On the Hamiltonian Bigraphs

Alaa H AL-Rawajfeh
Al Balqa Applied University
Alaa.bau2016@gmail.com
Fawwaz D Wrikat
Mu'tah University
fawri@mutah.edu.jo

Abstract

In this paper we study and discuss simple Hamiltonian biographs and construct a relation of partition of Hamiltonian biographs into independent cycles under certain conditions, atangable results of partition of Kn, n into two independent cycles is achieved.

Basic definitions In this sequel we will introduce basic definitions and concepts of graph theory Which will be used in this paper, all definitions in this paper from (Harary, 1994)

Definition1.1: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consist of a finite nonempty set of vertices, together with a prescribed set of edges.

Definition 1.2: The number of vertices in G is called order of G. denoted by $|V(G)|$. Definition 1.3: If a graph G is undirected without loops and parallel edges it called simple graph.

Definition1.4: A wallk with distinct edges and distinct vertices is called a path. Definition 1.5: A cycles is closed path Definition 1.6: The length of a cycle equal number of edges in it. Definition 1.7: A bigraph G is a graph with two disjoint sets of vertices A and B, with $|V(A)|=m|V(B)|=n$.

Definition 1.8: A graph G is connected if there exist at least one path between any two vertices in G.

Definition 1.9: A connected graph G is Hamiltonian graph if there is a cycle covers all vertices in G .

Definition 1.10: The distance $\mathrm{d}(\mathrm{u}, \mathrm{v})$ between two vertices u and v in G is the length of the shortest path between u and v in G.

Definition 1.11: let A be a subgraph of G and let $v \in V(G)$. Then the distance $d(A, v)=d(v)$ is defined as follows:

$$
d(v)=d(A, v)= \begin{cases}\min (d(v, u) \text { if } v \notin V(A), u \in V(A) \\ 0 & \text { if } v \in V(A)\end{cases}
$$

Definition 1.12:A biograph with partition (A, B) is called balance if $|A|=|B|$ i.e $K n, n$

Partition of Hamiltonian Biagraph into independent cycles

In this sequel we will discuss finite simple graph, (Bondy \& Chvatal, 1976)
illustrate that if G is a bipartite graph $K n, n$ with bipartion (A, B) and for any $x \in A$, $y \in B$ and $d(x)+d(y) \geq n+1$ Then G is Hamiltonian graph

Our main target is to prove the following result;

Theorem 4.1:

If $K n, n$ bipartion into A and B such that for any $x \in A, y \in B$ and $d(x)+d(y) \geq n+2$, then for any ($\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$)

G contains two independent cycles of length $2 \mathrm{n}_{1}, 2 \mathrm{n}_{2}$.
Note: The conditions on theorem 4.1 gives that \mathbf{G} is Hamiltoians (Amar, 1986)

Notation:

If F and H are disjoint subgraphs of G and if u_{1}, \ldots, u_{p} are vertices of G, not in H, then $H+\left(u_{1}, \ldots, u_{P}\right)$ is the subgraph of G with vertices u_{1}, \ldots, u_{P} and the vertices of H.

If v_{l}, \ldots, v_{k} are vertices of $H, H-\left(v_{l}, \ldots, v_{k}\right)$ is the subgraph of G with vertices in H except v_{l}, \ldots, v_{k}. If C is a path or a cycle of G, then for any arbitrary orientation; if u is a vertex of C, u^{+}(resp. u^{-}) is the successor (resp. the predecessor) of u on the path or the cycle for the given orientation.

Remark:

If n is odd, the result of the theorem is the best one as we can see with the following example: $n=2 p+1$. There is no partition into two cycles of lengths $2 p$ and $2 p+2$ (see e.g. sceam.1).

sceam. 1

It is clear that every vertex in G in sceam. 1 of degree 4, so $d(x)+d(y)=8$ and $V(G)=14$ but G does not contain two independent cycles of lengths 6, 8 .

The proof of Theorem is based on many elementary lemmas that we wil give first.

Note: the proof of the following lemmas in thesis"The Cycles of simple Graph"ALrawajfeh,alaa. 2012

Elementary Lemmas1.1:

Let G be a balanced bipartite graph with bipartition (A, B), such that $|A|=|B|=n$.

Lemma1.1.:

If for any $x \in A, y \in B, d(x, G)+d(y, G) \geq n+1$, then G is Hamiltionian.

Lemma2.1:

If G contains a Hamiltionian path with endvertices a and b such that $d(a, G)+d(b, G) \geq n+1$, then G is Hamiltionian.

Lemma 3.1:

If there is a partition of G into two paths with endvertices $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right), a_{i} \in A, b_{i} \in B$ such that,

$$
\begin{array}{r}
d\left(a_{1}, G\right)+d\left(b_{2}, G\right) \geq n+1, \\
d\left(a_{2}, G\right)+d\left(b_{1}, G\right) \geq n+1,
\end{array}
$$

then G is Hamiltionian.

Lemma 4.1:

If Γ is a path (a cycle) in G with $2 p$ vertices and if (a, b) is an edge of G with no vertex in Γ, such that $d(a, \Gamma)+d(b, \Gamma) \geq p+1$; then the subgraph $\Gamma+(a, b)$ is traceable (Hamiltionian).

Lemma5.1:

If Γ is a path (a cycle) with $2 p$ vertices and if $a \in A, b \in B$ are two vertices not in Γ, such that $d(a, \Gamma)+d(b, \Gamma) \geq p+2$, then the subgraph $\Gamma+(a, b)$ is traceable (Hamiltionian).

Lemma6.1:

If $a \in A, b \in B$ are vertices of a cycle Γ with $2 p$ vertices; such that;

$$
d\left(a^{+}, \Gamma\right)+d\left(b^{+}, \Gamma\right) \geq p+2
$$

Γ contains a path P with endvertices a and b, such $V(\Gamma)=V(P)$.

Structure Lemma2.1:

Structure lemma: if $n=n_{1}+n_{2}$ and for v any v v $x \in A, y \in B$, $d(x, G)+d(y, G) \geq n+2$, there is a partition of G into two balanced bipartite subgraphs $\left(G_{1}, G_{2}\right)$ or (Γ_{1}, Γ_{2}) such that one of the following conditions is satisfied:

1. $\left|V\left(G_{i}\right)\right|=2 n_{i}$ and if $x \in A, y \in B$ are in $G_{i}, d\left(x, G_{i}\right)+d\left(y, G_{i}\right) \geq n_{i}+2$.
2. $\left|\Gamma_{1}\right|=2\left(n_{i}-1\right), \Gamma_{1}$ is traceable, $\left|\Gamma_{2}\right|=2\left(n_{j}+1\right), j \neq i, \Gamma_{2}$ is Hamiltionian and if $u \in A, v \in B$ are in $\Gamma_{2} d\left(u, \Gamma_{1}\right)+d\left(v, \Gamma_{2}\right) \geq n_{j}+2$,

To prove the theorem, we need to know the structure of Γ_{2} when $\Gamma_{2}-\left(x_{0}\right.$, y_{0}) is not Hamiltionian.

Structure of Γ_{2} when $\Gamma_{2}-\left(x_{0}, y_{0}\right)$ is not Hamiltonian:

Case A. there is $k, 2 \leq k \leq n_{2}-1$, such that the edges $\left(x_{1}, y_{k+1}\right)$ and $\left(x_{k}, y_{n_{2}}\right)$ exist.

Lemma1.2:

If $\Gamma_{2}-\left(x_{0}, y_{0}\right)$ is not Hamiltionian and if the edges $\left(x_{1}, y_{k+1}\right)$ and $\left(x_{k}, y_{n 2}\right)$ exist, then x_{0} is adjacent to y_{k} and y_{0} is adjacent to x_{k+1} and one of the subgraphs $\Gamma_{2}-\left(x_{0}, y_{2}\right)$ or $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ is Hamiltonian. .

Case B. x_{1} is adjacent to $y_{1}, y_{2}, \ldots y_{p}$ and $y_{n_{2}}$ is adjacent to $x_{p+1}, \ldots, x_{n_{2}}$ for $1 \leq p \leq n_{2}$.

Lemma2.2:

If $\Gamma_{2}-\left(x_{0}, y_{0}\right)$ is not Hamiltionian and if x_{1} is adjacent to y_{1}, \ldots, y_{p} and $y_{n_{2}}$ is adjacent to $x_{p+1}, \ldots, x_{n_{2}}$ then
(i) $\left\{x_{1}, x_{2}, \ldots, x_{p}, y_{p+1}, y_{p+1}, \ldots, y_{n_{2}}\right\}$, is independent set.
(ii) The subgraphs $\left(x_{1}, \ldots, x_{p}\right),\left(y_{0}, y_{1}, \ldots, y_{p}\right)$

$$
\left(\left(y_{p+1}, \ldots, y_{n_{2}}\right),\left(x_{p+1}, \ldots, x_{n_{2}}, x_{0}\right)\right)
$$

Are complete bipartite subgraphs.

Lemma 3.2:

In case B , if $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ is not Hamiltionian, if n_{2} is odd, Γ_{2} is the graph E_{1} with $p=\left(n_{2}+1\right) / 2$, if n_{2} is even, Γ_{2} is the graph E_{2} with $p=\left(n_{2} / 2\right)$. For $1 \leq i \leq p-1$ and $p+1 \leq j \leq n_{2}$, the subgraphs $\Gamma_{2}-\left(x_{0}, y_{j}\right)$ and $\Gamma_{2}-\left(x_{1}, y_{i}\right)$ are Hamiltonian.

Proof of the theorem: First Case:

There are two adjacent vertices of Γ_{2}, adjacent to the endvertices a and b Hamiltonian path of Γ_{1}.

Let $x \in A, y \in B$ be adjacent vertices of Γ_{2} adjacent to b and a . on a cycle of Γ_{2} we consider $x^{+}, x^{-}, y^{+}, y^{-}$.

If $x^{+}, x^{-}, y^{+}, y^{-}$are not adjacent to Γ_{1};
$d\left(x^{+}, \Gamma_{2}\right)+d\left(y^{+}, \Gamma_{2}\right) \geq n_{1}+n_{2}+2$,
$d\left(x^{-}, \Gamma_{2}\right)+d\left(y^{-}, \Gamma_{2}\right) \geq n_{1}+n_{2}+2$, since we have
$d\left(x^{-}, G\right)+d\left(y^{-}, G\right) \geq n_{1}+n_{2}+2 \& d\left(x^{+}, G\right)+d\left(y^{+}, G\right) \geq n_{1}+n_{2}+2$.
We have Γ_{2} in Hamiltonian and $x y \in E$; and

$$
\begin{aligned}
& d\left(x^{+}, \Gamma_{2}-(x, y)\right)+d\left(y^{+}, \Gamma_{2}-(x, y)\right) \geq n_{1}+n_{2}>n_{2}+1, n_{1} \geq 2 \\
& d\left(x^{-}, \Gamma_{2}-(x, y)\right)+d\left(y^{-}, \Gamma_{2}-(x, y)\right) \geq n_{1}+n_{2}>n_{2}+1, n_{1} \geq 2
\end{aligned}
$$

Hence, there is a partition of $\Gamma_{2}-(x, y)$ into two paths with endvertices $\left(y^{+}, x^{-}\right)$and $\left(y^{-}, x^{+}\right)$. (See sceam. 12). Thus by Lemma, we have $\Gamma_{2}-(x, y)$ is Hamiltonian, and $\Gamma_{1}+(x, y)$ and $\Gamma_{2}-(x, y)$ are solutions of the problem.

Else, let $\left(x_{0} y_{0} x_{1} y_{1} \ldots x_{n_{2}} y_{n_{2}}\right)$ be a Hamiltonian cycle of Γ_{2} such that the chardinality of the pairs of consecutive adjacent to a and b is minimum and suppose ($\mathrm{x}_{0}, \mathrm{y}_{0}$) be adjacent to b and a . If $\Gamma_{2}-\left(x_{0}, y_{0}\right)$ is Hamiltonian, $\Gamma_{1}+\left(x_{0}, y_{0}\right)$ and $\Gamma_{2}-\left(x_{0}, y_{0}\right)$ are the solutions of the problem.

Suppose $\Gamma_{2}-\left(x_{0}, y_{0}\right)$ is not Hamiltonian. We consider case A and Case B the presented paragraph.

sceam. 10

Case A:

By Lemma x_{0} is adjacent to y_{k} and y_{0} is adjacent to y_{k+1}, we consider the Hamiltonian cycle of $\Gamma_{2}:\left(y_{0} x_{1} \ldots x_{k} y_{k} x_{0} y_{n_{2}} \ldots x_{k+1} y_{0}\right)$. By hypothesis of minimality, one of edges at least $\left(\mathrm{a}, \mathrm{y}_{\mathrm{k}}\right)$ or $\left(\mathrm{b}, \mathrm{x}_{\mathrm{k}+1}\right)$ exists, and $\Gamma_{1}+\left(x_{0}, y_{k}\right)$ and $\Gamma_{2}-\left(x_{0}, y_{k}\right)$ or $\Gamma_{1}+\left(y_{0}, x_{k+1}\right)$ and $\Gamma_{2}+\left(y_{0}, x_{k+1}\right)$ are the solutions of the problem; since $\Gamma_{1}+\left(x_{0}, y_{k}\right)$ has a Hamiltonian cycle say; $\mathrm{y}_{\mathrm{k}} \mathrm{a} . . \mathrm{bx} \mathrm{oy}_{\mathrm{k}}$, also, $\Gamma_{2}-\left(x_{0}, y_{k}\right)$ has a Hamiltonian cycle;

$$
Y_{0} X_{1} y_{1} \ldots X_{k} Y_{n 2} X_{n 2} \ldots y_{k+1} X_{k+1} X_{0}
$$

note that in case $\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{k}+1}\right) \&\left(\mathrm{y}_{\mathrm{n} 2}, \mathrm{x}_{\mathrm{k}}\right)$ are edges in Γ_{2}. Similarly; if the other case hold.

Case B. Subcase I:

The endvertices a and b of a Hamiltonian path of Γ_{1} are adjacent to three consecutive vertices of Hamiltonian cycle of Γ_{2}.

We can suppose that a is adjacent to y_{0} and b is adjacent to x_{0} and x_{1}.
If $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ is a Hamiltionian, $\Gamma_{1}+\left(x_{1}, y_{0}\right)$ and $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ are solutions of the problem. ($y_{0} a \ldots b x_{1} y_{0}$ is Hamiltonian cycle of $\Gamma_{1}+\left(x_{1}, y_{0}\right)$). Else $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ is not Hamiltonian, by Lemma, Γ_{2} is the graph E_{1} if n_{2} is odd, the graph E_{2} if n_{2} is even and the subgraphs $\Gamma_{2}-\left(x_{0}, y_{j}\right)$ for $p+1 \leq j \leq n_{2}$ or $\Gamma_{2}-\left(x_{1}, y_{j}\right)$ for $1 \leq i \leq p-1$ are Hamiltonian.

If a is not adjacent to $\mathrm{y}_{\mathrm{i}} 1 \leq i \leq p-1$, or $\mathrm{y}_{\mathrm{j}} p+1 \leq j \leq n_{2} \quad d\left(a, \Gamma_{2}\right) \leq 2$. By lemma, for $p+1 \leq j \leq n_{2} d\left(y_{j}, \Gamma_{2}\right)=n_{2}+1-p$ (Since y_{j} is independent with vertices $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}, p+1 \leq j \leq n_{2}$, then

$$
\begin{aligned}
& d\left(a, \Gamma_{2}\right)+d\left(y_{j}, \Gamma_{2}\right) \leq n_{2}+3-p \\
& d\left(a, \Gamma_{2}\right)+d\left(y_{j}, \Gamma_{1}\right) \geq n+2-\left(n_{2}+3-p\right)=n_{1}+p-1 \\
& \Gamma_{1}+\left(x_{0}, y_{i}\right) \text { contains a Hamiltonian path with endvertices a, } \mathrm{y}_{\mathrm{j}} \text { say }
\end{aligned}
$$ $\left(a, \ldots, b, x_{0}, y_{j}\right)$. By previous Lemma, $\Gamma_{1}+\left(x_{0}, y_{i}\right)$ is Hamiltonian (since $d\left(a, \Gamma_{1}^{*}\right)+d\left(y_{j}, \Gamma_{1}^{*}\right) \geq n_{1}+p \geq n_{1}+1$, where $\left.\Gamma_{1}^{*}=\Gamma_{1}+\left(x_{0}, y_{i}\right)\right)$.

Hence, $\Gamma_{1}+\left(x_{0}, y_{i}\right)$ and $\Gamma_{2}-\left(x_{0}, y_{i}\right)$ are solutions of problem.

Subcase II:

The endvertices a and b of a Hamiltonian path of Γ_{1} are adjacent to y_{k} and $x_{k}, k \neq 0$.

If $1 \leq k \leq p-1$ or $p+2 \leq k \leq n_{2}, \quad \Gamma_{1}+\left(x_{k}, y_{k}\right)$ and $\Gamma_{2}-\left(x_{k}, y_{k}\right)$ are the solution of the problem.

If $k=p$, the edes $\left(x_{1}, y_{p}\right)$ and $\left(x_{0}, y_{p}\right)$ exist; the vertices x_{0}, y_{0} and x_{p} are consecutive on the Hamiltonian cycle $\left(x_{0} y_{0} x_{p} y_{p-1} \ldots x_{1} y_{p} x_{p+1} \ldots x_{n_{2}} y_{n_{2}} x_{0}\right)$ and we can conclude as in the first subcase.

If $k=p+1$, the edes $\left(x_{0}, y_{p+1}\right)$ and ($\left.y_{n_{2}}, x_{p+1}\right)$ exist; as a similar argument, the vertices x_{0}, y_{0}, y_{p+1} are consecutive on the Hamiltonian cycle $\left(y_{0} x_{0} y_{p+1} \ldots x_{n_{2}} y_{n_{2}} x_{p+1} \ldots x_{1}\right)$ and we can conclude as in the first subcase.

Subcase III:

The endvertices a and b of a Hamiltonian path of Γ_{1} satisfy $d\left(a, \Gamma_{2}\right)+d\left(b, \Gamma_{2}\right)=n_{2}+2$.

If $1 \leq k \leq p-1$ or $p+1 \leq k \leq n_{2}-1, \Gamma_{1}+\left(x_{k}, y_{k+1}\right)$ and $\Gamma_{2}-\left(y_{k}, x_{k+1}\right)$ are solution of the problem. Note that $\Gamma_{2}-\left(y_{k}, x_{k+1}\right)$ has Hamiltonian path with endvertices x_{k} and y_{k+1}.

If $k=p, \quad p \leq n_{2}-2, p+2 \leq j \leq n_{2}, d\left(y_{j}, \Gamma_{2}\right)=n_{2}-p+1 \quad\left(y_{j}\right.$ is adjacent to $\left(x_{p+1}, x_{p+2}, \ldots, x_{n_{2}}, x_{0}\right) ; d\left(a, \Gamma_{2}\right)=p+1$; since a is adjacent to $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{p}}, \mathrm{y}_{0}$, then $d\left(a, \Gamma_{1}\right)+d\left(y_{j}, \Gamma_{1}\right) \geq d(a, G)+d\left(y_{j}, G\right)-d\left(a, \Gamma_{2}\right)-d\left(y_{j}, \Gamma_{2}\right)$

$$
\geq n_{1}+n_{2}+2-\left(n_{2}-p+1\right)-(p+1) ;
$$

As $d\left(a, \Gamma_{1}\right)+d\left(y_{j}, \Gamma_{1}\right) \geq n_{1}$ and $\left|\Gamma_{1}\right|=2\left(n_{1}-1\right)$, then there is an edge $u v$ of Γ_{1} with $u \in A$ and $\left\{a v, y_{j} u\right\} \subseteq E$; see sceam.10, and we have $b x_{j} \in E$, for $p+2 \leq j \leq n_{2}$, so $\Gamma_{1}+\left(x_{j}, y_{j}\right)$ has a Hamiltionian cycle namely $a, \ldots, u y_{j} x_{j} b, \ldots, v, a$. Hence $\Gamma_{1}+\left(x_{j}, y_{j}\right)$ is Hamiltionian. Not that $\Gamma_{2}-\left(x_{j}, y_{j}\right)$ has a Hamiltionian path with envertices y_{j-1} and x_{j+1} and $\left\{x_{j+1} y_{n_{2}}, y_{j-1} x_{n_{2}}\right\} \subseteq E$.

Thus $\Gamma_{1}+\left(x_{j}, y_{j}\right)$ and $\Gamma_{2}-\left(x_{j}, y_{j}\right)$ are solution of the problem.
The case $p=n_{2}-1, p \geq 2$ is similar, and if $p=n_{2}-1=1$, so $n_{2}=2, p=1$, therefore, a is adjacent to y_{1}, y_{0} and b is adjacent to x_{1}, x_{0}, then $d\left(a, \Gamma_{1}\right)+d\left(b, \Gamma_{1}\right) \geq n_{1}$ so Γ_{1} is Hamiltionian by Lemma.

Subcase IV:

For any Hamiltonian path of Γ_{1}, the endvertices α and β satisfy $d\left(\alpha, \Gamma_{2}\right)+d\left(\alpha, \Gamma_{2}\right) \geq n_{2}+1$.

Lemma3.2:

Under the hypothesis of subcase IV, Γ_{1} is Hamiltonian and if $\alpha \in A$ and $\beta \in B$ are in Γ_{1}, then

$$
\begin{aligned}
& d\left(\alpha, \Gamma_{1}\right)+d\left(\beta, \Gamma_{1}\right) \geq n_{1}+1, \\
& d\left(\alpha, \Gamma_{2}\right)+d\left(\beta, \Gamma_{2}\right) \leq n_{2}+1,
\end{aligned}
$$

And there is a Hamiltonian path in Γ_{1} with endvertices α and β.
Proof: let α and β be the endvertices of a Hamiltonian path of Γ_{1} : $d\left(\alpha, \Gamma_{1}\right)+d\left(\beta, \Gamma_{1}\right) \geq n_{1}+1$.

By Lemma $2.1 \quad \Gamma_{1}$ is Hamiltonian, if α^{+}is the successor of α, on a Hamiltonian cycle of $\Gamma_{1}: d\left(\alpha, \Gamma_{1}\right)+d\left(\alpha^{+}, \Gamma_{1}\right) \geq n_{1}+1\left(\alpha, \alpha^{+}\right.$are endvertices of a Hamiltonian path of Γ_{1}).

Suppose that $u \in A$ and $v \in B$ are in Γ_{1}, and satisfy $d\left(u, \Gamma_{1}\right)+d\left(v, \Gamma_{1}\right) \leq n_{1}$, then

$$
\begin{aligned}
& d\left(u, \Gamma_{1}\right)+d\left(u^{+}, \Gamma_{1}\right) \geq n_{1}+1 ; \\
& d\left(v, \Gamma_{1}\right)+d\left(v^{+}, \Gamma_{1}\right) \geq n_{1}+1 ;
\end{aligned}
$$

Implies that, $d\left(u^{+}, \Gamma_{1}\right)+d\left(v^{+}, \Gamma_{1}\right) \geq n_{1}+2$. Therefore by Lemma Γ_{1} contains a Hamiltonian path with endvertices u, v, that contradicts our hypothesis.

Proof of the theorem in subcase IV:

$d\left(x_{1}, \Gamma_{2}\right)+d\left(y_{n_{2}}, \Gamma_{2}\right)=n_{2}+2$, so $d\left(x_{1}, \Gamma_{1}\right)+d\left(y_{n_{2}}, \Gamma_{1}\right) \geq n_{1}$, thus x_{1} and $y_{n_{2}}$ are adjacent to Γ_{1}. By lemma 4.8.3 one of the subgraphs $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ or $\Gamma_{2}-\left(x_{0}, y_{n_{2}}\right)$ is Hamiltonian.

If $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ is a Hamiltonian. Let $\delta \in \Gamma_{1}$ be adjacent to x_{1}. By Lemma;

$$
d\left(\delta^{+}, \Gamma_{1}\right)+d\left(a^{+}, \Gamma_{1}\right) \geq n_{1}+1 .
$$

By Lemma Γ_{1} contains a Hamiltonian path with endvertices δ, a. Hence $\Gamma_{1}+\left(x_{1}, y_{0}\right)$ is Hamiltonian, since $\left(y_{0} a, \ldots, \delta x_{1} y_{0}\right)$ is a Hamiltonian cycle of $\Gamma_{1}+\left(x_{1}, y_{0}\right)$. Hence $\Gamma_{1}+\left(x_{1}, y_{0}\right)$ and $\Gamma_{2}-\left(x_{1}, y_{0}\right)$ are solutions of the problem.

Proof of the theorem: Second Case:

For any Hamiltonian path of Γ_{1}, its endvertices a and b are not adjacent to two adjacent vertices of Γ_{2}.

Lemma3.3:

Under the hypothesis of second case, if $\alpha \in A, \beta \in B$ are in Γ_{1}.

$$
\begin{aligned}
& d\left(\alpha, \Gamma_{2}\right) \geq 2, d\left(\beta, \Gamma_{2}\right) \geq 2 \\
& d\left(\alpha, \Gamma_{1}\right) \geq 2, d\left(\beta, \Gamma_{1}\right) \geq n_{1}+2, \\
& d\left(\alpha, \Gamma_{2}\right)+d\left(\beta, \Gamma_{2}\right) \leq n_{2}
\end{aligned}
$$

Proof: Let $u \in A$ in Γ_{2} be not adjacent to Γ_{1} and $b \in \beta$ in Γ_{1}, $d\left(b, \Gamma_{2}\right) \geq n+2-d(u, G)-d\left(b, \Gamma_{1}\right)$, since $d(u, G)+d(b, G) \geq n_{1}+n_{2}+2 ;$

$$
\begin{aligned}
& d(b, G)=d\left(b, \Gamma_{1}\right)+d\left(b, \Gamma_{2}\right) ; \\
& d(u, G)=d\left(u, \Gamma_{2}\right)
\end{aligned}
$$

u is not adjacent to Γ_{1}; and $d(u, G) \leq n_{2}+1, d\left(b, \Gamma_{1}\right) \leq n_{1}-1$.
Therefore, $d\left(b, \Gamma_{2}\right) \geq n_{1}+n_{2}+2-n_{2}-1-n_{1}+1$;

$$
d\left(b, \Gamma_{2}\right) \geq 2 \text {; }
$$

b is adjacent to vertices $x \in A$ in Γ_{2}. Then $y=x^{+}$is not adjacent to Γ_{1} (since any two endvertices of Γ_{1} is not adjacent to two adjacent vertices of $\left.\Gamma_{2}\right)$.

By a similar argument if $a \in A$ is in $\Gamma_{1}, x^{+} \in \Gamma_{2}, x^{+}$is not adjacent to Γ_{1} , $d\left(a, \Gamma_{2}\right) \geq 2$.

Suppose there are $\alpha \in A, B \in \beta$, two vertices of Γ_{1} that satisfy

$$
d\left(\alpha, \Gamma_{1}\right)+d\left(\beta, \Gamma_{1}\right)=n_{1}+1
$$

So $d\left(\alpha, \Gamma_{2}\right)+d\left(\beta, \Gamma_{2}\right)=n_{2}+n_{1}+2-n_{1}-1=n_{2}+1$.
Necessarily α and β are adjacent to two adjacent vertices of Γ_{2} (Since $\left|\Gamma_{2}\right|=2\left(n_{2}+1\right)$ and $\left.d\left(\alpha, \Gamma_{2}\right)+d\left(\beta, \Gamma_{2}\right)=n_{2}+1\right)$, which contradicts our hypothesis:
i.e., $d\left(\alpha, \Gamma_{1}\right)+d\left(\beta, \Gamma_{1}\right) \geq n_{1}+2$
so $d\left(\alpha, \Gamma_{2}\right)+d\left(\beta, \Gamma_{2}\right) \leq n_{2}$

proof of the theorem in the second case:

Let $a \in A$ and $b \in \beta$ be two vertices of Γ_{1}, adjacent to $y \in B$ and $x \in A$ in $\Gamma_{2} . x$ and y are adjacent to two vertices, consecutive on a Hamiltonian cycle of Γ_{2}, $y^{\prime} \in B$ and $x^{\prime} \in A$ (note that, $x^{\prime} y^{\prime} \in E$ and $d\left(x_{j}, \Gamma_{2}\right)+d\left(y_{j}, \Gamma_{2}\right) \geq n_{2}+2$.

Let $\Gamma_{1}^{\prime \prime}$ is obviously Hamiltonian, since $x^{\prime} y a, \ldots, b x y^{\prime} x^{\prime}$ is Hamiltonian cycle of Γ_{1}.

Let $u \in A$ and $v \in B$ be two vertices of $\Gamma_{2}^{\prime \prime}$. We distinguish three cases:
(i) u and v are not adjacent to Γ_{1}.
(ii) u is adjacent to Γ_{1} and then u is not adjacent to y (since y is adjacent to Γ_{1}).
(iii) u and v are adjacent to Γ_{1} and there are not adjacent to y and x. In each case we can conclude that:

$$
d\left(u, \Gamma_{2}^{\prime \prime}\right)+d\left(v, \Gamma_{2}^{\prime \prime}\right) \geq n_{2} ;
$$

And by Lemma1.1, $\Gamma_{2}^{\prime \prime}$ is Hamiltonian $\left(\Gamma_{2}^{\prime \prime} \mid=2\left(n_{2}-1\right)\right)$.
Let $\left(a b \alpha_{2} \beta_{2} \ldots \alpha_{n_{1}-1} \beta_{n_{1}-1}\right)$ be a Hamiltonian cycle of Γ_{1} and; if $n_{1} \geq 5$, let for $3 \leq i \leq n_{1}-2, \alpha_{i}=\alpha, \beta_{i}=\beta$ be two vertices of Γ_{1} different from a and b. α and β are adjacent to $\Gamma_{2}^{\prime \prime}$ in $y_{1} \in B$ and $x_{1} \in A\left(x_{1} y_{1} \notin E\right)$. If x_{1}^{+}and y_{1}^{+}are the successors of x_{1} and y_{1} on Hamiltonian cycle of $\Gamma_{2}^{\prime \prime}$.

$$
d\left(y_{1}^{+}, \Gamma_{2}\right)+d\left(x_{1}^{+}, \Gamma_{2}\right) \geq n_{1}+n_{2}+2
$$

(since x_{1}^{+}, y_{1}^{+}are not adjacent to Γ_{1}), then

$$
d\left(y_{1}^{+}, \Gamma_{2}^{\prime \prime}\right)+d\left(x_{1}^{+}, \Gamma_{2}^{\prime \prime}\right) \geq n_{1}+n_{2}-2, \Gamma_{2}^{\prime \prime} \mid=2\left(n_{2}-1\right) \geq n_{2}+3
$$

By Lemma 4.2.6 $\Gamma_{2}^{\prime \prime}$ contains a Hamiltionian path with endvertices x_{1}, y_{1} respectively; hence $\Gamma_{2}^{\prime \prime}+(\alpha, \beta)$ is Hamiltionian $\left(\alpha_{1} y_{1}, \ldots, x_{1} \beta_{1} \alpha_{1}\right)$ is Hamiltonian cycle of $\Gamma_{2}^{\prime \prime}+(\alpha, \beta)$.

$$
\begin{aligned}
& \text { Let } \alpha^{-}=\beta_{i-1}, \beta^{+}=\alpha_{i+1} \text {. By Lemma } \\
& d\left(\alpha^{-}, \Gamma_{1}\right)+d\left(\beta^{+}, \Gamma_{1}\right) \geq n_{1}+2 .
\end{aligned}
$$

We can deduce that $\Gamma_{1}^{\prime \prime}-(\alpha, \beta)$ is Hamiltonian to illustrate this;
$\Gamma_{1}^{\prime \prime}$ is Hamiltonian i.e. $x^{\prime} y a, \ldots, b x y^{\prime} x^{\prime}$ is Hamiltonian cycle of $\Gamma_{1}^{\prime \prime}$, $\alpha=\alpha_{i}, \beta=\beta_{i}$ and $\Gamma_{l}^{\prime \prime}-(\alpha, \beta)$ is Hamiltonian path with endvertices α^{-}, β^{+}and since $d\left(\alpha^{-}, \Gamma_{1}\right)+d\left(\beta^{+}, \Gamma_{1}\right) \geq n_{1}+2$ so,

$$
d\left(\alpha^{-}, \Gamma_{1}^{\prime \prime}-(\alpha, \beta)\right)+d\left(\beta^{+}, \Gamma_{1}^{\prime \prime}-(\alpha, \beta)\right) \geq n_{1}+1, \Gamma_{1}^{\prime \prime}-(\alpha, \beta)=2 n_{1}
$$

By Lemma 4.2.2 $\Gamma_{1}^{\prime \prime}-(\alpha, \beta)$ is Hamiltonian. (This case satisfied if at least one of the edges $\alpha^{-} y$ or $\beta^{+} x$ exist).

If $n_{1} \geq 5, \Gamma_{1}^{\prime \prime}-(\alpha, \beta)$ and $\Gamma_{2}^{\prime \prime}-(\alpha, \beta)$ are solutions of the problem.
If $n_{1} \leq 4$, it's easy case; to see this argument, if $n_{1}-3$, then $\left(a b \alpha_{2} \beta_{2}\right)$ is Hamiltonian cycle of Γ_{1}, let α_{2}, β_{2} be adjacent to $x_{1} \in A, y_{1} \in B$ in $\Gamma_{2}^{\prime \prime}$. Then $\Gamma_{2}^{\prime \prime}+\left(\alpha_{2}, \beta_{2}\right)$ is Hamiltonian (by the previous argument) and it's obviously $\Gamma_{1}^{\prime \prime}-\left(\alpha_{2}, \beta_{2}\right)$ is Hamiltonian (abxy' $\left.x^{\prime} y a\right)$ is Hamiltonian cycle of $\Gamma_{1}^{\prime \prime}-\left(\alpha_{2}, \beta_{2}\right)$, (See sceam.11), following the same argument for $n_{1}=4$.

sceam. 11

This completes the proof of the theorem.

References

Amar, D. (1986). Partition of a bipartite Hamiltonian graph into two cycles. Discrete Mathematics, 58(1), 1-10.

Bondy, J. A., \& Chvatal, V. (1976). A method in graph theory. Discrete Mathematics, 15(2), 111-135.

Harary, F. (1972). Recent results on generalized Ramsey theory for graphs. In Graph Theory and Applications (pp. 125-138). Springer.

Harary .Frank(1994) Graph Theory. $3^{\text {rd }}$ Edition ,Addison-wesly, Reading, Massachusetts.

AL-Rawajfeh, A. (2012). The Cycles of simple Graphs, Mu’tah University, Karak, Jordan.

Received: April 10, 2017

