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Abstract

In 2011, W. T. Sulaiman gave inequalities involving the product of
the gamma function and the Riemann zeta function. In this paper, we
generalize the inequalities.
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1 Introduction

The gamma function I' is defined by
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where Re(z) > 0.
The Riemann zeta function £ is defined by

1 e’} ts—l
) = 75 | o=

where s > 1.
Now, we let h be the product of the gamma function and the Riemann zeta

function, i.e., h(x) = I'(z)é(x) for all z > 1.
In 2011, Sulaiman [1] gave an inequality as follows.
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forallx>—1,y>1,p>1and%+%:1.
For any non-negative integer n, we denote h,, be the n-th derivative of h.
In 2011, Sulaiman [1] gave two inequalities as follows.
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and
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for all x,y, z > 1 and non-negative even integers n, m,r.
In this paper, we present the generalizations for inequalities (1), (2) and

(3).

2 Results

Theorem 2.1. Let 1,29, ..., > —1, Yy1,Y2, s Yn > 1, P1, P2y ey P > 1
and q1, G, ..., qn > 1 be such that Z(pi + qi) = 1. Then
i=1
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i=1 =1

Proof. By the assumption,
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By the generalized Holder inequality,
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We note on Theorem 2.1 that if n = 1 then we obtain the inequality (1).

Theorem 2.2. Let xy,x3,...,x, > 1 and let ky, ko, ..., k, be non-negative
even integers and let k = . k;. Then
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Proof. By the assumption,
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By the generalized Holder inequality,
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This implies the inequality (5). O

We note on Theorem 2.2 that (i) if n = 2 then we obtain the inequality
(2), and (ii) if n = 3 then we obtain the inequality (3).

Corollary 2.3. Let x > 1 and let ky, ko, ..., k,, be non-negative even integers
and let k=% | k;. Then

hy (x) < H Pk ().

Proof. This follows from Theorem 2.2 in case 71 =29 = ... = 1, O
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