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Abstract
In this paper, our main aim is to investigate the solvability, exis-

tence of unique solution, closed-form solutions of some linear matrix
quaternion equations with one unknown and of their systems with two
unknowns. By means of the arithmetic operations on matrix quater-
nions, the linear matrix quaternion equations that is considered herein
could be converted into four classical real linear equations, the solu-
tions of the linear matrix quaternion equations are derived by solving
four classical real linear equations based on the inverses and general-
ized inverses of matrices. Also, efficiency and accuracy of the presented
method are shown by several examples.

Mathematics Subject Classification: 11R52; 15A30

Keywords: The systems of equations; Quaternions; Quaternionic Sys-
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1 Introduction

The quaternion and quaternion matrices play a role in computer science, quan-
tum physics, signal and color image processing, and so on (e.g., [1, 17, 22].
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General properties of quaternion matrices can be found in [29].

Linear matrix equations are often encountered in many areas of computa-
tional mathematics, control and system theory. In the past several decades,
solving matrix equations has been a hot topic in the linear algebraic field (see,
for example, [2, 3, 12, 18, 19, 21 and 30]).

Several results on the solutions of some quaternionic and octonionic equa-
tions have been obtained. For example, the author of the paper [20] classified
solutions of the quaternionic equation ax+xb = c. In [27], the linear equations
of the forms ax = xb and ax = xb in the real Cayley–Dickson algebras (quater-
nions, octonions, sedenions) are solved and form for the roots of such equations
is established. In [13], the solutions of the equations of the forms ax = xb and
ax = xb for some generalizations of quaternions and octonions are investigated.
In [23], the αxβ + γxδ = ρ linear quaternionic equation with one unknown,
αxβ + γxδ = ρ, is solved. In [6], Bolat and İpek first considered the linear
octonionic equation with one unknown of the form α(xα) = (αx)α = αxα = ρ,
with 0 6= α ∈ O, second presented a method which is reduce this octonionic
equation to an equation with the left and right coefficients to a real system of
eight equations to find the solutions of this equation, and finally reached the
solutions of this linear octonionic equation from this real system. In [7], Bolat
and İpek obtained the solutions of some linear equations with two terms and
one unknown by the method of matrix representations of complex quaternions
over the complex quaternion field and to investigate the solutions of some
complex quaternionic linear equations.

Equations considered in here have the origin in the classic papers by Tian
[27] in 1999 and Shpakivskyi [23] in 2010 for studying some topics of quaternion
and octonion field. Their pioneering works have lead to extensive research of
quaternionic and octonionic equations, and many researchers have established
relationships obtained by them to several mathematics subjects, such as dif-
ferential equations and linear algebra (see, e.g., the papers [23-29] for more
details about the quaternionic equation and the related topics).

Motivated by the work mentioned above, in this paper, we first define
matrix quaternions and give some algebraic properties of matrix quaternions
and a lemma together with its proof dealed with quaternions in this type. Then
we unite and reflect upon some related issues that are crucial to the study of
linear algebra over the quaternions: spectra, modules, and inner products.
Finally we investigate the solvability, existence of unique solution, closed-form
solutions of some linear matrix quaternion equations with one unknown and
of their systems with two unknowns. One of the main techniques that is
used herein is that of embeddings of the quaternions into real field. In this
sense, then, algebra over quaternions is obtained from linear algebra over real
numbers. We note that all our results are primarily of theoretical interest and
we hope that they will lead to new insight into and better understanding of the
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relations between the most popular methods for solving matrix quaternionic
and octonionic equations.

2 Preliminaries

In this section, we introduce some definitions, notations and basic properties
which we need to use in the presentations and proofs of our main results.

We start by first recalling some basic results concerning Hamilton quater-
nion algebra H, which can be found in classic books on this subject. For results
concerning quaternion analysis we refer to [4, 9, 29].

The quaternion, which is a type of hypercomplex numbers, was formally
introduced by Hamilton [10] in 1844. The definition of quaternion is

q = q0 + q1i+ q2j + q3k, (1)

which obey the conventional algebraic rule for addition and multiplication by
scalars (real numbers) and which obey an associative non-commutative rule
for multiplication where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j, ijk = −1. (2)

Throughout the paper, we denote the real number field by R, the set of all
m× n matrices over the quaternion algebra

H = {q0 + q1i+ q2j + q3k : qs ∈ R, s = 0, 1, 2, 3}, (3)

where i, j and k satisfy the Eq.(2), by

Qm×n
M =

{
A = A0 + A1i+ A2j + A3k : As ∈ Rm×n, s = 0, 1, 2, 3

}
, (4)

where i, j and k satisfy the Eq.(2). Next, several definitions and properties
adopted in this paper are introduced to make the following sections readily
comprehensible. More details can be found in [29].

It is frequently useful to regard quaternions as an ordered set of 4real
quantities which we write as

q = [q0, q1, q2, q3] , (5)

or as a combination of a scalar and a vector

q = [q0, q] , (6)

where q = [q1, q2, q3] . A “scalar” quaternion has zero vector part and we shall
write this as [q0, 0] = q0 = 0. A “pure” quaternion has zero scalar part [0, q] .
In the scalar–vector representation, multiplication becomes

pq = (p0q0 − p · q, p0q + q0p+ p× q) , (7)
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where “·” and “×” are the vector dot and cross product. The conjugate of a
quaternion is given by

q= [q0,−q] , (8)

the squared norm of a quaternion is

|q|2 = qq = q20 + q21 + q22 + q23, (9)

and its inverse is

q−1 =
q

|q|2
. (10)

Quaternions with |q| = 1 are called as unit quaternions, for which we have
q−1 = q.

3 Main Results

In this section, we first define matrix quaternions and give some algebraic prop-
erties of matrix quaternions and a lemma together with its proof dealed with
quaternions in this type. Then we unite and reflect upon some related issues
that are crucial to the study of linear algebra over the quaternions: spectra,
modules, and inner products. Finally we investigate the solvability, existence
of unique solution, closed-form solutions of the some linear matrix quaternion
equations with one unknown and of their systems with two unknowns.

Let I be the n×n identity matrix and let H, J, K be n×n matrices with
real elements. Then the set of the matrix quaternions may be written in form
as

Mm×n
Q =

{
A = A0I + A1H + A2J + A3K : As ∈ Rm×n, s = 0, 1, 2, 3

}
, (11)

and the rules of quaternion addition and multiplication will follow from those
of matrix addition and multiplication provided that the matrices H, J, K
satisfy the ”Hamiltonian conditions” [8]:

HH= −I, JJ = −I, KK = −I,

HJ= K, JK = H, KH = J, (12)

JH= −K, KJ = −H, HK = −J.

Addition and subctraction of the matrix quaternionsA = a0I+a1H+a2J+a3K,
B = b0I + b1H + b2J + b3K ∈Mn×n

Q are

A±B = (a0 ± b0)I + (a1 ± b1) H + (a2 ± b2) J + (a3 ± b3) K. (13)

Multiplication of the matrix quaternions A, B ∈Mn×n
Q is given by
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A.B = (a0b0 − a1b1 − a2b2 − a3b3) I + (a1b0 + a0b1 − a3b2 + a2b3) H(14)

+ (a2b0 + a3b1 + a0b2 − a1b3) J

+ (a3b0 − a2b1 + a1b2 + a0b3) K

and hence in particular, multiplications of the matrix quaternions is not nec-
essarily commutative. The conjugate of matrix quaternion A ∈Mn×n

Q is

A = a0I− a1H− a2J− a3K (15)

and, therefore it is
A + A = 2a0I, AB = BA. (16)

For k ∈ R, the matrix k.A is the matrix

k.A = ka0I + ka1H + ka2J + ka3K ∈Mm×n
Q . (17)

Scalar product of the matrix quaternions α, β ∈Mn×n
Q is the scalar

〈α, β〉= (α0β0 + α1β1 + α2β2 + α3β3) . (18)

The following Lemma has a key role in the remaining sections of this note.

Lemma 3.1 For any α = α0I +α1H +α2J +α3K, β = β0I + β1H + β2J +
β3K ∈Mn×n

Q the following equality is true:

αβ = βα− 2
−→
β −→α − 2 〈α, β〉 I. (19)

Proof 3.2 For α and β matrix quaternions in above Lemma 3.1, we obtain
the following fundamental equalities for the expressions αβ, βα and

−→
β −→α ,

αβ = (α0I + α1H + α2J + α3K) (β0I + β1H + β2J + β3K)

= (α0β0 − α1β1 − α2β2 − α3β3) I (20)

+ (α0β1 + α1β0 + α2β3 − α3β2) H

+ (α0β2 − α1β3 + α2β0 + α3β1) J

+ (α0β3 + α1β2 − α2β1 + α3β0) K,

βα = (β0I + β1H + β2J + β3K) (α0I + α1H + α2J + α3K)

= (β0α0 − β1α1 − β2α2 − β3α3) I (21)

+ (β1α0 + β0α1 − β3α2 + β2α3) H

+ (β2α0 + β3α1 + β0α2 − β1α3) J

+ (β3α0 − β2α1 + β1α2 + β0α3) K,
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−→
β −→α = (β1H + β2J + β3K) (α1H + α2J + α3K)

= (−β1α1 − β2α2 − β3α3) I (22)

+ (β2α3 − β3α2) H

+ (−β1α3 + β3α1) J

+ (β1α2 − β2α1) K,

and
〈α, β〉 I = (α0β0 + α1β1 + α2β2 + α3β3) I. (23)

Thus, from (20) , (21) , (22) and (23) we reach the result of the Lemma.

Lemma 3.1 is very intuitive and simple. By using this result, we are able to
prove the following results regarding solutions of matrix quaternionic equations
considered in Sections 3.1, 3.2 and 3.3.

3.1 The Linear Matrix Quaternionic Equations and Sys-
tems with one Addend

Applying Lemma 3.1 to a linear equation,

αXβ + γXδ = ρ, (24)

where {α, β, γ, δ, ρ} ⊂Mn×n
Q , in matrix quaternions, we now reduce this equa-

tion to a real system with four unknown. For any α = α0I+α1H+α2J+α3K,
β = β0I + β1H + β2J + β3K ∈Mn×n

Q , using Lemma 3.1 we obtain

αXβ = α
(
βX − 2

−→
β
−→
X − 2

〈−→
β ,
−→
X
〉

I
)

= αβX − 2α
−→
β
−→
X − 2α

〈−→
β ,
−→
X
〉

I

= αβ
(
X0I+

−→
X
)
− 2α

−→
β
−→
X − 2α

〈−→
β ,
−→
X
〉

I

= αβX0 +
(
αβ − 2α

−→
β
)−→
X − 2α

〈−→
β ,
−→
X
〉

I.

Then, similarly, for γXδ we have

γXδ = γδX0 +
(
γδ − 2γ

−→
δ
)−→
X − 2γ

〈−→
δ ,
−→
X
〉

I. (25)

Let ρ = ρ0I + ρ1H + ρ2J + ρ3K. Then, from the last two equalities, equation
(24) is equivalent to the following:

αXβ + γXδ = (αβ + γδ)X0 +
[(
αβ − 2α

−→
β + γδ − 2γ

−→
δ
)

H− 2αβ1 − 2γδ1

]
X1

+
[(
αβ − 2α

−→
β + γδ − 2γ

−→
δ
)

J− 2αβ2 − 2γδ2

]
X2
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+
[(
αβ − 2α

−→
β + γδ − 2γ

−→
δ
)

K− 2αβ3 − 2γδ3

]
X3

= χX0 + ϕX1 + ψX2 + φX3

= [χ0I + χ1H + χ2J + χ3K]X0 + [ϕ0I + ϕ1H + ϕ2J + ϕ3K]X1

+ [ψ0I + ψ1H + ψ2J + ψ3K]X2 + [φ0I + φ1H + φ2J + φ3K]X3

= ρ0I + ρ1H + ρ2J + ρ3K. (26)

Therefore, we obtain that the equation (24) is equivalent to the system

χ0X0 + ϕ0X1 + ψ0X2 + φ0X3 = ρ0,

χ1X0 + ϕ1X1 + ψ1X2 + φ1X3 = ρ1,

χ2X0 + ϕ2X1 + ψ2X2 + φ2X3 = ρ2, (27)

χ3X0 + ϕ3X1 + ψ3X2 + φ3X3 = ρ3,

so that the problem has been reduced to solution of the 4×4 real linear system.

Example 3.3 Consider the following equation:

(H− 2K)XJ+ (I− J)X (H + K) = I + 4H + 5J + 6K, (28)

in Mn×n
Q . For α = H − 2K, β = J, γ = I − J, δ = H + K and ρ =

I + 4H + 5J + 6K, this equation is of the form (24). Here αβ = α
−→
β =

(H− 2K) J = K + 2H, γδ = γ
−→
δ = (I− J) (H + K) = 2K, αβ1 = αβ3 =

γδ2 = 0, αβ2 = (H− 2K) I = H − 2K, γδ1 = γδ3 = (I− J) I = I − J. Then
from equality (26) we have:

(2H + 3K)X0 + (−J)X1 + (H + 2K)X2 + (I + 4J)X3 = I + 4H + 5J + 6K,(29)

that is equivalent to the system

X3 = 1,

2X0 +X2 = 4,

−X1 + 4X3 = 5,

3X0 + 2X2 = 6.

The last system has one solution: X0 = 2, X1 = −1, X2 = 0, X3 = 1, then
X = 2I−H + K.

3.2 The Linear Matrix Quaternionic Systems with Two
Addends

In this section, we consider a system of linear matrix quaternionic equations
of the form

AY B + CXD = E (30)

PY Q+RXS = T
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where A 6= 0, B 6= 0, C,D,E, P,Q,R, S, T are given matrix quaternions and
X, Y are unknown.

Let denote ‖A‖ =
√
a20 + a21 + a22 + a23 and ‖B‖ =

√
b20 + b21 + b22 + b23.If we

multiply the first equation in (30) by conjugate A on the left and by B on the
right, from AA = ‖A‖2 I and BB = ‖B‖2 I we have

‖A‖2 Y ‖B‖2 I+ACXDB = AEB (31)

or
‖A‖2 Y ‖B‖2 +ACXDB = AEB. (32)

Since A 6= 0, B 6= 0, we write ‖A‖2 6= 0 and ‖B‖2 6= 0. If we now multiply
the equation (32) by 1

‖A‖2‖B‖2 , we get

Y =
1

‖A‖2 ‖B‖2
AEB − 1

‖A‖2 ‖B‖2
ACXDB. (33)

Putting (33) into the second equation of system (30) we get

1

‖A‖2 ‖B‖2
PAEBQ− 1

‖A‖2 ‖B‖2
PACXDBQ+RXS = T, (34)

and hence the equation (34) is of the form (24) with

α = − 1

‖A‖2 ‖B‖2
PAC, β = DBQ, ρ = T − 1

‖A‖2 ‖B‖2
PAEBQ. (35)

From equation(34) and equation(35) , we find X. Then from equation (33), we
calculate Y.

Example 3.4 Consider the following system:{
HY J + JXH = K,

KYH + HXK = I + H + J
, (36)

in Mn×n
Q . This is a system of the form (30) . From (26) , we get the equation

allowing to find X :
−2X2I− 2X3H = I + H. (37)

Then X = X0I+X1H−1
2
J−1

2
K, for any X0,X1 ∈ R. From formula (33) , we

obtain:

Y = HKJ−HJ

(
X0I+X1H−

1

2
J−1

2
K

)
HJ

= (1 +X0) I−X1H−
1

2
J−1

2
K,foranyX0, X1 ∈ R.

In that case, the solution of the sytem (36) has the form{
X = X0I+X1H−1

2
J−1

2
K,

Y = (1 +X0) I−X1H−1
2
J−1

2
K,

(38)

for any X0, X1 ∈ R.
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3.3 The General Linear Matrix Quaternionic Equation
with One Unknown and Systems of Equations with
Two Unknowns

In this section ,we search for a solution of the general linear matrix quaternionic
equation:

N∑
s=1

αsXβs = ρ. (39)

We can write the equation to which (39) is equivalent:

AX0+[(A− 2B) H− 2C1]X1+[(A− 2B) J− 2C2]X2+[(A− 2B) K− 2C3]X3 = ρ,
(40)

where A =
N∑
s=1

αsβs, B =
N∑
s=1

αs
−→
βs, Cq =

N∑
s=1

αsβ
(q)
s , q = 1, 2, 3. If all βs ∈

−−−→
Mn×n

Q ,

then A = B.
We denote

A = A0I+A1H + A2J + A3K, (41)

(A− 2B) H− 2C1 = λ = λ0I+λ1H + λ2J + λ3K,

(A− 2B) J− 2C2 = µ = µ0I+µ1H + µ2J + µ3K,

(A− 2B) K− 2C3 = υ = υ0I+υ1H + υ2J + υ3K.

Then equation (39) is equivalent to the system
A0X0+λ0X1 + µ0X2 + υ0X3 = ρ0,
A1X0+λ1X1 + µ1X2 + υ1X3 = ρ1,
A2X0+λ2X1 + µ2X2 + υ2X3 = ρ2,
A3X0+λ3X1 + µ3X2 + υ3X3 = ρ3.

(42)

We now note the following proposition which is can directly be derived from
(39).

Proposition 3.5 If X = X0 +
−→
X is a root of equation (39), then:

1. (−X) is a root of equation (39) if and only if ρ = 0;

2. the conjugate X is a root of equation (39) if and only if AX0 = ρ.

Proof 3.6 The proof follows from (40) .

Consider any system of linear quaternionic matrix equations of the form
AY B +

n∑
p=1

CpXDp = E,

r∑
m=1

FmY Gm +
l∑

t=1

γtXδt = H,
(43)
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where A 6= 0, B 6= 0, Cp, Dp, E, Fm, Gm, γt, δt, H be known matrix
quaternions, X, Y are unknown.

From the first equation of the equation (43) we can find Y as an expression
with X and substitute it into the second equation of the (43), then for X we
have an equation of the form (39) with N = rn+ l. From (42) we find X, and
then we find Y . Let the following system of general form be given:

v∑
τ=1

AτY Bτ +
n∑
p=1

CpXDp = E,

r∑
m=1

FmY Gm +
l∑

t=1

γtXδt = H.
(44)

In order to solve system (44), we write every addend
v∑

τ=1

AτY Bτ ,
n∑
p=1

CpXDp,

r∑
m=1

FmY Gm,
l∑

t=1

γtXδt in the form similar to (40) :

v∑
τ=1

AτY Bτ = ÃY0 +
[(
Ã− 2B̃

)
H− 2C̃1

]
Y1 +

[(
Ã− 2B̃

)
J− 2C̃2

]
Y2 (45)

+
[(
Ã− 2B̃

)
K− 2C̃3

]
Y3,

where Ã =
v∑

τ=1

AτBτ , B̃ =
v∑

τ=1

Aτ
−→
Bτ , C̃q =

v∑
τ=1

AτB
(q)
τ , q = 1, 2, 3,

n∑
p=1

CpXDp = ÂY0 +
[(
Â− 2B̂

)
H− 2Ĉ1

]
Y1 +

[(
Â− 2B̂

)
J− 2Ĉ2

]
Y2 (46)

+
[(
Â− 2B̂

)
K− 2Ĉ3

]
Y3,

where Â =
n∑
p=1

CpDp, B̂ =
n∑
p=1

Cp
−→
Dp, Ĉq =

n∑
p=1

CpD
(q)
p , q = 1, 2, 3,

r∑
m=1

FmY Gm = A′Y0 + [(A′ − 2B′) H− 2C ′1]Y1 + [(A′ − 2B′) J− 2C ′2]Y2 (47)

+ [(A′ − 2B′) K− 2C ′3]Y3,

where A′ =
r∑

m=1

FmGm, B
′ =

r∑
m=1

Fm
−→
Gm, C

′
q =

r∑
m=1

FmG
(q)
m , q = 1, 2, 3,

l∑
t=1

γtXδt = A′′Y0 + [(A′′ − 2B′′) H− 2C ′′1 ]Y1 + [(A′′ − 2B′′) J− 2C ′′2 ]Y2 (48)

+ [(A′′ − 2B′′) K− 2C ′′3 ]Y3,
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where A′′ =
l∑

t=1

γtδt, B
′′ =

l∑
t=1

γt
−→
δt , C

′′
q =

l∑
t=1

γtδ
(q)
t , q = 1, 2, 3.

We shall introduce notations similar to those of (41) , then each of the equa-
tions of system (44) will be equivalent to a system of four equations with eight
unknowns. Thus, the system (44) with two matrix quaternionic unknowns
X, Y is equivalent to a system of eight equations with eight real unknowns
Xη, Yη, η = 0, 1, 2, 3.

Finally, we mention two applications of these results.

Example 3.7 Consider the following system:{
Y −HXJ− JX (H + J) = 0,

KY J + (H−K)YH + JXK + KXJ = 23I
, (49)

in Mn×n
Q . This is a system in the form (43). From the first equation of (43)

we find Y and substitute it into the second equation of (43). Then we have
the following equation:

23I = −JX + HX (I−K) (50)

+ (I + J)XK+ (H + K)X (−I−K)

+JXK + KXJ

We calculate coefficients of the equality (40) for the case of (49):

A = −J + H (I−K) + (I + J) K+ (H + K) (−I−K) + JK + KJ = I + H + J,

B = −J−HK + (I + J) K+ (H + K) K + JK + KJ = I + H + J + K,

C1 = C2 = 0,C3 = I− 2H + J−K.

Then to find X we use the following system (obtained by (41) , (42)):
X0 +X1 +X2 = 23,

X0 −X1 + 2X2 + 3X3 = 0,
X0 − 2X1 −X2 −X3 = 0,

X1 −X2 +X3 = 0.

(51)

Consequently, it has one solution: X0 = 13, X1 = 7, X2 = 3, X3 = −4. That is
X = 13I+7H+3J−4K. Then Y = HXJ+JX (H + J) = −13I+H−17J−4K.

Example 3.8 Consider the following system:
0 = HY J + JYH + KXH + HXK,

2K = (I + H)Y (I + J) + (I + J)Y (I + H) + (I + K)X (I + H)
+ (I + H)X (I + K) .

(52)

in Mn×n
Q . This is a system of the form (44) .
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For the first two addends of the first equation we calculate coefficients:
Ã = B̃ = 0, C̃1 = J, C̃2 = H, C̃3 = 0.

For the third and fourth addends of the first equation we calculate coeffi-
cients: Â = B̂ = 0, Ĉ1 = K, Ĉ2 = 0, Ĉ3 = H.

For the first two addends of the second equation we calculate coefficients:
A′ = 2I + 2H + 2J, B′ = H + J, C ′1 = I + J, C ′2 = I + H, C ′3 = 0.

For the third and fourth addends of the second equation we calculate coeffi-
cients: A′′ = 2I+2H+2K, B′′ = H+K, C ′′1 = I + K, C ′′2 = 0, C ′3 = I + H.

Then similarly to (40), we have a system with two equations:

0 = −2JY1 − 2HY2 − 2KX1 − 2HX3,
2K = (2I + 2H + 2J)Y0 + (−2I + 2H− 2J)Y1

+ (−2I− 2H + 2J)Y2 + 2KY3
+ (2I + 2H + 2K)X0

+ (−2I + 2H− 2K)X1

+2JX2 + (−2I− 2H + 2K)X3.

(53)

From the last system we reach the following system with eight real unknowns:

Y2 +X3 = 0,
Y1 = X1 = 0,

Y0 − Y1 − Y2 +X0 −X1 −X3 = 0,
Y0 + Y1 − Y2 +X0 +X1 −X3 = 0,

Y0 − Y1 + Y2 +X2 = 0,
Y3 +X0 −X1 +X3 = 1.

(54)

Therefore, the one solution of the system (52) and accordingly of the system
(52) is

X = (1−X3 − Y3) I+ (1− Y3) J+X3K,

Y = (X3 + Y3 − 1) I−X3J+Y3K

for any X3, Y3 ∈ R.

4 Conclusions

In this paper, a new computational method based on the embeddings of the
quaternions into real field was proposed for solving some linear matrix quater-
nion equations. Such problems can be transformed into linear real systems of
algebraic equations which can be directly solved by the inverses and general-
ized inverses of matrices. Applicability and accuracy of the proposed method
were checked on some examples.
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