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Abstract:
This paper introduces the dynamical behavior of unified nonlinear chaotic system
which describes three chaotic systems containing Lorenz chaotic system, Lii
chaotic system and Chen chaotic system. Here the integrals of motion for unified
chaotic system are derived by considering their behavior in the neighbourhood of
a singularity.
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1. Introduction:

The Lorenz chaotic system [5] is given by

%= a(y—x)
y=x(b—z)-y (1)
zZ=Xxy—cz.

for ale,bzg,c:28.

The Lii chaotic system [6] is given by

x=a(y-x)
y=-xz+by 2)
Z=Xxy—cz

for a =30,b=22.2,c =2.93.
The Chen chaotic system [1] is given by

$=a(y-x)
y=(b-a)x—xz+by 3)
zZ=Xxy—cz

for a =35,b=28,c=3.
In unified chaotic system [2] the above three systems are combined together as

follows:
x=25+10)(y—x)

y=(28-35a)x—xz+(29a-1)y (4)
8+a

Z=Xxy— z
where a is a parameter of the system. It represents Lorenz chaotic system for
a = 0,L1 chaotic system for a = 0.8,Chen chaotic system for a =1.In this paper
our intension is to find integrals of motion of unified chaotic system (4) by
considering its leading order behavior in the neighbourhood of a singularity
att=t" (say).

2. Integrability conditions:

We consider the integrals of motion [3, 4] in the form  I(x, y,z,t) =W (x, y,z)e"’

Let the leading order behavior of the system in the neighbourhood of t = t* is
given by:
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where A, B, C, p, q, r are constants, ABC =0, p > 0, > 0,7 > 0.

Using (5) in system (4) one gets after simple mathematical calculations

p—q+1=0,—-4p =(25a+10)B
r=2,-Bg=-AC (6)
2-2p=0,—rC=A4B.

B C

- "

It yields p =1, q =2, r =2. Then we get, x =

Here we choose all possible terms having singularity up to fifth order and arrange
them in the following table:
Table: singular terms up to fifth order

Order Terms with real coefficients
(t—1%)" x

(-1~ x*, .z
(t—1*)" x>, Xy, xz
(N xtyh 2 )ty iz, yz
(t—1*%)" x,xy?,xz0, Xy, Xz, xyz

W (x,y,z)can be considered in general form as,

W(x,y,z) = Ax+Bx* +B,y+B,z+C,x’ +C,xy+ Cyxz + D)x* + D,y* + D,z°
D,x*y+D,x’z+ Dyyz+ Ex’ + E,xy’ + Exxz’ + E,xX’y+ E.x’z + E xyz.

where A4,(i =1(1)3),B,(i =1(1)3),C, (i =1(1)3), D, (i = 1(1)6), E, (i = 1(1)6) are
arbitrary constants.

Since an integral of motion takes a constant value when it is considered in the
neighbourhood of a singularity, we must have dI = 0.
Lel x+1 y+1.z+1, =0. )

This gives, (uA, + B, —ad,)x + (uB, + fC, —2aB,)x* +(uB, + yB, + ad,)y +
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(uB; — 6B,)z +(uC, + BD, —3aC,)x’ +(uC, + B, + 28D, + yC, +2aB, —aC,)
xy(uC, —8C, + D, — B, — aC,)xz + (uD, + PE, — 4aD,)x* + (uD, +2yD, +
aC,)y* +(uDy —20D,)z"> +(uD, + C, +2BE, + D, +3aC, —2aD,)xy + (uD;
—0D; —C, + BE, —2aD,)x’z + (uD, — 6D, + YD + aC, ) yz + (UE, — SaE,)x’ +
(UE, + D, +2yE, +2aD, — aE,)xy” + (UE, —20E, — D, — aE,)xz* + (uE, + D,
+yE, +4aD, =3aE,)x’y + (uE, — OE, — D, —3aE)x’z + (uE, — 6E, + 2D, +
YEq = 2D, +2aD, — aE )xyz + (2E, = 2E, +3aE,)x’ yz + (E; + 5aE,)x*y + (E,
+3aE,)x’y’ —Ex‘z—Ex’z’ +aE,y’ + aE,yz’ + aE,y’z =0.

a = (25a +10)

S =(28-35a)

where 7y =(29a-1)

).

Neglecting the terms having singularity of order greater than five and equating the
coefficients of the terms with singularity of order less or equal to five, we get:

5=(8+a

(1 -a)d, +fB, =0

(4~ 2a)B, + fC, = 0

(u+y)B,+ad, =0

(1~ 6)B, =0

(1 ~3a)C, + D, =0
(u+y—-a)C,+2aB, +2pD,+B, =0
(u-0-a)Cy =B, + fDs =0

(u—4a)D, + BE, =0 9)
(u+2y)D,+aC, =0
(u-26)D, =0

(u+y-2a)D, +C, +2pE, +3aC, =0
(u-0-2a)Ds-C,+pE, =0
(u+y-0)D,+aC, =0

(u-5a)E, =0
(u+2y-a)E,+ D, +2aD, =0
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(u-20-a)E,—D, =0

(u+y-3a)E,+ D, +4aD, =0
(u—0-3a)E;—D, =0
(u—-0+y—-a)E;+2D, -2D, +2aD, = 0.

3. Integrals of motion:
The integrals of motion are found for some particular values of x as follows:

Case I: Let us consider p=9,B, #0.
In this case the integral of motion is:

B, 208 | 2ap
-2« d-2a O0+2y

1 p a+o+2y
E_Z(5+27)(y—a+ﬁ)x4_ @ ., ardyed
(O+y-3a)o—-4a)-4ap o+2y (y—a+p)o+2y)
xyz+(£—L+ a+ot+2y )x’z+
20 20 (O0+2)y—a+ )
1 B a+o+2y

2a 20 (5+20)(y-a+f)

I(x,y,z,t)z[—é +a—-0+y)z+xy—

x’y]C,e*" 10
(647 —3a) 0 —4a)—aap "~ (10)
where C,is non zero arbitrary constant.
Case II: We now take y=20+a,E; #0.
It yields integral of motion as:
2 J—
157,20 = 2/ W APeOTN
20+y—-a)20-3a)-3ap 20+y—-a)26-3a)-3ap
+xp’ — 2p20=37) 1 X’2)E, +xz°E; +
20+y—a)20-3a)-3af 0 -2a
(- P x'—Q25+y-2a- 4afp Wz +x y)E, Jet". (11)
20 -3a 20 -3a

where E,,E,, E, are non zero arbitrary constant.

Case III: Let us now consider u =26,D; #0.
In this case the integral of motion is of the form:
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2o 2 Y
I(x,vy,z,t)= -0—-r+ -
(.20 =[5y ra)z -

where E, is non zero arbitrary constant.

x’z+xyz|E e’ (12)

CaselV: u=0+a,C, #0 yields integral of motion as:

1(x,,2,1) =[(~ ixly-—x’z- x))D, +(——2

X
o—-2a 2a o+2y a+y

(94 2 a 2 .t
s Tarperam Y Ok 12)

where C,, D, are non zero arbitrary constants.

yz+xz+

4. Conclusion:

This paper introduces the dynamical behavior of unified chaotic system which
describes a three family chaotic system for different values of parameter a and in
tern the corresponding different values of «,f,y,0 . This paper gives a better
understanding about the integrals of motion of Lorenz, Lii and Chen chaotic
systems. We can expect that the findings would be of much interest while
considering various other properties of the unified chaotic system.
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