On the Product of the Gamma Function and the Riemann Zeta Function

Banyat Sroysang

Department of Mathematics and Statistics,
Faculty of Science and Technology,
Thammasat University, Pathumthani 12121 Thailand
banyat@mathstat.sci.tu.ac.th

Abstract

In 2011, W. T. Sulaiman gave inequalities involving the product of the gamma function and the Riemann zeta function. In this paper, we generalize the inequalities.

Mathematics Subject Classification: 26D15

Keywords: Gamma function, zeta function, inequality

1 Introduction

The gamma function Γ is defined by

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt,$$

where Re(z) > 0.

The Riemann zeta function ξ is defined by

$$\xi(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{t^{s-1}}{e^t - 1} dt,$$

where s > 1.

Now, we let h be the product of the gamma function and the Riemann zeta function, i.e., $h(x) = \Gamma(x)\xi(x)$ for all x > 1.

In 2011, Sulaiman [1] gave an inequality as follows.

$$h(1+x+y) \le h^{1/p}(1+p(x+1))h^{1/q}(1+q(y-1)) \tag{1}$$

for all x > -1, y > 1, p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

For any non-negative integer n, we denote h_n be the n-th derivative of h. In 2011, Sulaiman [1] gave two inequalities as follows.

$$h_{m+n}^2\left(\frac{x+y}{2}\right) \le h_{2m}(x)h_{2n}(y)$$
 (2)

and

$$h_{m+n+r}^3\left(\frac{x+y+z}{3}\right) \le h_{3m}(x)h_{3n}(y)h_{3r}(z)$$
 (3)

for all x, y, z > 1 and non-negative even integers n, m, r.

In this paper, we present the generalizations for inequalities (1), (2) and (3).

2 Results

Theorem 2.1. Let $x_1, x_2, ..., x_n > -1$, $y_1, y_2, ..., y_n > 1$, $p_1, p_2, ..., p_n > 1$ and $q_1, q_2, ..., q_n > 1$ be such that $\sum_{i=1}^{n} \left(\frac{1}{p_i} + \frac{1}{q_i}\right) = 1$. Then

$$h(1 + \sum_{i=1}^{n} (x_i + y_i)) \le \prod_{i=1}^{n} h^{1/p_i} (1 + p_i(x_i + 1)) h^{1/q_i} (1 + q_i(y_i - 1)).$$
 (4)

Proof. By the assumption,

$$h(1 + \sum_{i=1}^{n} (x_i + y_i)) = \Gamma(1 + \sum_{i=1}^{n} (x_i + y_i))\xi(1 + \sum_{i=1}^{n} (x_i + y_i))$$

$$= \int_0^\infty \frac{t^{\sum_{i=1}^{n} (x_i + y_i)}}{e^t - 1} dt$$

$$= \int_0^\infty \frac{t^{\sum_{i=1}^{n} (x_i + 1)} t^{\sum_{i=1}^{n} (y_i - 1)}}{e^t - 1} dt$$

$$= \int_0^\infty \prod_{i=1}^{n} \left(\frac{t^{x_i + 1}}{(e^t - 1)^{1/p_i}}\right) \left(\frac{t^{y_i - 1}}{(e^t - 1)^{1/q_i}}\right) dt.$$

By the generalized Hölder inequality,

$$h(1+\sum_{i=1}^{n}(x_{i}+y_{i})) \leq \prod_{i=1}^{n} \left(\int_{0}^{\infty} \frac{t^{p_{i}(x_{i}+1)}}{e^{t}-1} dt\right)^{1/p_{i}} \left(\int_{0}^{\infty} \frac{t^{q_{i}(y_{i}-1)}}{e^{t}-1} dt\right)^{1/q_{i}}$$

$$= \prod_{i=1}^{n} \Gamma^{1/p_{i}} (1+p_{i}(x_{i}+1)) \xi^{1/p_{i}} (1+p_{i}(x_{i}+1))$$

$$\times \Gamma^{1/q_{i}} (1+q_{i}(y_{i}-1)) \xi^{1/q_{i}} (1+q_{i}(y_{i}-1))$$

$$= \prod_{i=1}^{n} h^{1/p_{i}} (1+p_{i}(x_{i}+1)) h^{1/q_{i}} (1+q_{i}(y_{i}-1)).$$

We note on Theorem 2.1 that if n = 1 then we obtain the inequality (1).

Theorem 2.2. Let $x_1, x_2, ..., x_n > 1$ and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$h_k^n \left(\sum_{i=1}^n \frac{x_i}{n} \right) \le \prod_{i=1}^n h_{nk_i}(x_i). \tag{5}$$

Proof. By the assumption,

$$h_k \left(\sum_{i=1}^n \frac{x_i}{n} \right) = h^{(k)} \left(\sum_{i=1}^n \frac{x_i}{n} \right)$$

$$= \int_0^\infty \frac{(\log_e t)^k t^{\left(\sum_{i=1}^n \frac{x_i}{n}\right) - 1}}{e^t - 1} dt$$

$$= \int_0^\infty \frac{(\log_e t)^k t^{\sum_{i=1}^n \frac{x_i - 1}{n}}}{e^t - 1} dt$$

$$= \int_0^\infty \prod_{i=1}^n \frac{(\log_e t)^{k_i} t^{\frac{x_i - 1}{n}}}{(e^t - 1)^{1/n}} dt$$

$$= \int_0^\infty \prod_{i=1}^n \left(\frac{(\log_e t)^{nk_i} t^{x_i - 1}}{e^t - 1} \right)^{1/n} dt.$$

By the generalized Hölder inequality,

16 Banyat Sroysang

$$h_k \left(\sum_{i=1}^n \frac{x_i}{n} \right) \le \prod_{i=1}^n \left(\int_0^\infty \frac{(\log_e t)^{nk_i} t^{x_i - 1}}{e^t - 1} dt \right)^{1/n}$$

$$= \prod_{i=1}^n \left(h^{(nk_i)}(x_i) \right)^{1/n}$$

$$= \prod_{i=1}^n \left(h_{nk_i}(x_i) \right)^{1/n}$$

$$= \left(\prod_{i=1}^n h_{nk_i}(x_i) \right)^{1/n}.$$

This implies the inequality (5).

We note on Theorem 2.2 that (i) if n = 2 then we obtain the inequality (2), and (ii) if n = 3 then we obtain the inequality (3).

Corollary 2.3. Let x > 1 and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$h_k^n(x) \le \prod_{i=1}^n h_{nk_i}(x).$$

Proof. This follows from Theorem 2.2 in case $x_1 = x_2 = ... = x_n$

References

[1] W. T. Sulaiman, Turan inequalities for the Riemann zeta functions, AIP Conf. Proc., **1389** (2011), 1793–1797.

Received: December, 2012