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Abstract

The space Lp(X), where X is a measure space with at least n disjoint
subsets of positive measure, can be equipped with an n-norm, which
makes Lp(X) an n-normed space. The purpose of this paper is to study
some properties of this n-normed space. In particular, we examine the
completeness of the n-normed space and prove a contractive mapping
theorem on this space.
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1 Introduction

Let X be a (real) vector space (of dimension at least n, where n is a fixed num-
ber in N). A mapping ‖·, . . . , ·‖ : Xn → R satisfying the following properties:
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(1.1) ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly dependent,

(1.2) ‖x1, . . . , xn‖ is invariant under permutation,

(1.3) ‖αx1, . . . , xn‖ = |α| ‖x1, . . . , xn‖ for every x1, . . . , xn ∈ X and α ∈ R,

(1.4) ‖x + y, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖ + ‖y, x2, . . . , xn‖ for every x, y,
x2, . . . , xn ∈ X ,

is called an n-norm on X , and the pair (X, ‖·, . . . , ·‖) is called an n-normed
space.

Geometrically, the value of ‖x1, . . . , xn‖may be interpreted as the volume of
the n-dimensional parallelepiped spanned by x1, . . . , xn inX . The concept of n-
normed spaces was developed by Gähler in the period of 1964-1970 [3, 4, 5, 6, 7].
More recent works may be found in [1, 8, 10, 11, 12, 14, 15, 16, 17].

Let (X, ‖·, . . . , ·‖) be an n-normed space. A sequence (xk) in X is said to
converge to an x ∈ X (in the n-norm) if

lim
k→∞

‖xk − x, y2, . . . , yn‖ = 0,

for every y2, . . . , yn ∈ X . Also, a sequence (xk) in X is called a Cauchy
sequence if

lim
k,l→∞

‖xk − xl, y2, . . . , yn‖ = 0,

for every y2, . . . , yn ∈ X .
If every Cauchy sequence (xk) in X converges to some x ∈ X , then X is

said to be complete. A complete n-normed space is called an n-Banach space.
On the space Lp(X) (1 ≤ p < ∞), the following an n-norm was defined by

Gunawan in [9],

‖f1, . . . , fn‖p :=
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The aim of this note is to study Lp(X), 1 ≤ p < ∞, as an n-normed space
with the above n-norm. We investigate the completeness of this n-normed
space, and use the result to prove a contractive mapping theorem on this
space.

2 Main Results

Let X be a measure space with at least n disjoint subsets of positive measure.
Recall that Lp(X), 1 ≤ p < ∞, is the space of equivalence classes (modulo
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equivalence almost everywhere) of functions such that

∫

X

|f(x)|pdx < ∞ and

the function ‖f‖p :=

(
∫

X

|f(x)|pdx

)
1

p

defines a norm on Lp(X).

Before we reveal our main results, we present some lemmas and proposition.

Lemma 2.1. For every f1, . . . , fn ∈ Lp(X), we have

‖f1, . . . , fn‖p ≤ (n!)1−
1

p‖f1‖p · · · ‖fn‖p.

Proof. Let Φ be a set of all permutations of {1, . . . , n}. By the triangle in-
equality for real numbers and Minkowski’s inequality, we have
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= (n!)−
1

p

∑

(j1,...,jn)∈Φ

‖f1‖p · · · ‖fn‖p

= (n!)1−
1

p‖f1‖p · · · ‖fn‖p,

for every f1, . . . , fn ∈ Lp(X), as claimed.

Now, as shown in [9], we can derive a norm from the n-norm in a certain
way. Indeed, if {a1, . . . , an} is a linearly independent set in Lp(X), then one
may observe that

‖f‖∗p :=
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p
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p

(2.1)

defines a norm on Lp(X). The mapping ‖ · ‖∗p in (2.1) can be easily seen
to satisfy the properties of a norm. In particular, we may check that if
‖f‖∗p = 0, then f = 0 almost everywhere. Indeed, if ‖f‖∗p = 0, then we
obtain ‖f, ai2 , . . . , ain‖p = 0 for every {i2, . . . , in} ⊂ {1, . . . , n}. This means
that f is in the linear span of {ai2 , . . . , ain} almost everywhere, for every
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{i2, . . . , in} ⊂ {1, . . . , n}. This forces us to conclude that f = 0 almost every-
where.

We know that Lp(X) equipped with ‖ · ‖p is complete. Now, we will show
that Lp(X) as an n-normed space is complete with respect to the n-norm,
through the following proposition.

Proposition 2.2. Let {a1, . . . , an} be a linearly independent set in Lp(X), and
the norm ‖ · ‖∗p be defined by (2.1). Then ‖ · ‖∗p is equivalent to the usual norm
‖ · ‖p. Precisely, we have

n‖a1, . . . , an‖p
(2n− 1) (‖a1‖p + · · ·+ ‖an‖p)

‖f‖p ≤ ‖f‖∗p

and

‖f‖∗p ≤ (n!)1−
1

p





∑
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p
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p
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p
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for every f ∈ Lp(X).

Proof. For every f ∈ Lp(X) and any subset {i2, . . . , in} of {1, 2, . . . , n}, we
have

‖f, ai2 , . . . , ain‖p ≤ (n!)1−
1
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by Lemma 2.1. Hence we obtain
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To prove the reverse inequality, we observe that
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By Minkowski’s inequality, we have
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Next, we observe that

‖f, a2, a3, . . . , an‖p ≤
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Hence, we obtain

n‖f‖p‖a1, a2, . . . , an‖p ≤ (2n− 1) (‖a1‖p + · · ·+ ‖an‖p) ‖f‖
∗
p.

This completes the proof.

Corollary 2.3. If A := {a1, . . . , an} and B := {b1, . . . , bn} are two linearly
independent sets in Lp(X), then the norm defined by (2.1) using A is equivalent
to that using B.

Corollary 2.4. The space (Lp(X), ‖ · ‖∗p) is complete. In other words, it is a
Banach space.

By Lemma 2.1, if a sequence (fn) converges to f ∈ Lp(X) with respect to
the usual norm ‖ · ‖p, then it also converges to f with respect to the n-norm
‖·, . . . , ·‖p. Similarly, if (fn) is a Cauchy sequence in Lp(X) with respect to
‖ · ‖p, then it is also a Cauchy sequence with respect to ‖·, . . . , ·‖p. Another
consequence of Proposition 2.2 is the following theorem.

Theorem 2.5. If a sequence (fn) ∈ Lp(X) converges to some f ∈ Lp(X) with
respect to ‖·, . . . , ·‖p, then it also converges to f with respect to ‖ · ‖p. Also,
if (fn) is a Cauchy sequence with respect to ‖·, . . . , ·‖p, then it is a Cauchy
sequence with respect to ‖ · ‖p.

Proof. Let {a1, . . . , an} be a linearly independent set in Lp(X), and ‖ · ‖∗p be
defined by (2.1). Now, if (fn) converges to some f ∈ Lp(X) with respect to
‖·, . . . , ·‖p, then for every {i2, . . . , in} ⊂ {1, . . . , n} we have

‖fn − f, ai2 , . . . , ain‖ → 0, as n → ∞.

It follows that
‖f(n)− f‖∗p → 0, as n → ∞,

that is, (fn) converges to f with respect to ‖ · ‖∗p. By Proposition 2.2, we
conclude that (fn) also converges to f with respect to ‖ · ‖p. The second
statement of the theorem is proved in a similar way.
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Corollary 2.6. (Lp(X), ‖·, . . . , ·‖p) is an n-Banach space.

Proof. Let (fn) be a Cauchy sequence in Lp(X) with respect to ‖·, . . . , ·‖p.
Then, by Theorem 2.5, (fn) is a Cauchy sequence with respect to ‖ · ‖p. We
know that (Lp(X), ‖ · ‖p) is a Banach space, and so (fn) must converge to
an element f ∈ Lp(X) with respect to ‖ · ‖p. By Lemma 2.1, (fn) must also
converge to f with respect to ‖·, . . . , ·‖p. Therefore, (Lp(X), ‖·, . . . , ·‖p) is an
n-Banach space.

Remark 2.7. Up to this point, one may ask what then is the purpose of having
an n-norm on Lp(X)? There are two answers to this question. First, we can use
the n-norm to define “volumes” of n-dimensional parallelepiped spanned by n

elements in Lp(X). Second, we did not know the relation between the topology
generated by the n-norm and that by the usual norm on Lp(X), until we proved
Proposition 2.2. The result enriches our knowledge on particular n-normed
spaces such as Lp(X) and ℓp(N) spaces, as part of an effort in understanding
the notion of n-normed spaces in general.

3 An Application

A contractive mapping theorem on standard and finite dimensional n-normed
spaces was formulated by Gunawan and Mashadi [11, 12] in 2001. What dis-
tinguishes their work from others’ many years earlier is that they proved the
theorem by involving a derived norm from the n-norm, rather than doing
the same steps in n-normed spaces as in the proof of the analogous theorem
in normed spaces. In 2013, Idris, Ekariani and Gunawan [13] formulated a
contractive mapping theorem on the infinite dimensional vector space ℓp as a
2-normed space. Its generalization for ℓp as an n-normed space, where n > 2,
can be found in [2].

With our previous result, we can now prove the following contractive map-
ping theorem on (Lp(X), ‖·, . . . , ·‖p).

Theorem 3.1. (Contractive Mapping Theorem) Let T be a self-mapping of
Lp(X) which is contractive with respect to a linearly independent set {a1, . . . , an}
in Lp(X), that is, there exists a constant C ∈ (0, 1) such that the inequality

‖Tf − Tg, ai2, . . . , ain‖p ≤ C ‖f − g′, ai2 , . . . , ain‖p

holds for all f, g ∈ Lp(X) and {i2, . . . , in} ⊂ {1, . . . , n}. Then T has a unique
fixed point in Lp(X).
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Proof. For every f, g ∈ Lp(X), we observe that

‖Tf − Tg‖∗p =





∑

{i2,...,in}⊂{1,...,n}

‖Tf − Tg, ai2, . . . , ain‖
p
p





1

p

≤ C





∑

{i2,...,in}⊂{1,...,n}

‖f − g, ai2, . . . , ain‖
p
p





1

p

= C ‖f − g‖∗p.

This result tells us that T is a contractive mapping on (Lp(X), ‖ · ‖∗p), which
is a Banach space (by Corollary 2.4). Thus T must have a unique fixed point
in Lp(X).
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