ̄; t
)

≥ 1− ε, ∀t ≥ tε.
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Thus, lim
t→∞

µK

(

λ̄; t
)

= 1 , ∀λ̄ ∈ K w
x̄ .

5) Let λ̄, µ̄ ∈ K w
x̄

(

λ̄ ≡ {λn}n∈N ; µ̄ ≡ {µn}n∈N
)

and s, t ∈ R. We have

µK

(

λ̄+ µ̄; s+ t
)

= inf
m

µ

(

m
∑

n=1

(λn + µn) xn; s+ t

)

= inf
m

µ

(

m
∑

n=1

λnxn+

+
m
∑

n=1

µnxn; s+ t

)

≥ inf
m

min

{

µ

(

m
∑

n=1

λnxn; s

)

; µ

(

m
∑

n=1

µnxn; t

)}

=

= min

{

inf
m

µ

(

m
∑

n=1

λnxn; s

)

; inf
m

µ

(

m
∑

n=1

µnxn; t

)}

=

= min
{

µ
(

λ̄; s
)

; µ (µ̄; t)
}

.

6) As ν (x; t) = 1, ∀t ≤ 0, it is clear that νw
(

λ̄; t
)

= 1 , ∀t ≤ 0 , ∀λ̄ ∈ K w
x̄ .

7) Let the system {xn}n∈N be nondegenerate. Assume that
νK
(

λ̄; t
)

= 0, ∀t > 0.Then ν (
∑m

n=1 λnxn ; t) = 0, ∀t > 0, ∀m ∈ N . For m = 1
we have ν (λ1x1; t) = 0, ∀t > 0 ⇒ λ1x1 = 0 ⇒ λ1 = 0. Continuing this process,
we get λn = 0, ∀n ∈ N ⇒ λ̄ = 0.

8) Clearly, νK
(

cλ̄; t
)

= νK

(

λ̄; t
|c|

)

, ∀c 6= 0.

9) It follows from the property 9. that ν (x ; ·) is a non-increasing function
on R. Therefore, νK

(

λ̄ ; ·
)

is a non-increasing function on R. Let us show
that lim

t→∞
νK
(

λ̄ ; t
)

= 0. Let Sm =
∑m

n=1 λnxn and w- lim
m→∞

Sm = S ∈ X . Take

∀ε > 0. It is clear that ∃t0 > 0 : ν (S; t0) ≤ ε. Then it follows from the
definition of lim

m
w that ∃m0 = m0 (ε; t0) : ν (Sm − S; t0) ≤ ε, ∀m ≥ m0. We

have

ν (Sm; t0) = ν (Sm − S + S; t0 + t0) ≤

≤ max {ν (Sm − S; t0) ; ν (S; t0)} ≤ ε, ∀m ≥ m0.

As ν (x ; ·) is a non-increasing function, it is clear that

ν (Sm; t) ≤ ε, ∀m ≥ m0, ∀t ≥ t0. (5)

We have

νK
(

λ̄; t
)

= sup
m

ν (Sm; t) = max

{

ν (S1; t) ; ...; ν (Sm0−1; t) ; sup
m≥m0

ν (Sm; t)

}

.

As lim
t→∞

ν (Sk; t) = 0 for ∀k ∈ N , we have ∃tk (ε) ; ∀t ≥ tk (ε) : ν (Sk; t) ≤

ε, k = 1, m0 − 1. Let t0ε = max
{

tk (ε) , k = 1, m0 − 1
}

. It is clear that
ν (Sk; t) ≤ ε, ∀t ≥ t0ε. It follows from (5) that sup

m≥m0

ν (Sm; t) ≤ ε, ∀t ≥ t0. Let
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tε = max {t0; t
0
ε}. Then it is clear that νK

(

λ̄; t
)

≤ ε, ∀t ≥ tε ⇒ lim
t→∞

νK
(

λ̄; t
)

=

0 .
10) Let λ̄, µ̄ ∈ K w

x̄

(

λ̄ ≡ {λn}n∈N ; µ̄ ≡ {µn}n∈N
)

and s, t ∈ R. We have

νK
(

λ̄+ µ̄; s+ t
)

= sup
m

ν

(

m
∑

n=1

(λn + µn)xn; s+ t

)

≤

≤ sup
m

max

{

ν

(

m
∑

n=1

λnxn; s

)

; ν

(

m
∑

n=1

µnxn; t

)}

=

= max

{

sup
m

ν

(

m
∑

n=1

λnxn; s

)

; sup
m

ν

(

m
∑

n=1

µnxn; t

)}

=

= max
{

νK
(

λ̄; s
)

; νK (µ̄; t)
}

.

11) µK

(

λ̄; t
)

+ νK
(

λ̄; t
)

= inf
m

µ (
∑m

n=1 λnxn; t) + sup
m

ν (
∑m

n=1 λnxn; t) ≤

≤ sup
m

[

µ

(

m
∑

n=1

λnxn; t

)

+ ν

(

m
∑

n=1

λnxn; t

)]

≤ 1, ∀λ̄ ∈ K
w
x̄ , ∀λ ∈ R.

Thus, we have proved the validity of the following

Theorem 3.1. Let (X ;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X

be a nondegenerate system. Then the space of coefficients (K w
x̄ ;µK; νK) is also

weakly fuzzy normed space.

The following theorem is proved in absolutely the same way.

Theorem 3.2. Let (X ;µ; ν) be a fuzzy normed space and let {xn}n∈N ⊂ X

be a nondegenerate system. Then the space of coefficients (K s
x̄ ;µK ; νK) is also

strongly fuzzy normed space.

3.2. Completeness of the space of coefficients. Subsequently, we
assume that (X ;µ; ν) is IFBS. Let us show that (K w

x̄ ;µK ; νK) is a strongly
fuzzy complete normed space. First we prove the following

Lemma 3.3. Let x0 6= 0 , x0 ∈ X, and let {λn}n∈N ⊂ R be some sequence.
If w- lim

n→∞
(λnx0) = 0, i.e. for ∀ε > 0, ∃n0 = n0 (ε; t): µ (λnx0 ; t) > 1 − ε

(ν (λnx0 ; t) < ε), ∀n ≥ n0; then λn → 0 , n → ∞.

Proof. As x0 6= 0, it is clear that ∃t0 > 0 : µ (x0 ; t0) < 1 (it follows from

the property 1). If λn 6= 0 we have µ (λnx0 ; t) = µ
(

x0 ;
t

|λn|

)

, for ∀t > 0. Let

the sequence {λn}n∈N not convergent to zero. Then ∃ {λnk
}k∈N and ∃δ > 0 :
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|λnk
| ≥ δ , ∀k ∈ N ⇒ t

|λn
k
|
≤ t

δ
. As µ (x0 ; · ) is a non-decreasing function

of t, then µ

(

x0;
t

|λn
k
|

)

≤ µ
(

x0;
t
δ

)

, ∀t ∈ R+. Take t̃ = δ t0. We have

µ
(

λnk
x0 ; t̃

)

≤ µ (x0 ; t0) < 1, ∀k ∈ N . So we came upon a contradiction
which proves the Lemma.

In the further we assume that the following condition is also fulfilled.
12) The functions µ (x ; ·), ν (x ; ·) : R+ → [0, 1] are continuous for ∀x ∈ X.

Take w-fundamental sequence
{

λ̄n

}

n∈N
⊂K w

x̄ , λ̄n ≡
{

λ
(n)
k

}

k∈N
. Then,

lim
n,m→∞

µK

(

λ̄n − λ̄m ; t
)

= 1,∀t ∈ R, i.e.

lim
n,m→∞

inf
r
µ

(

m
∑

k=1

(

λ
(n)
k − λ

(m)
k

)

xk; t

)

= 1, ∀t ∈ R.

Take ∀k0 ∈ N and fix it. We have

(

λ
(n)
k0

− λ
(m)
k0

)

xk0 =
k0
∑

k=1

(

λ
(n)
k − λ

(m)
k

)

xk −
k0−1
∑

k=1

(

λ
(n)
k − λ

(m)
k

)

xk.

Then from property 5) we get

µ
((

λ
(n)
k0

− λ
(m)
k0

)

xk0 ; t
)

≥ min

{

µ

(

k0
∑

k=1

(

λ
(n)
k − λ

(m)
k

)

xk;
t

2

)

;

µ

(

k0−1
∑

k=1

(

λ
(n)
k − λ

(m)
k

)

xk ;
t

2

)}

.

It follows directly from this relation that

lim
n,m→∞

µ
((

λ
(n)
k0

− λ
(m)
k0

)

xk0 ; t
)

= 1, ∀t ∈ R.

As xk0 6= 0, Lemma 3.3 implies lim
n,m→∞

∣

∣

∣
λ
(n)
k0

− λ
(m)
k0

∣

∣

∣
= 0, i.e. the sequence

{

λ
(n)
k0

}

n∈N
is fundamental in R. Let λ

(n)
k0

→ λk0
, as n → ∞. Denote λ̄ ≡

{λn}n∈N . Let us show that lim
n→∞

µK

(

λ̄n − λ̄; t
)

= 1, ∀t ∈ R. Take ∀ε > 0,

∀t > 0. It is clear that

∃n0 = n0 (ε; t) : µK

(

λ̄n − λ̄n+p; t
)

> 1− ε, ∀n ≥ n0 , ∀p ∈ N.

Consequently

inf
r
µ

(

r
∑

k=1

(

λ
(n)
k − λ

(n+p)
k

)

xk; t

)

> 1− ε, ∀n ≥ n0 , ∀p ∈ N.
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Hence

µ

(

r
∑

k=1

(

λ
(n)
k − λ

(n+p)
k

)

xk; t

)

> 1− ε, ∀n ≥ n0 , ∀r, p ∈ N. (6)

As shown above, lim
n,m→∞

µ
((

λ
(n)
k − λ

(m)
k

)

xk; t
)

= 1, ∀t ∈ R. Let us show that

lim
m→∞

µ
(

λ
(m)
k xk; t

)

= µ (λkxk; t), ∀t ∈ R+. Indeed, if λk = 0, thenµ (0 ; t) = 1,

∀t ∈ R+, and, clearly, lim
m→∞

µ
(

λ
(m)
k xk; t

)

= 1, for ∀t ∈ R+. If λk 6= 0, then for

sufficiently large values of m we have λ
(m)
k 6= 0, and as a result

µ
(

λ
(m)
k xk; t

)

= µ



xk;
t

∣

∣

∣
λ
(m)
k

∣

∣

∣





m→∞
→ µ

(

xk;
t

|λk|

)

= µ (λkxk; t) , ∀t ∈ R+.

Passage to the limit in the inequality (6) as p → ∞ yields

µ

(

r
∑

k=1

(

λ
(n)
k − λk

)

xk; t

)

≥ 1− ε, ∀n ≥ n0 , ∀r ∈ N. (7)

We have

µ

(

r+p
∑

k=r

(

λ
(n)
k − λk

)

xk; t

)

= µ

(

r+p
∑

k=1

(

λ
(n)
k − λk

)

xk −

r−1
∑

k=1

(

λ
(n)
k − λk

)

xk; t

)

≥

≥ min

{

µ

(

r+p
∑

k=1

(

λ
(n)
k − λk

)

xk ;
t

2

)

; µ

(

r−1
∑

k=1

(

λ
(n)
k − λk

)

xk ;
t

2

)}

≥

≥ 1− ε, ∀n ≥ n0 , ∀r, p ∈ N.

As λ̄n ∈K w
x̄ , it is clear that ∃m

(n)
0 : ∀m ≥ m

(n)
0 , ∀p ∈ N :

µ

(

m+p
∑

k=m

λ
(n)
k xk; t

)

> 1− ε.

Consequently

µ

(

m+p
∑

k=m

λkxk; t

)

= µ

(

m+p
∑

k=m

(

λk − λ
(n)
k

)

xk +

m+p
∑

k=m

λ
(n)
k xk ; t

)

≥

≥ min

{

µ

(

m+p
∑

k=m

(

λk − λ
(n)
k

)

xk ;
t

2

)

; µ

(

m+p
∑

k=m

λ
(n)
k xk ;

t

2

)}

≥
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≥ 1− ε, ∀m ≥ m
(n)
0 , ∀p ∈ N.

It follows that the series
∑∞

k=1 λkxk is weakly fuzzy convergent in Xw, i.e.
∃w- lim

m→∞

∑m

k=1 λkxk. Consequently, λ̄ ∈K w
x̄ and the relation (7) implies that

lim
n→∞

µK

(

λ̄n − λ̄; t
)

= 1,∀t ∈ R+. It can be proved in similar way that

lim
n→∞

νK
(

λ̄n − λ̄; t
)

= 0, ∀t ∈ R+. As a result we obtain that the space

(K w
x̄ ;µK ; νK) is weakly fuzzy complete. Thus, we have proved the following

Theorem 3.4. Let (X ;µ; ν) be a fuzzy Banach space with condition 12) and
let {xn}n∈N ⊂ X be a nondegenerate system. Then the space of coefficients
(K w

x̄ ;µK ; νK) is a weakly fuzzy complete normed space.

Consider operator T : K w
x̄ → X defined by

T λ̄ =
∞
∑

n=1

λnxn, λ̄ ≡ {λn}n∈N ∈ K
w
x̄ .

Let w- lim
n→∞

λ̄n = λ̄ in K w
x̄ , where λ̄n ≡

{

λ
(n)
k

}

k∈N
∈K w

x̄ . We have

µ
(

T λ̄n − T λ̄ ; t
)

= µ

(

∞
∑

k=1

(

λ
(n)
k − λk

)

xk ; t

)

≥

≥ inf
m

µ

(

m
∑

k=1

(

λ
(n)
k − λk

)

xk ; t

)

= µ
(

λ̄n − λ̄ ; t
)

.

It follows directly that w-limT
n→∞

λ̄n = T λ̄, i.e. the operator T is weakly fuzzy

continuous. Let λ̄ ∈ KerT , i.e. T λ̄ = 0 ⇒
∑∞

n=1 λnxn = 0, where λ̄ ≡
{λn}n∈N ∈K w

x̄ . It is clear that if the system {xn}n∈N is w-linearly indepen-
dent, then λn = 0, ∀n ∈ N , and, as a result, KerT = {0}. In this case
∃T−1 : ImT →K w

x̄ . If, in addition, ImT is w-closed in X , then T−1 is also
continuous.

Denote by {ēn}n∈N ⊂ K w
x̄ a canonical system in K w

x̄ , where ēn = {δnk}k∈N
∈ K w

x̄ . Obviously, T ēn = xn, ∀n ∈ N . Let us prove that {ēn}n∈N forms an
w-basis in K w

x̄ . Take ∀λ̄ ≡ {λn}n∈N ∈K w
x̄ and show that the series

∑∞
n=1 λnēn

is weakly fuzzy convergent in K w
x̄ . In fact, the existence of w- lim

m→∞

∑m

n=1 λnxn

in Xw implies that for ∀ε > 0, and ∀t > 0, ∃m0 = m0 (ε; t) ∈ N

µ

(

m+p
∑

n=m

λnxn; t

)

> 1− ε, ∀m ≥ m0 , ∀p ∈ N.

We have

µK

(

m+p
∑

n=m

λnēn; t

)

= inf
r

(

r
∑

n=m

λnxn; t

)

≥ 1− ε, ∀m ≥ m0 , ∀p ∈ N.
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It follows that the series
∑∞

n=1 λnēn is weakly fuzzy convergent in K w
x̄ . More-

over

µK

(

λ̄−

m
∑

n=1

λnēn; t

)

= µK ({ 0; ...; 0; λm+1; ...} ; t) = inf
r
µ

(

r
∑

n=m+1

λnxn; t

)

≥

≥ 1− ε, ∀m ≥ m0 , ∀t ∈ R+.

Consequently, w- lim
m→∞

∑m

n=1 λnēn = λ̄, i.e. λ̄
w
=
∑∞

n=1 λnēn. Consider the func-

tionals e∗n
(

λ̄
)

= λn, ∀n ∈ N . Let us show that they are w-continuous. Let

w- lim
n→∞

λ̄n = λ̄, where λ̄n ≡
{

λ
(n)
k

}

k∈N
∈K

w
x̄ . As established in the proof of

Theorem 3, we have λ
(n)
k → λk, n → ∞, i.e. e∗k

(

λ̄n

)

→ e∗k
(

λ̄
)

, as n → ∞, for
∀k ∈ N . Thus, e∗k is w-continuous in K w

x̄ for ∀k ∈ N . On the other hand, it
is easy to see that e∗n (ēk) = δnk, ∀n, k ∈ N , i.e. {e∗n}n∈N is w-biorthogonal to
{ēn}n∈N . As a result we obtain that the system {ēn}n∈N forms an w-basis in
K w

x̄ . So we get the validity of the following

Theorem 3.5. Let (X ;µ; ν) be a fuzzy Banach space with condition 12) and
let {xn}n∈N ⊂ X be a nondegenerate system. Then the corresponding space
of coefficients (K w

x̄ ;µK ; νK) is weakly fuzzy complete with canonical w-basis
{ēn}n∈N .

Suppose that the system {xn}n∈N is w- linearly independent and ImT is
closed. Then it is easily seen that {xn}n∈N forms an w-basis in ImT , and, in
case of its w-completeness in Xw, it forms an w-basis for Xw. In this case, K w

x̄

and Xw are isomorphic, and T is an isomorphism between them. The opposite
of it is also true, i.e. if the above-defined operator T s an isomorphism between
K w

x̄ and Xw, then the system {xn}n∈N forms an w-basis in Xw. We will call
T a coefficient operator. Thus, the following theorem holds.

Theorem 3.6. Let (X ;µ; ν) be a fuzzy Banach space with condition 12),
{xn}n∈N ⊂ X be a nondegenerate system, (K w

x̄ ;µK; νK) be a corresponding
weakly fuzzy complete normed space and T : K w

x̄ → Xw , be a coefficient
operator. System {xn}n∈N forms an w-basis for Xw if and only if the operator
T is an isomorphism between K w

x̄ and Xw.

4 Conclusion

Thus we arrive at the following conclusion: Let 5-tuple (X ;µ; ν; ∗; ♦) be an
IFBwS. Then:

1. this structure generates the corresponding concepts for the theory of
approximation;
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2. every nondegenerate system {xn}n∈N ⊂ X generates a corresponding
weakly fuzzy complete normed space (K w

x̄ ;µK ; νK) of coefficients;

3. canonical system {ēn}n∈N forms a weak basis for K w
x̄ ;

4. system {xn}n∈N generates a coefficient operator T : K w
x̄ → X ;

5. system {xn}n∈N forms a weak basis for X if and only if T is an isomor-
phism between K

w
x̄ and X .

Note that many results of this work are new in classical case, too.
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