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Abstract

In this paper, we extend the famous Jordan Space Decomposition

Theorem and Riesz Space Decomposition Theorem, and the proof of

the result of this paper does not depend on two theorems above. Since

Jordan′s Theorem and Riesz′s Theorem are two famous results in op-

erator theory, the two theorems are often detailed in the same book.

Using the result of this paper, one may modify the discussion of the

Riesz′s Theorem, and omit the discussion of Jordan′s Theorem, then

two theorems above are obtained as corollaries.
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1 Introduction

P. R. Halmos said ([4] p.100), ”one of the most important, most difficult,
and most exasperating unsolved problems of operator theory is the problem
of invariant subspace”. The question is simple to state: does every bounded
linear operator have a non-trivial invariant closed subspace?

The main motivations for the study of invariant subspaces come form in-
terest in the structure of operators. The Jordan Space Decomposition The-
orem for operators on finite dimensional spaces can be regarded as exhibit-
ing operators as direct sum of their restrictions to certain invariant closed
subspaces(cf.[6]).

For the convenience of readers, we first recall some of basic notions and
facts.

Let X be a linear space, and let X1, X2, ..., Xn be linear subspaces of X .
If every x ∈ X can be written as x = x1 + x2 + ... + xn, where xk ∈ Xk, k =



426 Junfeng Liu

1, 2, ..., n, and this decomposition is unique, then X is called the direct sum of
X1, X2, ..., Xn, and is written by X = X1 ⊕X2 ⊕ ...⊕Xn.

It is known that X is the direct sum of X1, X2, ..., Xn if and only if X =
X1+X2+...+Xn and Xk∩(

∑
j 6=k Xj) = {0} holds for every fixed k = 1, 2, ..., n.

Let X be a Banach space, and let B(X) stand for the Banach algebra of
all bounded linear operators on X .

2 Main Results

Theorem 2.1 Let X be a complex Banach space. Let T ∈ B(X) and
σ(T ) = σ1 ∪ σ2 ∪ ... ∪ σn, n = 2, 3, ..., where σ1, σ2, ..., σn are disjointwise
non-empty closed set. Suppose that L1, L2, ..., Ln are simple closed rectifiable
curves in ρ(T ) such that σk is inside Lk for every k = 1, 2, ..., n, and that Lj

is outside Lk for all j 6= k. If every Lk(k = 1, 2, ..., n) is oriented in counter-
clockwise (that is, Lk is positively oriented), then we have

(a) For every k = 1, 2, ..., n, the operator

Pk =
1

2πi

∫
Lk

(z − T )−1dz

is a bounded linear operator on X, and it is also a projection operator on X,
that is, P 2

k = Pk.
(b) If S ∈ B(X) and ST = TS, then SPk = PkS for every k = 1, 2, ..., n.
(c) For every k = 1, 2, ..., n, write Xk = ranPk, then Xk is a hyperinvariant

closed subspace for T , and

Xk = ker(I − Pk) = {x|Pkx = x},

where I denotes the identity operator on X.
(d) σ(T |Xk) = σk, k = 1, 2, ..., n.
(e) Xk 6= {0}, Xk 6= X, k = 1, 2, ..., n.
(f) X = X1

⊕
X2

⊕
, ...,

⊕
Xn.

Proof. The main contribution of this proof is to show that the uniqueness
of the space decomposition in Part (f) by means of Cauchy’s Integral Theorem
for operator-valued analytic functions on a multiply connected domain. It is
easy to see that the proof of Part (a) to Part (e) is analogous to that in case
n = 2. For a full discussion and proofs of these facts the reader is refered to
[1], [6], [7]and so on. Hence the proof of part (a) to part (e) may be omitted.
However, we still give a direct proof of σk ⊂ σ(T |Xk) for the convenience of
readers. For this end, we write L = L1 ∪ L2 ∪ ... ∪ Ln, then σ(T ) is contained
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inside L. Taking f(z) ≡ 1, it follows form the basic properties of the Riesz
Functional Calculus that

I =
1

2πi

∫
L
f(z)(z − T )−1dz =

1

2πi

n∑
k=1

∫
Lk

(z − T )−1dz =
n∑

k=1

Pk. (1)

We now show that σk ⊂ σ(T |Xk), k = 1, 2, ..., n. For this suppose that it
were the case that there is a z0 ∈ σk but z0 /∈ σ(T |Xk), then z0 /∈ σj for every
j 6= k. Thus by σ(T |Xl) ⊂ σl, l = 1, 2, ..., n (the proof is left to the reader, cf.
[6], p.31-p.32, or the others), we have z0 /∈ σ(T |Xj) for every j 6= k. Hence
z0 ∈ ρ(T |Xl), for every l = 1, 2, ..., n, this shows that z0 − T |Xl is invertible in
the Banach algebra B(Xl). Thus we have

(z0 − T |Xl)
−1(z0 − T )y = (z0 − T )(z0 − T |Xl)

−1y = y

for every y ∈ Xl and every l = 1, 2, ..., n. We may define a bounded linear
operator S on X by setting

Sx = (z0 − T |X1)
−1P1x+ (z0 − T |X2)

−1P2x+ ...+ (z0 − T |Xn)
−1Pnx

for every x ∈ X . It follows form TPl = PlT and Plx ∈ Xl that

S(z0 − T )x =
n∑

l=1

(z0 − T |Xl)
−1Pl(z0 − T )x

=
n∑

l=1

(z0 − T |Xl)
−1(z0 − T )Plx =

n∑
l=1

Plx = x

and

(z0 − T )Sx =
n∑

l=1

(z0 − T )(z0 − T |Xl)
−1Plx =

n∑
l=1

Plx = x

hold for every x ∈ X. Hence S(z0 − T ) = (z0 − T )S = I, so that z0 ∈ ρ(T ).
This contradicts z0 ∈ σk ⊂ σ(T ).

Part (f).We now prove that X = X1

⊕
X2

⊕
...

⊕
Xn.

It should be mentioned that of key importance will be Cauchy′s Integral
Theorem for operator-valued analytic functions on a multiply connected do-
main which is used to show that the uniqueness of the space decomposition in
case n=3,4,5,....

But first, we can see from (1) that the equality x = P1x + P2x + ...Pnx
holds for every x ∈ X , this implies

X = X1 +X2 + ...+Xn. (2)

It remains to prove the uniqueness of the space decomposition X = X1 +
X2+...+Xn. For this it must be shown that the equality Xk∩(

∑
j 6=k Xj) = {0}

holds for every fixed k = 1, 2, ..., n.
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In fact, in case n = 2, if x ∈ X1 ∩X2, then by Part (c) we have x ∈ X1 =
{x|P1x = x} and x ∈ X2 = ker(I − P2) = kerP1. This implies P1x = x and
P1x = 0, and so that x = 0. It follows that X1 ∩X2 = {0}.

It is clear that the proof of the the uniqueness of the space decomposition
can not be obtained by using induction from 2 to n.

In case n = 3, 4, 5, ..., suppose that L
′

k is a simple closed rectifiable (pos-
itively oriented) curve such that

⋃
j 6=k Lj is contained inside L

′

k (therefore⋃
j 6=k σj is contained inside L

′

k), and Lk is outside L
′

k. Then we may define

a bounded linear operator P
′

k on X by setting

P
′

k =
1

2πi

∫
L
′

k

(z − T )−1dz.

Thus by Cauchy’s Integral Theorem for operator-valued analytic functions on
a multiply connected domain, we have

P
′

k =
1

2πi

∫
L
′

k

(z − T )−1dz =
1

2πi

∑
j 6=k

∫
Lj

(z − T )−1dz =
∑
j 6=k

Pj .

Write σ
′

k =
⋃

j 6=k σj , then we have σ(T ) = σk ∪ σ
′

k. It is clear that σk and

σ
′

k are disjoint non-empty closed sets and that P
′

k =
∑

j 6=k Pj = I − Pk. Write

X
′

k = ranP
′

k, then we have X
′

k = ranP
′

k =
∑

j 6=k PjX =
∑

j 6=k Xj . Thus by the
result in case n = 2, we have

Xk

⋂
(
∑
j 6=k

Xj) = Xk

⋂
X

′

k = {0}.

Consequently by (2) we obtain X = X1

⊕
X2

⊕
...

⊕
Xn. The proof is com-

plete.

Corollary 2.2 Let X be a complex Banach space, T ∈ B(X). If σ(T ) =
σ1 ∪ σ2 ∪ ... ∪ σn, n = 2, 3, ..., where σ1, σ2, ..., σn are disjointwise non-empty
closed sets, then T has non-trivial hyperinvariant invariant closed subspace
X1, X2, ..., Xn such that

X = X1 ⊕X2 ⊕ ...⊕Xn, σ(T |Xk) = σk, k = 1, 2, ..., n,

where Xk = ker(I − Pk), while I and Pk|Xk (k = 1, 2, ..., n) are the identity
operators on X and Xk respectively.

Corollary 2.3 (Jordan space Decomposition Theorem, see [1] and so on)Let
X be a finite dimensional complex linear space, let T ∈ B(X). If λ1, λ2, ..., λn(n ≥
2) are all eigenvalues of T , and rk is the multiplicity of eigenvalue λk(k =
1, 2, ..., m), then T has non-trivial hyperinvariant closed subspacesX1, X2, ..., Xn

such that

X = X1 ⊕X2⊕, ...,⊕Xn, σp(T |Xk) = {λk}, k = 1, 2, ..., n,

where Xk = ker(λk − T )rk , and {λk} is a singleton.
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3 Remarks

Remark 1. Corollary 2.3 is just the Jordan Space Decomposition Theorem.
In case n = 2, Corollary 2.2 is the Riesz Space Decomposition Theorem. Since
Jordan′s theorem and Riesz′s theorem are two famous results in operator the-
ory, they often appear in many books, and are even detailed in the same book.
For example, Jordan Space Decomposition Theorem is detailed in Chapter 1
of [1], at the same time Riesz Space Decomposition Theorem is also detailed
in Chapter 2 of the same book that is a nice research book on operator theory
and the invariant subspace problem.

It is clear that by Theorem 2.1 one has Corollary 2.2. On the other hand,
by the spectral theory, if Xk is a finite dimensional space, then σ(T |Xk) =
σp(T |Xk), k = 1, 2, ..., n. Form this it is easy to see that Riesz Space Decom-
position Theorem is a corollary of Corollary 2.2. Thus after we obtain Theorem
2.1, The discussion of two theorem above may be omitted, while the result of
Jordan Space Decomposition Theorem and Riesz Space Decomposition Theo-
rem will be obtained as corollaries of Theorem 2.1.

For example, one may modify Chapter 2 of [1], then Chapter 1 of [1] is
omitted.

Remark 2. It is also worth mentioning that in case n=3,4,5,... of The-
orem 2.1 we prove the uniqueness of the space decomposition by means of
Cauchy’s Integral Theorem for operator-valued analytic functions on a mul-
tiply connected domain, while in Jordan Space Decomposition Theorem and
Riesz Space Decomposition Theorem (n = 2) one prove the uniqueness of the
space decomposition by means of the algebraic method (see [1], [6] and so on;
see also the proof of Theorem 1 of this paper in case n = 2), and it seem’s to
me that it is impossible that the uniqueness of the infinite dimensional space
decomposition is shown by means of the algebra method in case n = 3, 4, 5....

Remark 3. We conjecture that Theorem 2.1 can be extend to n = ∞.
It is easy to see that to prove the conjecture it also suffices to deal with
X = X1⊕X2⊕ ...⊕Xn⊕ ... ,while the others are also analogous to that in case
n = 2. The conjecture is interesting, for example, if X is a infinite dimensional
complex Banach space, and σ(T ) = {λ1, λ2, ..., λn, ...} ,here λn 6= λm, n 6= m
(a compact operator on a infinite dimensional complex Banach space is one of
them).
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[3] B. Beauzamy, Un opérateur sans sous-espace invariant non-trival: simpli-
fication de I’exemple de P. Enflo. Integral Equations and operator Theory,
8 (1985), 314-384.

[4] P. R. Halmos, A Hilbert Space Problem Book, second ed., Springer-Verlag,
Berlin, Heidelberg, New York, 1982.

[5] H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive alge-
bras. Amer. J. Math., 91 (1969), 683-692.

[6] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, sec-
ond ed., New York, 2003.

[7] D.Xia and S.Yan, An Introduction to Functions of a Real Variable and
Applied Functional Analysis, Shanghai Science and Technology, Shanghai,
1987.

Received: April, 2014


