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Abstract

In this paper, we study the oscillatory behavior of the following even order
neutral delay differential equation

(r(t)((x(t) + p(t)x(τ(t)))(n−1))α)
′

+ q(t)xα(τ(t)) = 0, t ≥ t0.

We give some sufficient conditions for oscillation of this equation using Riccati trans-

formation technique . The results obtained extend some of the known results. An ex-

ample is given to illustrate the main results.
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1 Introduction

In this paper, we are concerned with the oscillatory behavior of the solution
of the even order neutral delay differential equation

(r(t)((x(t) + p(t)x(τ(t)))(n−1))α)
′

+ q(t)xα(τ(t)) = 0, t ≥ t0. (1.1)

where n is even, α is the ratio of odd positive integers, q(t) ∈ C([t0,∞)), r(t), p(t), τ(t) ∈
C1([t0,∞)) and

(H1) q(t) ≥ 0, 0 ≤ p(t) < 1;
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(H2) r(t) > 0, r
′

(t) ≥ 0,
∫

∞

t0

1

r
1
α (t)

dt = ∞;

(H3) τ(t) ≤ t, lim
t→∞

τ(t) = ∞.

We set z(t) = x(t)+p(t)x(τ(t)). By a solution of equation (1.1), we mean a
function x(t) ∈ C([t0,∞)), such that z(t) ∈ Cn−1([t0,∞)) and r(t)(z(n−1)(t))α ∈
C1([t0,∞)) and x(t) satisfies (1.1) on [t0,∞). We consider only those solutions
x(t) of (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ t0. We assume
that (1.1) possesses such solution. A solution of (1.1) is called oscillatory if
it has arbitrarily large zeros on [t0,∞); otherwise, it is called non-oscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

The oscillatory behavior of n order differential equation has been the sub-
ject of intensive research [2-10] and therein. In [5] Grace and Lalli gave the
oscillation criteria of even-order equation

x(n)(t) + q(t)x(τ(t)) = 0.

In [4, 6−9] the authors studied the oscillatory behavior of high-order differential
equation

(r(t)(x(n−1)(t))α)′ + q(t)xα(τ(t)) = 0.

The authors in [2] studied the oscillation of an even-order neutral differential
equation

[x(t) + p(t)x(τ(t))](n) + q(t)x(σ(t)) = 0, t ≥ t0.

We develop theorems related the oscillatory behavior and provide sufficient
conditions for the equation (1.1) to be oscillatory. We give some sufficient con-
ditions for oscillation of equation (1.1) using Riccati transformation technique.
Our results obtained extend some of the known results mentioned above.

In the following, all occurring functional inequalities considered in this
paper are assumed to be hold eventually, that is, they are satisfied for all t
large enough.

2 Main Results

In this section, we will establish some oscillation criteria for (1.1) using Riccati
transformation and we will give the oscillation property based on the compar-
ison theorem. We begin with the following three Lemmas.

Lemma 2.1 (See[10]). Let f(t) ∈ Cn([t0,∞), (0,∞)). If f (n)(t) is even-

tually of one sign for all large t, then there exist a tx ≥ t0 and an integer l,
0 ≤ l ≤ n with n+ l even for f (n)(t) ≥ 0, or n+ l odd for f (n)(t) ≤ 0 such that

l > 0 yields f (k)(t) > 0 for t ≥ tx, k = 0, 1, · · · , l − 1, and
l ≤ n− 1 yields (−1)l+kf (k)(t) > 0 for t ≥ tx, k = l, l + 1, · · · , n− 1.
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Lemma 2.2 (See[3, Lemma2.2.3]). Let f(t) ∈ Cn([t0,∞),R+). Assume

that f (n)(t) is of fixed sign and not identically zero on a subray of [t0,∞),
and there exists a t1 ≥ t0 such that f (n−1)(t)f (n)(t) ≤ 0 for all t ≥ t1. If
limt→∞ f(t) 6= 0, then for every λ ∈ (0, 1), there exists tλ ∈ [t1,∞) such that

f(t) ≥
λ

(n− 1)!
tn−1|f (n−1)(t)|

holds on [tλ,∞).

Lemma 2.3 (See[11]). If a function y(t) satisfies y(i)(t) > 0, i = 0, 1, · · · , k
and y(k+1)(t) ≤ 0, then y(t)/y′(t) ≥ t/k eventually.

Now, we present the main results. For the sake of convenience, we use the no-
tation ρ′+(t) := max(0, ρ′(t)), δ′+(t) := max(0, δ′(t)) , and Q(η) :=

∫

∞

η q(s)(1−

p(τ(s)))α( τ(s)
s
)αds.

Theorem 2.4 Let n ≥ 4 be even and (H1)− (H3) hold. Assume that there

exist two functions ρ(t), δ(t) ∈ C1([t0,∞), (0,∞)) such that for some constant

λ0 ∈ (0, 1),

∫

∞

[

ρ(t)q(t)(1− p(τ(t)))α(
τα(t)

tα
)n−1 − r(t)(

ρ
′

+(t)

α + 1
)α+1(

(n− 2)!

λ0ρ(t)tn−2
)α

]

dt = ∞,

(2.1)
and either

∫

∞

q(s)(1− p(τ(s)))α(
τ(s)

s
)αds = ∞, (2.2)

or ∫

∞

ηn−4Q
1
α (η)r

−1
α (η)dη = ∞, (2.3)

or

∫

∞

[

δ(t)

(n− 4)!

∫

∞

t
(η − t)n−4Q

1
α (η)r

−1
α (η)dη −

δ
′

+(t)
2

4δ(t)

]

dt = ∞. (2.4)

Then (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution x(t). Without
loss of generality, we may assume that x(t) is eventually positive. It follows
from (1.1), (H1), (H2) and Lemma 2.1 that there exist two possible cases for
t ≥ t1 ≥ t0 large enough:

(1) z(t) > 0, z′(t) > 0, z′′(t) > 0, z(n−1)(t) > 0, (r(t)(z(n−1)(t))α)
′

≤ 0;

(2)z(t) > 0, z(j)(t) > 0, z(j+1)(t) < 0 for every odd number j ∈ {1, 2, · · · , n −

3}, z(n−1)(t) > 0, and (r(t)(z(n−1)(t))α)
′

≤ 0.
We consider each of two cases separately.
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Assume that case (1) holds. We know that limt→∞ z′(t) 6= 0. By virtue of
Lemma 2.2, for every constant λ ∈ (0, 1) and for all large t, we get

z′(t) ≥
λ

(n− 2)!
tn−2z(n−1)(t). (2.5)

Noting z′(t) > 0 and (H3), we have

x(t) ≥ (1− p(t))z(t).

By (1.1) we get

(r(t)(z(n−1)(t))α)
′

≤ −q(t)(1− p(τ(t)))αzα(τ(t)). (2.6)

By Lemma 2.3, we obtain
z(t)

z′(t)
≥

t

n− 1
.

So z(t)/tn−1 is non-increasing and

z(τ(t))

z(t)
≥

τn−1(t)

tn−1
. (2.7)

Now we introduce a Riccati substitution

u(t) := ρ(t)
r(t)z(n−1)(t)α

zα(t)
, t ≥ t1. (2.8)

Then u(t) > 0 on [t1,∞). Following from (2.5), (2.6) and (2.7) we have

u′(t) = ρ′(t)
r(t)z(n−1)(t)α

zα(t)
+ ρ(t)

(r(t)z(n−1)(t)α)′

zα(t)
− αρ(t)

r(t)z(n−1)(t)αz′(t)

zα+1(t)

≤ −ρ(t)q(t)(1−p(τ(t)))α(
τn−1(t)

tn−1
)α+ρ′(t)

r(t)z(n−1)(t)α

zα(t)
−

αλtn−2

(n− 2)!

ρ(t)r(t)z(n−1)(t)α+1

zα+1(t)
.

By virtue of (2.8), we have

u′(t) ≤ −ρ(t)q(t)(1−p(τ(t)))α(
τn−1(t)

tn−1
)α+

ρ′+(t)

ρ(t)
u(t)−

αλtn−2

(n− 2)!ρ
1
α (t)r

1
α (t)

u
α+1
α (t).

(2.9)
Set

B :=
ρ′+(t)

ρ(t)
, A :=

αλtn−2

(n− 2)!ρ
1
α (t)r

1
α (t)

, ν := u(t).

Using the inequality

−Aν(α+1)/α +Bν ≤
αα

(α+ 1)(α+1)

Bα+1

Aα
, A > 0,
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we have

u′(t) ≤ −ρ(t)q(t)(1− p(τ(t)))α(
τn−1(t)

tn−1
)α + r(t)(

ρ
′

+(t)

α+ 1
)α+1(

(n− 2)!

λρ(t)tn−2
)α.

This yields

∫ s

t1

[

ρ(t)q(t)(1− p(τ(t)))α(
τn−1(t)

tn−1
)α − r(t)(

ρ
′

+(t)

α + 1
)α+1(

(n− 2)!

λρ(t)tn−2
)α

]

dt ≤ u(t1)

for all large s and for every constant λ ∈ (0, 1), which contradicts (2.1).
Assume that case (2) holds. Integrating (1.1) from t1 to t, we obtain

−r(t1)(z
(n−1)(t1))

α +
∫ t

t1
q(s)xα(τ(s))ds ≤ 0.

By virtue of z′(t) > 0, x(t) ≥ (1− p(t))z(t), τ(s) ≤ s and (2.7)(where n = 2),
we obtain

∫ t

t1
q(s)(1− p(τ(s)))α(

τ(s)

s
)αds ≤ r(t1)(

z(n−1)(t1)

z(t1)
)α,

which contradict (2.2). Integrating (1.1) from t to ∞, we conclude that

−r(t)(z(n−1)(t))α +
∫

∞

t
q(s)xα(τ(s))ds ≤ 0.

By virtue of z′(t) > 0, x(t) ≥ (1− p(t))z(t), τ(s) ≤ s and (2.7)(where n = 2),
we obtain

−z(n−1)(t) +
z(t)

r
1
α (t)

(
∫

∞

t
q(s)(1− p(τ(s)))α(

τ(s)

s
)αds)

1
α ≤ 0, (2.10)

Suppose first that n = 4. Integrating (2.10) from t1 to t, we have

∫ t

t1

(
∫

∞

η q(s)(1− p(τ(s)))α( τ(s)
s
)αds)

1
α

r
1
α (η)

dη ≤ −
z
′′

(t1)

z(t1)
,

which contradicts (2.3) (where n = 4). Suppose now that n ≥ 6. Integrating
(2.10) from t to ∞ for a total (n− 4) times, we conclude that

−z
′′′

(t) +

∫

∞

t (η − t)(n−5)
(
∫

∞

η
q(s)(1−p(τ(s)))α(

τ(s)
s

)αds)
1
α

r
1
α (η)

dη

(n− 5)!
z(t) ≤ 0,

that is

−z
′′′

(t) +

∫

∞

t (η − t)(n−5)Q
1
α (η)r

−1
α (η)dη

(n− 5)!
z(t) ≤ 0.
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Another integration from t1 to t yields
∫

∞

t1
(η − t1)

(n−4)Q
1
α (η)r

−1
α (η)dη

(n− 4)!
≤ −

z′′(t1)

z(t1)
,

which contradicts (2.3). Integrating (2.10) from t to ∞ for a total (n − 3)
times, we have

z′′(t) +

∫

∞

t (η − t)(n−4)Q
1
α (η)r

−1
α (η)dη

(n− 4)!
z(t) ≤ 0. (2.11)

Now, we define a Riccati substitution

ω(t) := δ(t)
z′(t)

z(t)
, t ≥ t1. (2.12)

Then ω(t) > 0 for t ≥ t1 and

ω′(t) = δ′(t)
z′(t)

z(t)
+ δ(t)

z′′(t)

z(t)
− δ(t)

(z′(t))2

z2(t)
.

It follows from (2.11) and (2.12) that

ω′(t) ≤ −δ(t)

∫

∞

t (η − t)(n−4)Q
1
α (η)r

−1
α (η)dη

(n− 4)!
+

δ′+(t)

δ(t)
ω(t)−

1

δ(t)
ω2(t) (2.13)

≤ −δ(t)

∫

∞

t (η − t)(n−4)Q
1
α (η)r

−1
α (η)dη

(n− 4)!
+

(δ′+(t))
2

4δ(t)
.

This implies that

∫ s

t1



δ(t)

∫

∞

t (η − t)(n−4)Q
1
α (η)r

−1
α (η)dη

(n− 4)!
−

(δ′+(t))
2

4δ(t)



 dt ≤ ω(t1)

for all large s, which contradicts (2.4). Therefore, every solution of (1.1) is
oscillatory.

Let ρ(t) = tn−1 and δ(t) = t. As a consequence of Theorem 2.1 , we obtain
the following oscillation criterion.

Corollary 2.5 Let n ≥ 4 be even and (H1) − (H3) hold. Assume that for

some constant λ0 ∈ (0, 1),
∫

∞

[

tn−1q(t)(1− p(τ(t)))α(
τα(t)

tα
)n−1 − r(t)(

(n− 2)!

λ0
)α(

n− 1

α + 1
)α+1tα−nα+n−2

]

dt = ∞,

(2.14)
and either (2.2) or (2.3) or

∫

∞

[

t

(n− 4)!

∫

∞

t
(η − t)n−4Q

1
α (η)r

−1
α (η)dη −

1

4t

]

dt = ∞. (2.15)

Then (1.1) is oscillatory.
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As an application of Corollary 2.1, we give the following example to illus-
trate our results.

Example 2.6 Consider the equation

[

x(t) +
1

2
x(

t

2
)
](4)

+
a0
t4
x(

t

2
) = 0, (2.16)

where t ≥ 1 and a0 > 0 is a constant. Let n = 4, α = 1, r(t) = 1, p(t) =
1/2, q(t) = a0/t

4 and τ(t) = t/2. Then

∫

∞

[

tn−1q(t) (1− p(τ(t)))α (
τα(t)

tα
)n−1 − r(t)(

(n− 2)!

λ0

)α(
n− 1

α + 1
)α+1tα−nα+n−2

]

dt

= (
a0
16

−
9

2λ0

)
∫

∞ dt

t
= ∞, if a0 >

72

λ0

for some λ0 ∈ (0, 1)

and

∫

∞

[

t

(n− 4)!

∫

∞

t
(η − t)n−4Q

1
α (η)r

−1
α (η)dη −

1

4t

]

dt = (
a0
24

−
1

4
)
∫

∞ dt

t
= ∞, if a0 > 6.

Hence by Corollary 2.1, (2.16) is oscillatory if a0 > 72/λ0.
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