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Abstract

In this paper, we study oscillatory behavior of the fractional differ-
ence equations of the following form

∆ (p(t)(∆αx(t))γ)+q(t)f

(

t−1+α
∑

s=t0

(t− s− 1)(−α)x(s)

)

= 0, t ∈ Nt0+1−α,

where ∆α denotes the Riemann-Liouville difference operator of order α,
0 < α ≤ 1 and γ > 0 is a quotient of odd positive integers. We establish
some oscillation criteria for the above equation by using Riccati trans-
formation technique and some Hardy type inequalities. An example is
provided to illustrate our main results.
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1 Introduction

Oscillatory behavior of fractional differential equations have been dealt by
several authors, see [2]-[9] and the theory of fractional differential equations is
presented in books, see [16]-[18]. But the qualitative properties of fractional
difference equations are studied by few authors, see [10]-[15]. Motivated by [3]
and [9], we study the oscillatory behavior of the following fractional difference
equation of the form

∆ (p(t)(∆αx(t))γ) + q(t)f

(

t−1+α
∑

s=t0

(t− s− 1)(−α)x(s)

)

= 0, t ∈ Nt0+1−α, (1)
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for 0 < α ≤ 1. Here ∆α denotes the Riemann-Liouville difference operator,
γ > 0 is a quotient of odd positive integers. In this paper we assume the
following conditions.
(H1). p(t) and q(t) are positive sequences and f : R → R is a continuous
function such thatf(x)/(xn) ≥ k for a certain constant k > 0 and for all
x 6= 0.

A solution x(t) of (1) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise, it is nonoscillatory. Equation (1)
is said to be oscillatory if all its solutions are oscillatory.

2 Preliminaries and Basic Lemmas

In this section, we present some preliminary results of discrete fractional cal-
culus, which will be used throughout this paper.

Definition 2.1 (see [12]) Let ν > 0. The ν-th fractional sum f is defined
by

∆−νf(t) =
1

Γ(ν)

t−ν
∑

s=a

(t− s− 1)(ν−1)f(s),

where f is defined for s ≡ a mod (1) and ∆−νf is defined for t ≡ (a + ν)

mod (1) and t(ν) = Γ(t+1)
Γ(t−ν+1)

. The fractional sum ∆−νf maps functions defined
on Na to functions defined on Na+v.

Definition 2.2 (see [12]) Let µ > 0 and m− 1 < µ < m, where m denotes
a positive integer, m = ⌈µ⌉. Set ν = m−µ. The µ-th order Riemann-Liouville
fractional difference is defined as

∆µf(t) = ∆m−νf(t) = ∆m∆−νf(t).

Lemma 2.3 Let x(t) be a solution of (1) and let

G(t) =

t−1+α
∑

s=t0

(t− s− 1)(−α)x(s) (2)

then
∆(G(t)) = Γ(1− α)∆α(x(t)). (3)

Proof:

G(t) =
t−1+α
∑

s=t0

(t− s− 1)(−α)x(s) =

t−(1−α)
∑

s=t0

(t− s− 1)(1−α)−1x(s)

=Γ(1− α)∆−(1−α)x(t),
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which implies

∆(G(t)) = Γ(1− α)∆∆−(1−α)x(t) = Γ(1− α)∆αx(t).

In order to discuss our results in Section 3, now we state the following lemma.

Lemma 2.4 (Hardy et al. see [1]) If X and Y are nonnegative, then

mXY m−1 −Xm ≤ (m− 1)Y m for m > 1 (4)

where equality holds if and only if X = Y .

3 Main Results

Theorem 3.1 Suppose that (H1) and

∞
∑

s=t0

p−1/γ(s) = ∞ (5)

holds. Furthermore, assume that there exists a positive sequence b(t) such that

lim sup
t→∞

t−1
∑

s=t0

(

kb(s)q(s)− (∆b+(s))
2

4b2(s+ 1)R(s)

)

= ∞, (6)

where R(t) = b(t)Γ(1−α)γ

b2(t+1)p(t)
and ∆b+(s) = max[∆b(s), 0]. Then every solution of

(1) is oscillatory.

Proof: Suppose the contrary that x(t) is a nonoscillatory solution of (1).
Without loss of generality, we may assume that x(t) is an eventually positive
solution of (1). Then there exists t1 > t0 such that

x(t) > 0 and G(t) > 0 for t ≥ t1, (7)

where G is defined as in (2). Therefore, it follows from (1) that

∆ (p(t)(∆αx(t))γ) = −q(t)f (G(t)) < 0 for t ≥ t1. (8)

Thus p(t)(∆αx(t))γ is an eventually non increasing sequence. First we show
that p(t)(∆αx(t))γ is eventually positive. Suppose there is an integer t1 > t0
such that p(t1)(∆

αx(t1))
γ = c < 0 for t ≥ t1, so that

p(t)(∆αx(t))γ ≤ p(t1)(∆
αx(t1))

γ = c < 0
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which implies that

∆G(t)

Γ(1− α)
= ∆αx(t) ≤ c1/γp−1/γ(t) for t ≥ t1.

Summing both sides of the last inequality from t1 to t− 1, we get

G(t) ≤ G(t1) + Γ(1− α)c1/γ
t−1
∑

s=t1

p−1/γ(s) → −∞ as t → ∞, (9)

which contradicts the fact that G(t) > 0. Hence p(t)(∆αx(t))γ > 0 is eventu-
ally positive. Define the function w(t) by the Riccati substitution

w(t) = b(t)
p(t)(∆αx(t))γ

Gγ(t)
for t ≥ t1. (10)

Then we have w(t) > 0 for t ≥ t1. It follows that

∆w(t) =∆b(t)
w(t+ 1)

b(t + 1)

+
b(t)∆(p(t)(∆αx(t))γ)Gγ(t + 1)− b(t)p(t + 1)(∆αx(t + 1))γ∆Gγ(t)

Gγ(t+ 1)Gγ(t)

≤∆b+(t)
w(t+ 1)

b(t + 1)
− b(t)q(t)f(G(t))

Gγ(t)
− b(t)p(t + 1)(∆αx(t+ 1))γ∆Gγ(t)

G2γ(t+ 1)
.

Now using the inequality (see [1])

xβ − yβ ≥ (x− y)β,

we have

p(t)(∆αx(t))γ ≥p(t+ 1)(∆αx(t+ 1))γ

(∆αx(t))γ ≥p(t+ 1)

p(t)
(∆αx(t+ 1))γ.

Using the above inequality

∆w(t) ≤∆b+(t)
w(t+ 1)

b(t+ 1)
− kb(t)q(t)− b(t)p(t+ 1)(∆αx(t+ 1))γ(∆G(t))γ

G2γ(t+ 1)

≤∆b+(t)
w(t+ 1)

b(t+ 1)
− kb(t)q(t)− b(t)p(t+ 1)(∆αx(t+ 1))γ(Γ(1− α)∆αx(t))γ

b2(t+1)p2(t+1)(∆αx(t+1))2γ

w(t+1)2

≤∆b+(t)
w(t+ 1)

b(t+ 1)
− kb(t)q(t)−

b(t)Γ(1 − α)γ p(t+1)
p(t) (∆αx(t+ 1))γ

b2(t+1)p(t+1)(∆αx(t+1))γ

w(t+1)2

≤∆b+(t)
w(t+ 1)

b(t+ 1)
− kb(t)q(t)− b(t)Γ(1 − α)γ

b2(t+ 1)p(t)
w(t+ 1)2

=∆b+(t)
w(t+ 1)

b(t+ 1)
− kb(t)q(t)−R(t)w(t+ 1)2

(11)



Oscillation of Nonlinear Fractional Difference Equations 95

where R(t) = b(t)Γ(1−α)γ

b2(t+1)p(t)
. We now set

X =
√

R(t)w(t+ 1) and Y =
∆b+(t)

2b(t+ 1)
√

R(t)
.

Using Lemma 2.4 and put m = 2, we obtain

2
(

√

R(t)w(t+ 1)
)

(

∆b+(t)

2b(t+ 1)
√

R(t)

)(2−1)

−
(

√

R(t)w(t+ 1)
)2

≤(2− 1)

(

∆b+(t)

2b(t+ 1)
√

R(t)

)2

=
(∆b+(t))

2

4b2(t+ 1)R(t)
.

From (11), we conclude that

∆w(t) ≤ −kb(t)q(t) +
(∆b+(t))

2

4b2(t+ 1)R(t)
.

Summing the above inequality from t1 to t− 1 , we have

t−1
∑

s=t1

(

kb(s)q(s)− (∆b+(s))
2

4b2(s+ 1)R(s)

)

≤ w(t1)−w(t) ≤ w(t1) < ∞, for t ≥ t1.

Letting t → ∞, we get

lim sup
t→∞

t−1
∑

s=t1

(

kb(s)q(s)− (∆b+(s))
2

4b2(s+ 1)R(s)

)

≤ w(t1) < ∞,

which contradicts (6). The proof is complete.

Theorem 3.2 Suppose that (H1) and
∑

∞

s=t0
p−1/γ(s) = ∞ hold. Furthermore,

assume that there exists a positive sequence b(t) such that

H(t, t) = 0 for t ≥ t0 H(t, s) > 0 t > s ≥ t0

∆2H(t, s) = H(t, s+ 1)−H(t, s) ≤ 0 for t > s ≥ t0.

If

lim sup
t→∞

1

H(t, t0)

t−1
∑

s=t0

(

b(s)q(s)H(t, s)− h2+(t, s)

4kH(t, s)R(s)

)

= ∞, (12)

where h+(t, s) = ∆2H(t, s) + H(t,s)∆b+(s)
b(s+1) and ∆b+(s) = max[∆b(s), 0]. Then every

solution of (1) is oscillatory.
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Proof: Suppose the contrary that x(t) is a nonoscillatory solution of (1). Without
loss of generality, we may assume that x(t) is an eventually positive solution of (1).
We proceed as in the proof of Theorem (3.1) to get (11) hold. Multiplying (11) by
H(t, s) and summing from t1 to t− 1, we obtain

t−1
∑

s=t1

kb(s)q(s)H(t, s) ≤ −
t−1
∑

s=t1

H(t, s)∆w(s) +

t−1
∑

s=t1

H(t, s)∆b+(s)
w(s + 1)

b(s + 1)

−
t−1
∑

s=t1

H(t, s)R(s)w2(s + 1)

(13)

Using the summation by parts formula, we obtain

−
t−1
∑

s=t1

H(t, s)∆w(s) =− [H(t, s)w(s)]ts=t1
+

t−1
∑

s=t1

w(s + 1)∆2H(t, s)

=H(t, t1)w(t1) +
t−1
∑

s=t1

w(s+ 1)∆2H(t, s).

(14)

Now, we have

k

t−1
∑

s=t1

b(s)q(s)H(t, s) ≤H(t, t1)w(t1) +

t−1
∑

s=t1

w(s+ 1)∆2H(t, s)

+

t−1
∑

s=t1

H(t, s)∆b+(s)
w(s + 1)

b(s + 1)
−

t−1
∑

s=t1

H(t, s)R(s)w2(s+ 1)

≤H(t, t1)w(t1) +

t−1
∑

s=t1

(

∆2H(t, s) +
H(t, s)∆b+(s)

b(s + 1)

)

w(s + 1)

−
t−1
∑

s=t1

H(t, s)R(s)w2(s+ 1)

≤H(t, t1)w(t1) +

t−1
∑

s=t1

(

h+(t, s)w(s + 1)−H(t, s)R(s)w2(s + 1)
)

(15)

where h+(t, s) = ∆2H(t, s) + H(t,s)∆b+(s)
b(s+1) is defined as in Theorem 3.2. Set

X =
√

H(t, s)R(s)w(s + 1) and Y =
h+(t, s)

2
√

H(t, s)R(s)
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Using the Lemma 2.4 with m = 2, we get

2
(

√

H(t, s)R(s)w(s + 1)
)

(

h+(t, s)

2
√

H(t, s)R(s)

)(2−1)

−
(

√

H(t, s)R(s)w(s + 1)
)2

≤(2− 1)

(

h+(t, s)

2
√

H(t, s)R(s)

)2

=
h2+(t, s)

4H(t, s)R(s)
.

From equation (15), we have ∆2H(t, s) ≤ 0 for t > s ≥ t0 , 0 < H(t, t1) ≤ H(t, t0)
for t > t1 ≥ t0

t−1
∑

s=t1

b(s)q(s)H(t, s) ≤ k−1H(t, t1)w(t1) + k−1
t−1
∑

s=t1

h2+(t, s)

4kH(t, s)R(s)

t−1
∑

s=t1

(

b(s)q(s)H(t, s) − h2+(t, s)

4kH(t, s)R(s)

)

≤k−1H(t, t1)w(t1)

≤k−1H(t, t0)w(t1).

Since 0 < H(t, s) ≤ H(t, t0) for t > s ≥ t0, we have 0 <
H(t,s)
H(t,t0)

≤ 1 for t > s ≥ t0.
Hence it follows from that

1

H(t, t0)

t−1
∑

s=t0

(

b(s)q(s)H(t, s) − h2+(t, s)

4H(t, s)R(s)

)

=
1

H(t, t0)

t1−1
∑

s=t0

(

b(s)q(s)H(t, s)− h2+(t, s)

4H(t, s)R(s)

)

+
1

H(t, t0)

t−1
∑

s=t1

(

b(s)q(s)H(t, s) − h2+(t, s)

4H(t, s)R(s)

)

≤ 1

H(t, t0)

t1−1
∑

s=t0

b(s)q(s)H(t, s) + k−1w(t1)

≤
t1−1
∑

s=t0

b(s)q(s) + k−1w(t1).

Letting t → ∞, we have

lim sup
t→∞

1

H(t, t0)

t−1
∑

s=t0

(

b(s)q(s)H(t, s)− h2+(t, s)

4kH(t, s)R(s)

)

≤
t1−1
∑

s=t0

b(s)q(s)+k−1w(t1) < ∞,

which is a contradiction to (12). The proof is complete.
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Example 3.3 Consider the fractional differential equation

∆
(

tγ−1(∆α(x(t)))γ
)

+
1

t2

(

t−1+α
∑

s=t0

(t− s− 1)(−α)x(s)

)γ

= 0, (16)

where α = 0.5, γ > 0 is a quotient of odd positive integers and k = 1, p(t) = tγ−1,
q(t) = 1

t2 . Since
∞
∑

s=t0

p(−1/γ)(s) =

∞
∑

s=t0

1

t1−1/γ
= ∞,

we find that (H1) and (5) hold. We will apply Theorem (3.1) and it remains to
satisfy condition (6). Taking b(s) = s, we obtain

lim sup
t→∞

t−1
∑

s=t0

(

kb(s)q(s)− (∆b+(s))
2

4b2(s+ 1)R(s)

)

= lim sup
t→∞

t−1
∑

s=t0

1

s

(

1− sγ−1

4 (
√
π)

γ

)

= ∞

which implies that (6) holds. Therefore, by Theorem (3.1) every solution of (16) is
oscillatory.
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