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Abstract

In this paper, we study the oscillatory behavior of solutions of a
class of Caputo fractional difference equations. Some new criteria for
the oscillation of fractional difference equations is established.
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1 Introduction

Accompanied with the development of the theory on fractional differential
equations, fractional difference equations have also been studied more inten-
sively of late. Some properties and inequalities of the fractional difference
calculus are discussed in [1−7], the existence and asymptotic stability of the
solutions for fractional difference equations are investigated in [8−10], and
the boundary value problems of fractional difference equations are considered
in [11−13]. But, the oscillation results for fractional difference equations are
scarce.

In this paper we investigate the oscillation of fractional difference equations:{
∆v
Cx(t) = e(t+ v − 1) + f(t+ v − 1, x(t+ v − 1)), t ∈ N0;

x(v − 2) = x0,∆x(v − 2) = x1,
(1)

where ∆v
C is a Caputo fractional difference operator, Na = {a, a+1, a+2, . . .},

1 < v < 2, x0 and x1 are real constants, f : Nv−1×R→ R+ is continuous, and
e : [v − 1,+∞)→ R is continuous.
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2 Preliminary notes

In this section, we introduce preliminary facts which are used throughout
this paper.

Definition 2.1 ([3, 4]) Let v > 0. The vth fractional sum of f : Na → R is
defined by

∆−vf(t) =
1

Γ(v)

t−v∑
s=a

(t− s− 1)(v−1)f(s), t ∈ Na+v,

where t(v) = Γ(t+ 1)/Γ(t− v + 1).

Definition 2.2 ([1]) Let µ > 0 and n − 1 < µ < n, where n denotes a
positive integer and n = dµe, d·e ceiling of number. Set v = n − µ. The µth
fractional Caputo difference operator is defined as

∆µ
Cf(t) = ∆−v(∆nf(t)) =

1

Γ(v)

t−v∑
s=a

(t− s− 1)(v−1)∆nf(s), t ∈ Na+v,

where ∆n is the nth order forward difference operator; the fractional Caputo
like difference ∆µ

C maps functions defined on Na to functions defined on Na−µ.

Lemma 2.3 ([2, 13]) Assume that µ > 0 and f is defined on Na. Then,

∆−µ∆µ
Cf(t) = f(t)−

n−1∑
k=0

(t− a)(k)

k!
∆kf(a) = f(t) + c0 + c1t+ · · ·+ cn−1t

(n−1),

where n is the smallest integer greater than or equal to µ, ci ∈ R, i = 1, 2, . . . , n−
1.

Lemma 2.4 [14] If X and Y are nonnegative,then

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0, 0 < λ < 1,

where equality hold if and only if X = Y .

Lemma 2.5 Assume that any solution x(t) of the fractional difference equa-
tions (1) exists on the interval Nv−2. Then the equations (1) is equivalent to
the equation

x(t) = x0−x1(v−2)+x1t+
1

Γ(v)

t−v∑
s=0

(t−s−1)(v−1)[e(s+v−1)+f(s+v−1, x(s+v−1))].

(2)
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Proof By Lemma 2.3, we have

x(t) =
1

Γ(v)

t−v∑
s=0

(t−s−1)(v−1)[e(s+v−1)+f(s+v−1, x(s+v−1))]+c0+c1t. (3)

Then, we obtain

∆x(t) =
1

Γ(v − 1)

t−v+1∑
s=0

(t−s−1)(v−1)[e(s+v−1)+f(s+v−1, x(s+v−1))]+c1.

In view of x(v− 2) = x0 and ∆x(v− 2) = x1, we have c0 + c1(v− 2) = x0 and
c1 = x1. Then, c0 = x0 − x1(v − 2) and c1 = x1. Substituting the values of c0
and c1 into (3), we obtain (2). The proof is complete.

3 Main results

In this section, we state and prove our main results.
We assume that there exists a continuous function h : [v − 1,+∞) →

(0,+∞) and real number λ and with 0 < λ ≤ 1 such that

0 ≤ xf(t, x) ≤ h(t)|x|λ+1, x 6= 0, t ∈ Nv−1. (4)

In what follows, we let

g±(t) =
1

Γ(v)

t−v∑
s=t1−v+1

(t−s−1)(v−1)[±e(s+v−1)+(1−λ)λ
λ

1−λm
λ

1−λ (s+v−1)h
1

1−λ (s+v−1)]

(5)
where 0 < λ < 1, t ≥ t1, for some t1 ∈ Nv−1, m : [v − 1,+∞) → (0,+∞) is a
given continuous function.

Now we give sufficient conditions under which a nonoscillatory solution x
of the equations (1) satisfies lim supt→∞

|x(t)|
t

<∞.

Theorem 3.1 Let 0 < λ < 1, 1 < v < 2 and suppose

lim inf
t→∞

g±(t)

t
> −∞ and lim sup

t→∞

g±(t)

t
<∞, (6)

and
∞∑
s=t1

m(s)s <∞, t, t1 ∈ Nv−1. (7)

If x(t) is a nonoscillatory solution of the equations (1), then

lim sup
t→∞

|x(t)|
t

<∞. (8)
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Proof Let x(t) be a nonoscillatory solution of the equations (1). We may as-
sume that x(t) > 0, for all t > t1, t, t1 ∈ Nv−1. Let F (t) = e(t)+f(t, x(t)), C0 =
x0 − x1(v − 2). In view of (2) we may then write

x(t) = C0 + x1t+
1

Γ(v)

t1−v∑
s=0

(t− s− 1)(v−1)F (s+ v − 1)

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)F (s+ v − 1)

≤ C0 + x1t+
1

Γ(v)

t1−v∑
s=0

(t− s− 1)(v−1)F (s+ v − 1)

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)e(s+ v − 1)

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)[h(s+ v − 1)xλ(s+ v − 1)−m(s+ v − 1)x(s+ v − 1)]

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)m(s+ v − 1)x(s+ v − 1)

Applying Lemma2.4 to h(s)xλ(s)−m(s)x(s) with

X = h
1
λx and Y = (

1

λ
mh−

1
λ )

1
λ−1 ,

we have
h(s)xλ(s)−m(s)x(s) ≤ (1− λ)λ

λ
1−λm

λ
1−λh

1
1−λ ,

and so

x(t) ≤ C0 + x1t+
1

Γ(v)

t1−v∑
s=0

t(t− s− 1)(v−2)F (s+ v − 1)

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)e(s+ v − 1)

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)(1− λ)λ
λ

1−λm
λ

1−λ (s+ v − 1)h
1

1−λ (s+ v − 1)

+
1

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−1)m(s+ v − 1)x(s+ v − 1)

≤ C0 + x1t+
1

Γ(v)

t1−v∑
s=0

t(t− s− 1)(v−2)|F (s+ v − 1)|+ g+(t)
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+
1

Γ(v)

t−v∑
s=t1−v+1

t(t− s− 1)(v−2)m(s+ v − 1)x(s+ v − 1)

≤ Ct+
t

Γ(v)

t−v∑
s=t1−v+1

(t− s− 1)(v−2)m(s+ v − 1)x(s+ v − 1),

or

x(t)

t
:= z(t) ≤ 1+C+

1

Γ(v)

t−v∑
s=t1−v+1

(t−s−1)(v−2)m(s+v−1)·(s+v−1)·z(s+v−1),

where C is the upper bound of the function

C0

t
+ x1 +

1

Γ(v)

t1−v∑
s=0

(t− s− 1)(v−2)|F (s+ v − 1)|+ g+(t)

t
.

According to ∆s(t − s − 1)(v−2) = −(v − 2)(t − s − 2)(v−3) > 0, t ∈ Nv−1, s ∈
{0, 1, 2, . . . , t− v}, we have ∆s(t− s− 1)(v−2) is nondecreasing for s, therefore,

(t− s− 1)(v−2) < (t− t+ v − 1)(v−2) = Γ(v).

Hence, we have

z(t) ≤ 1 + C +
t−v∑

s=t1−v+1

m(s+ v − 1) · (s+ v − 1) · z(s+ v − 1)

= 1 + C +
t−1∑
s=t1

m(s) · s · z(s)

≤ 1 + C +
t∑

s=t1

m(s) · s · z(s).

Applying dispersed Bellman inequality and (7), we obtain

z(t) ≤ (1 + C)e
∑t
s=t1

m(s)s <∞.

We conclude that

lim sup
t→∞

x(t)

t
<∞. (9)

If x(t) is eventually negative, we can set y = −x to see that y satisfies the
equations (1) with e(t) be replaced by −e(t) and f(t, x) by −f(t,−y). It
follows in a similar manner that

lim sup
t→∞

−x(t)

t
<∞. (10)

From (9) and (10) we get (8). The proof is complete.
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Theorem 3.2 Let 0 < λ < 1, the conditions(4),(6)and(7)hold. If for every
constant M, 0 < M < 1

lim sup
t→∞

[Mt+ g−(t)] =∞, (11)

and
lim inf
t→∞

[Mt+ g+(t)] = −∞, (12)

then the equations (1) is oscillatory.

Proof Let x(t) be an onoscillatory solution of the equations (1). We may
assume that x(t) > 0 for all t ≥ t1, for some t1 ∈ Nv−1. Proceeding similarly
to the proof of Theorem 3.1, we obtain

x(t) ≤ C0 + x1t+
1

Γ(v)

t1−v∑
s=0

(t1 − s− 1)(v−1)|F (s+ v − 1)|+ g+(t)

+
1

Γ(v)

t−v∑
s=t1−v+1

t(t− s− 1)(v−2)m(s+ v − 1)(s+ v − 1)
x(s+ v − 1)

(s+ v − 1)
(13)

Clearly, the conclusion of Theorem 3.1 holds. This together with(7) imply that
the second sum on the right hand side of (13) is bounded and hence one can
easily find

x(t) ≤M0 +M1t+ g+(t) (14)

where M0 and M1 (dependon t1) are positive constants. Note that we make
M1 < 1 possible by increasing the size of t1 .

Finally, taking lim inf in (14) as t→∞ and using (12) result in a contra-
diction with the fact that x(t) is eventually positive.

If x(t) is eventually negative, we can set y = −x to see that y satisfies the
equations (1) with e(t) be replaced by −e(t) and f(t, x) by −f(t,−y). The
proof of this case is the same as above and hence is omitted. This completes
the proof of the theorem.

Similar to the sublinear case, one can easily prove the following results.

Theorem 3.3 Let λ = 1, conditions (4) and (7) hold with h(t) = m(t).
Suppose

lim inf
t→∞

∑t−v
s=0(t− s− 1)(v−1)e(s+ v − 1)

t
> −∞ (15)

and

lim sup
t→∞

∑t−v
s=0(t− s− 1)(v−1)e(s+ v − 1)

t
< +∞. (16)

Then every nonoscillatory solution of the equations (1) satisfies (8).
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Theorem 3.4 Let λ = 1, conditions (4), (7), (15) and (16) hold with
h(t) = m(t).If for every constant M, 0 < M < 1

lim sup
t→∞

[Mt+
t−v∑
s=0

(t− s− 1)(v−1)e(s+ v − 1)] =∞,

and

lim inf
t→∞

[Mt+
t−v∑
s=0

(t− s− 1)(v−1)e(s+ v − 1)] = −∞,

then the equations (1) is oscillatory.
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