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we present sum formulas concerning this new generalization.

Cassini’s, Catalan’s, d’Ocagne’s, etc. using matrix algebra. Moreover,
k,nan extended Binet’s formula for {L } and, thereby, identities such as

k,nk = 1. Modified Pell-Lucas sequence is {L } with k = 2. We produce
k,ngeneralization. The Lucas sequence is a special case of {L } with

is integer number. Some well-known sequence are special case of this
k,n k,n−1 k,n−2the recurrence relation L = kL + L for n ≥ 2, where k
k,0 k,1with initial conditions L = 2 and L = 1, which is generated by

k,nrence relation. In this article, we study a new generalization {L },
by preserving the initial conditions, and others by preserving the recur-

The Fibonacci sequence has been generalized in many ways, some
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1 Introduction

In recent years, many interesting properties of classic Fibonacci numbers, clas-
sic Lucas numbers and their generalizations have been shown by researchers
and applied to almost every �eld of science and art. For the rich and related
applications of these numbers, one can refer to the nature and di¤erent ar-
eas of the science [3-11]. The classic Fibonacci fFngn2N and Lucas fLngn2N
sequences are de�ned as, respectively,

F0 = 0; F1 = 1 and Fn = Fn�1 + Fn�2 for n � 2
and

L0 = 2; L1 = 1 and Ln = Ln�1 + Ln�2 for n � 2
where Fn and Ln, respectively, denotes the nth classic Fibonacci and Lucas
numbers. Besides of the usual Fibonacci and Lucas numbers, many kinds of
generalizations of these numbers have been presented in the literature [3, 8,
9, 11]. In [3], the k-Fibonacci sequence, say fFk;ngn2N, has been found by
studying the recursive applications of two geometrical transformations used
in the well-known four-triangle longest-edge(4TLE) partition and is de�ned
recurrently by

Fk;n+1 = kFk;n + Fk;n�1; 1 � n; k 2 Z
with initial conditions

Fk;0 = 0; Fk;1 = 1:

In that paper, many properties of these numbers have been obtained directly
from elementary matrix algebra. Many properties of these numbers have been
deduced and related with the so-called Pascal 2-triangle [4]. Additionally the
authors of [5] de�ned k-Fibonacci hyperbolic functions as similar to hyper-
bolic functions and Fibonacci hyperbolic functions. In [6], authors studied 3-
dimensional k-Fibonacci spirals from a geometric point of view. m-extension
of the Fibonacci and Lucas p� numbers are de�ned in [8]. Afterwards, the con-
tinuous functions for the m-extension of the Fibonacci and Lucas p-numbers
using the generalized Binet formulas have been obtained in that paper. The
generating matrix, the Binet like formulas, applications to the coding theory
and the generalized Cassini formula, i.e., of the Fibonacci p�numbers are given
by Stakhov [10]. Stakhov and Rozin [9] showed that the formulas are similar
to the Binet formulas given for the classical Fibonacci numbers, also de�ned
to be of generalized Fibonacci and Lucas numbers or Fibonacci and Lucas p-
numbers. As a similar study, in [10], it has been introduced the new continuous
functions for the Fibonacci and Lucas p-numbers using Binet formulas. In [11],
Civciv and Türkmen de�ned a new matrix generalization of the Fibonacci and
Lucas numbers using essentially a matrix approach.
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In this work, we de�ne a new generalization of the classic Lucas sequence
and give identities and sum formulas concerning this new generalization.

2 Main Results

Now, a new generalization of the classical Lucas sequence that its recurrence
formula is depended on one parameter is introduced and some particular cases
of this sequence are given.

De�nition 1 For any integer number k � 1, the kth Lucas sequence, say
fLk;ngn2N ; is de�ned by

Lk;0 = 2; Lk;1 = 1 and Lk;n = kLk;n�1 + Lk;n�2 for n � 2: (1)

The following table summarizes some special cases of nth k-Lucas numbers
Lk;n :

k Lk;n
1 Lucas numbers
2 Modi�ed Pell-Lucas numbers

:

In [ 3 ], many properties of k� Fibonacci numbers fromM =

�
k � 1 1
k 1

�
using matrix algebra are obtained. Matrix methods are very useful tools to
solve many problems for stemming from number theory. Now we will obtain
some algebraic properties of k�Lucas numbers via the matrix M:
The follow proposition gives that the elements of the �rst row of nth power

of M are k-Fibonacci and Lucas numbers.

Proposition 1 Let M =

�
k � 1 1
k 1

�
. For any integer n � 1 holds:

Mn =

�
Lk;n+1 � 3Fk;n Lk;n � 2Fk;n�1

� �

�
:

Proof. By induction: for n = 1:

M =

�
k � 1 1
k 1

�
=

�
Lk;2 � 3Fk;1 Lk;1 � 2Fk;0

� �

�
since Fk;0 = 0; Fk;1 = 1; Lk;1 = 1 and Lk;2 = k + 2. Let us suppose that the
formula is true for n� 1 :

Mn�1 =

�
Lk;n � 3Fk;n�1 Lk;n�1 � 2Fk;n�2

� �

�
:
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Then,

Mn = Mn�1M

=

�
Lk;n � 3Fk;n�1 Lk;n�1 � 2Fk;n�2

� �

��
k � 1 1
k 1

�
=

�
Lk;n+1 � 3Fk;n Lk;n � 2Fk;n�1

� �

�
:

Thus, the proof is completed.
It is well known that Binet�s formulas are very used in the Fibonacci num-

bers theory. We will give Binet�s formula for k-Lucas numbers by a function of
the roots r1and r2 of the charactersictic equation associated to the recurrence
relation the Eq.(1):

r2 = kr + 1 (2)

Proposition 2 (Binet�s Formula for k- Lucas numbers). The nth k-
Lucas number is given by

Lk;n =
Xrn1 � Y rn2
r1 � r2

; r1 > r2 (3)

where X = 2+r1
r1

and Y = 2+r2
r2

.

Proof. [Proof 1] Let M =

�
k � 1 1
k 1

�
. We get spectral decomposition of

the M matrix. The characteristic polynomial of the M matrix is

det (M � �I) =
���� k � 1� � 1

k 1� �

����
which yields the two eigenvalues

�1 =
k +

p
k2 + 4

2
; �2 =

k �
p
k2 + 4

2

of the matrix M: Hence, we write r1 = �1, r2 = �2: Therefore,

u1 = (
�1 � 1
k

; 1)T

is an eigenvector of the matrix M corresponding the eigenvalue �1: Similar
computation shows that the other eigenvector corresponding the eigenvalue �2
is

u2 = (
�2 � 1
k

; 1)T :
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Let P = (u1ju2) denote the matrix whose columns are the vectors u1; u2: That
is,

P =

�
�1�1
k

�2�1
k

1 1

�
:

The inverse matrix of P is given by

P�1 =

 
k

�1��2
2�k+�1��2
2(�1��2)

�k
�1��2

k�2+�1��2
2(�1��2)

!
:

It follows that
P�1MP = �;

where

� =

�
�1 0
0 �2

�
:

Thus, M = P�P�1 and we can compute the integer powers of M easily:

Mn =
�
P�P�1

�n
=

�
P�P�1

� �
P�P�1

� �
P�P�1

�
:::
�
P�P�1

�
= P�(P�1P )�(P�1P ):::(P�1P )�P�1

= P�nP�1; by P�1P = I:

Since � is a diagonal matrix, the integer powers of � are easily computed by
the formula:

�n =

�
�n1 0
0 �n2

�
:

Therefore, the equation
Mn = P�nP�1

becomes

Mn = P

�
�n1 0
0 �n2

�
P�1: (4)

Now, multiplying both sides of the Eq.(4) by v = (1; 0)T , we obtain the matrix
equality

Mn

�
1
0

�
= P

�
�n1 0
0 �n2

�
P�1

�
1
0

�
: (5)

From Proposition1 and the Eq.(5) ,�
Lk;n+1 � 3Fk;n

�

�
=

�
(�1�1)�n1�(�2�1)�n2

�1��2
�

�
(6)
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Thus, for X = 2+�1
�1

and Y = 2+�2
�2
, we reach using equality of matrices from

the Eq.(6)

Lk;n+1 =
X�n1 � Y �n2
�1 � �2

:

Thus, the proof is completed.
Proof. [Proof 2] The roots of the characteristic equation the Eq.(2) are r1 =
k+
p
k2+4
2

; and r2 = k�
p
k2+4
2

. Note that, since 0 < k; then

r2 < 0 < r1 and jr2j < r1; (7)

r1 + r2 = k; r1r2 = �1; and r1 � r2 =
p
k2 + 4.

Therefore, the general term of the k-Lucas sequence may be expressed in the
form

Lk;n = C1r
n
1 + C2r

n
2 ;

for some coe¢ cients C1 and C2. The constant C1 and C2 are determined by
the initial conditions

2 = C1 + C2

1 = C1r1 + C2r2:

Solving above equation system for C1 and C2 ; we get C1 = 1�2r2
r1�r2 ; C2 =

1�2r1
r1�r2 .

Therefore, we write

Lk;n =
1� 2r2
r1 � r2

rn1 +
1� 2r1
r1 � r2

rn2 : (8)

For X = 2+r1
r1

and Y = 2+r2
r2

obtained in the Eq.(8), we get

Lk;n =
Xrn1 � Y rn2
r1 � r2

;

which completes the proof.

Proposition 3 Let Lk;0 = 2; Lk;1 = 1 and A =
�
k 1
1 0

�
. Then

�
Lk;n+1
Lk;n

�
= An

�
Lk;1
Lk;0

�
:

Proof. Now, we will prove the proposition by mathematical induction. For
n = 1: �

Lk;2
Lk;1

�
=

�
k 1
1 0

� �
Lk;1
Lk;0

�
= A

�
Lk;1
Lk;0

�
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since Lk;1 = 1; Lk;1 = 1 and Lk;2 = k + 2. Let us suppose that the formula is
true for n� 1 : �

Lk;n
Lk;n�1

�
= An�1

�
Lk;1
Lk;0

�
:

Then,

An
�
Lk;1
Lk;0

�
= A:An�1:

�
Lk;1
Lk;0

�
=

�
k 1
1 0

� �
Lk;n
Lk;n�1

�
=

�
Lk;n+1
Lk;n

�
:

Proposition 4

lim
n!1

Lk;n
Lk;n�1

= r1: (9)

Proof. [Proof 1] By using the Eq.(3),

lim
n!1

Lk;n
Lk;n�1

= lim
n!1

Xrn1�Y rn2
r1�r2

Xrn�11 �Y rn�12

r1�r2

= lim
n!1

rn1

�
X � Y

�
r2
r1

�n�
rn�11

�
X � Y

�
r2
r1

�n
r1
r2

� ;
and taking into account that lim

n!1

�
r2
r1

�n
= 0 since jr2j < r1; Proposition 5 is

proved.

Proof. [Proof 2] fxng1n=1 =
n

Lk;n
Lk;n�1

o1
n=1
is convergent. Let this sequence

converges to x real number. Since Lk;n+1
Lk;n

= k+
Lk;n�1
Lk;n

and k > 0; x > 0: Then,
we have

lim
n!1

Lk;n
Lk;n�1

= k + lim
n!1

Lk;n�1
Lk;n

(10)

= k +
1

lim
n!1

Lk;n
Lk;n�1

:

This gives us the equation

x2 � kx� 1 = 0:

for x. This equation has the single positive root

lim
n!1

Lk;n
Lk;n�1

= r1:
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Proposition 5 For n � 0 holds:
nX
i=0

�
n
i

�
kiLki = Lk;2n:

Proof. Using the Eq.(3) , we get
nX
i=0

�
n
i

�
kiLki =

nX
i=0

�
n
i

�
ki
Xri1 � Y ri2
r1 � r2

=
1

r1 � r2

"
X

nX
i=0

�
n
i

�
(kr1)

i � Y
nX
i=0

�
n
i

�
(kr2)

i

#
=

1

r1 � r2
[X (1 + kr1)

n � Y (1 + kr2)n]

= Lk;2n, by r21 = kr1 + 1 and r
2
2 = kr2 + 1:

Proposition 6 The equality

Lk;n�1Lk;n+1 � L2k;n = (�1)
n+1 (2k + 3)

holds.

Proof. Now, let us consider the 2� 2 linear system:
Lk;nx+ Lk;n�1y = Lk;n+1

Lk;n+1x+ Lk;ny = Lk;n+2:

Since L2k;n � Lk;n�1Lk;n+1 6= 0; this system has a unique solution such that�
x
y

�
=

�
k
1

�
:

Therefore, by Cramer�s rule, we have

y =

���� Lk;n Lk;n+1
Lk;n+1 Lk;n+2

�������� Lk;n Lk;n�1
Lk;n+1 Lk;n

���� = 1:
Thus, Lk;n+2Lk;n�L2k;n+1 = L2k;n�Lk;n�1Lk;n+1. That is, Lk;n+2Lk;n�L2k;n+1 =
�
�
Lk;n�1Lk;n+1 � L2k;n

�
. Now, let Pk;n = Lk;n�1Lk;n+1 � L2k;n. Then this rela-

tion give us:

Pk;n�1 = �Pk;n; n � 1; Pk;1 = Lk;0Lk;2 � L2k;1 = 2k + 3:

Solving the recurrence relation, we get Pk;n = (�1)n+1 (2k + 3). Thus, Lk;n�1Lk;n+1�
L2k;n = (�1)

n+1 (2k + 3), where n � 1:
A more general case can be given by the following proposition.
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Proposition 7 The equality

Lk;n�rLk;n+r � L2k;n = (�1)
n�r (2k + 3)F 2k;r

holds.

Proof. By using the Eq.(3), we get

Lk;n�rLk;n+r � L2k;n =

�
Xrn�r1 � Y rn�r2

r1 � r2

��
Xrn+r1 � Y rn+r2

r1 � r2

�
�
�
Xr1 � Y r2
r1 � r2

�2
=

XY

(r1 � r2)2
�
�rn�r1 rn+r2 � rn�r2 rn+r1 + 2rn1 r

n
2

�
= � (3 + 2k)

(r1 � r2)2
�
� (r1r2)n

�
r2
r1

�r
� (r1r2)n

�
r1
r2

�r
+ 2 (r1r2)

n

�
= (3 + 2k) (�1)n�r F 2k;r:

For r = 1 and k = 1, we reach the identity

Ln�1Ln+1 � L2n = 5 (�1)
n+1 ;

which is a special statement of the Proposition 7.

Proposition 8 (d�Ocagne identity) For m > n; we write

Lk;mLk;n+1 � Lk;m+1Lk;n = XY (�1)n Fk;m�n:

Proof. By using the Eq.(3), we get

Lk;mLk;n+1 � Lk;m+1Lk;n =
Xrm1 � Y rm2
r1 � r2

Xrn+11 � Y rn+12

r1 � r2
� Xr

m+1
1 � Y rm+12

r1 � r2
Xrn1 � Y rn2
r1 � r2

=
XY (rm1 r

n
2 ) (r1 � r2)�XY (rn1 rm2 ) (r1 � r2)

(r1 � r2)2

= XY (�1)n Fk;m�n:

Proposition 9 The following equality

nX
i=0

Lk;i =
1

k
(Lk;n+1 + Lk;n + 2k � 3)

holds.
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Proof. Let Sk;n =
nX
i=0

Lk;i . Then, for X = 2+r1
r1

and Y = 2+r2
r2

, we get

Sk;n =
1

r1 � r2

nX
i=0

�
Xri1 � Y ri2

�
=

1

r1 � r2

"
X

nX
i=0

ri1 � Y
nX
i=0

ri2

#
=

1

k
(Lk;n+1 + Lk;n + 2Fk;2 � 3)

=
1

k
(Lk;n+1 + Lk;n + 2k � 3) ; by Fk;2 = k:

Proposition 10 For each real number p (p > r1) , the equation
1X
j=1

Lk;j
pj

=
p+ 2

p2 � kp� 1

is satis�ed.

Proof. Substituting the de�niton of j th k-Lucas number in the left hand
side of the equation gives

1X
j=1

Lk;j
pj

= lim
n!1

nX
j=1

Xrj1�Y r
j
2

r1�r2
pj

= lim
n!1

nX
j=1

X
�
r1
p

�j
� Y

�
r2
p

�j
r1 � r2

=
p+ 2

p2 � pk � 1 :

Proposition 11 Let Lk;n is the nth k�Lucas number. The following equalities
are hold:

i)
nX
i=0

Lk;2i =
1
k
(Lk;2n+1 + 2k � 1)

ii)
nX
i=0

Lk;2i+1 =
1
k
(Lk;2n+2 � 2)

iii)
nX
i=0

Lk;4i+1 =
1

k2(k2+4)
(Lk;4n+5 � Lk;4n+1 � 2k3 + k2 � 4k) :
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Proof. i) Using the Eq.(3) , we get
nX
i=0

Lk;2i =
nX
i=0

Xr2i1 � Y r2i2
r1 � r2

=
1

r1 � r2

"
nX
i=0

Xr2i1 �
nX
i=0

Y r2i2

#
=

1

k
(Lk;2n+1 + 2k � 1) :

The proof of (ii) and (iii) can be shown in a similar fashion.
Let k = 1 in i), ii) and iii), then we obtain respectively following equalities,

which we known from Lucas sequences,
nX
i=0

L2i = L2n+1 + 1;

nX
i=0

L2i+1 = L2n+2 � 2;

nX
i=0

L4i+1 =
1

5
(L4n+5 � L4n+1 � 5) :

Proposition 12 For arbitrary integers m;n � 1, we have
nX
i=1

Lk;mi =
Lk;mn+m � (�1)m Lk;mn � Lk;m + 2 (�1)m

rm1 + r
m
2 � 1� (�1)

m :

Proof. By using of Binet�s Formula given in the Eq.(3) and taking into
account that r1 � r2 = k and r1r2 = �1, it is obtained

nX
i=1

Lk;mi =

nX
i=1

Xrmi1 � Y rmi2
r1 � r2

=
1

r1 � r2

"
X

nX
i=1

rmi1 � Y
nX
i=1

rmi2

#

=
Lk;mn+m � (�1)m Lk;mn � Lk;m + 2 (�1)m

rm1 + r
m
2 � 1� (�1)

m :

For k = 1; we get
nX
i=1

Lmi =
Lmn+m � (�1)m Lmn � Lm + 2 (�1)m

rm1 + r
m
2 � 1� (�1)

m :

The follow proposition give us the generating funtions for the k-Lucas se-
quences.
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Proposition 13 Letm and n be integers and Lk;n is the nth k-Lucas number.
Then the following equalities are valid:

i)
1X
n=0

Lk;nx
n = 2�2kx+x

1�kx�x2

ii)
1X
n=0

Lk;n+1x
n = 1+2x

1�kx�x2

iii)
1X
n=0

Lk;2n+2x
n =

Lk;2�2x
1�(k2+2)x+x2

iv)
1X
n=0

Lk;m+nx
n =

Lk;m+Lk;m�1x
1�kx�x2

Proof. i) Using the Eq.(3) , we get

1X
n=0

Lk;nx
n =

1X
n=0

Xrn1 � Y rn2
r1 � r2

xn

=
1

r1 � r2

"
X

1X
n=0

rn1x
n � Y

1X
n=0

rn2x
n

#

=
2� 2kx+ x
1� kx� x2

which completes the proof of (i).
Similarly, (ii), (iii) and (iv) can be proven.
For k = 1; we obtain a special sum such that

1X
n=0

Lnx
n =

2� x
1� x� x2 :

3 Conclusions

The conclusions arising from the work are as follows:

1. Some new identities have been obtained for k-Lucas numbers.

2. The some identities and sum formulas for the k-Lucas numbers have been
presented.
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