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Abstract

The exponentiated Weibull distribution can be used for modeling
lifetime data from reliability, survival and population studies. On the
other hand, Pareto distributions and their generalizations provide very
flexible families of heavy-tailed distributions that may be used to model
a wide variety of social and economic distributions. In this paper, we
combine the above two heavy-tailed distributions, using the technique
for constructing T-X family of distributions. Various structural proper-
ties have been investigated including limiting behavior, quantile, mode
and kth order moment. Finally, the proposed distribution has been
fitted to a real life data and the fit has been found to be good.
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1 Introduction

The exponentiated Weibull (hereafter EW in short) family, a Weibull extension
obtained by adding a second shape parameter, consists of regular distributions
with bathtub shaped, unimodal and a broad variety of monotone hazard rates.
The EW distribution was first suggested by Mudholkar and Srivastava [1] and



208 Xiaolin Song and Zhenhua Bao

it has several satisfactory properties and good physical explanations, see [2]
and the references therein for more details. Similarly, the Pareto distribution
is well known in the literature for its capability in modeling the heavy-tailed
distributions. It has been widely applied to several areas including reliability,
finance and actuarial sciences.

Recently, statisticians and applied researchers are interested in construct-
ing flexible family of distributions to model the data arising in the real world
better. For example, Alzaatreh et al. [3] proposed a new method for generat-
ing family of continuous distributions. The resulting family has a connection
with the hazard functions and each generated distribution is considered as a
weighted hazard function of the random variable. They give several exam-
ples of the generalized family of distributions. Using the technique given in
[3], Kong and Lee et al. [4] proposed the Beta-Gamma distribution and ex-
amined its related properties. Akinsete et al. [5] studied a four-parameter
Beta-Pareto distribution, which has either a unimodal or a decreasing hazard
rate. Explicit expressions for the mean, mean deviation, variance, skewness,
kurtosis and entropies are discussed. Alzaatreh et al. [6] defined Weibull-
Pareto distribution and results for moments, limiting behavior, and Shannon’s
entropy are provided. Alzaatreh et al. [7] further studied Gamma-Pareto (IV)
distribution, various properties and some characterizations of the distribution
are investigated.

Motivated by the above literature, in this article we study exponentiated
Weibull-Pareto (hereafter EW-P in short) random variable. In Section 2, the
EW-P distribution is defined. In Section 3, we study the distributional prop-
erties including the limiting behavior, unimodality and moments. In Section
4, we estimate the model parameters and provide the application of the EW-P
distribution to real data sets in Section 5.

2 The EW-P Distribution

Let F (x) be the cumulative distribution function (cdf) of any random variable
X and r(t) be the probability density function (pdf) of a random variable T
defined on [0,+∞). The cdf of the generalized family of distributions defined
by Alzaatreh et al. [3] is given by

G(x) =

∫ − log(1−F (x))

0

r(t)dt, (1)

The family of distributions defined in (1) is called ‘Transformed-Transformer’ (or
T-X family). If a random variable T follows the EW distribution, the density
function is

r(t) =
αc

γ

(
t

γ

)c−1 [
1− exp

{
−
(
t

γ

)c}]α−1
exp

{
−
(
t

γ

)c}
,
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where t ≥ 0, c > 0, γ > 0, α > 0, then the definition in (1) leads to the
exponentiated Weibull-X family with the pdf

g(x) =
αc

γc
f(x)

1− F (x)
[− log(1− F (x))]c−1 exp

{
−
[
− log(1− F (x))

γ

]c}
∗
[
1− exp

{
−
[
− log(1− F (x))

γ

]c}]α−1
. (2)

If the random variable X follows the Pareto distribution with the pdf

f(x) = kθk/xk+1, x > θ, θ > 0, k > 0,

then (2) reduces to

g(x) =
αc

x

k

γ

[
−k
γ

log

(
θ

x

)]c−1 [
1− exp

{
−
[
−k
γ

log

(
θ

x

)]c}]α−1
∗ exp

{
−
[
−k
γ

log

(
θ

x

)]c}
, x > θ.

Let β = k
γ
, the distribution in (2) can be rewritten as

g(x) =
αcβ

x

(
β log

(x
θ

))c−1 [
1− exp

{
−
[
β log

(x
θ

)]c}]α−1
∗ exp

{
−
[
β log

(x
θ

)]c}
, x > θ, θ > 0, β > 0, c > 0, α > 0. (3)

In what follows, a random variable with the pdf in (3) is said to follow
the EW-P(c, β, θ, α) distribution. After some algebras, the cdf of the EW-P
distribution can be expressed as

G(x) =
[
1− exp

{
−
[
β log

(x
θ

)]c}]α
.

3 Properties of the EW-P distribution

In this section, we will discuss some properties of the EW-P distribution. The
following Lemma gives the relations between EW-P distribution, exponenti-
ated Weibull distribution and exponentiated exponential distributions.

Lemma 3.1. (a) If a random variable Y follows the exponentiated Weibull
distribution with parameters c, α and 1/β, then the random variable X = θeY

follows EW-P(c, β, θ, α).
(b) If a random variable Y follows the exponentiated exponential distribution
with parameters 1 and α, then the random variable X = θ exp{ 1

β
Y 1/c} follows

EW-P(c, β, θ, α).
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Proof. The results can be proved by adopting the transformation technique
directly. For part (a), since since the exponentiated Weibull distribution with
parameters c, α and 1/β has the pdf

αβc(βy)c−1 [1− exp {−(βy)c}]α−1 exp {−(βy)c} ,

then we have

P (X ≤ x) = P
(
Y ≤ log

(x
θ

))
=

∫ log(xθ )

0

αβc(βy)c−1 [1− exp {−(βy)c}]α−1 exp {−(βy)c} dy

=
[
1− exp

{
−
[
β log

(x
θ

)]c}]α
,

which coincides with the cdf of EW-P(c, β, θ, α).
Similarly, for part (b), since the exponentiated exponential distribution

with parameters 1 and α has the pdf

α (1− exp (−y))α−1 exp (−y) ,

we obtain

P (X ≤ x) = P
(
Y ≤

[
β log

(x
θ

)]c)
=

∫ [β log(xθ )]
c

0

α (1− exp (−y))α−1 exp (−y) dy

=
[
1− exp

{
−
[
β log

(x
θ

)]c}]α
,

again, it is the cdf of random variable EW-P(c, β, θ, α).

For x > θ, the hazard function associated with EW-P distribution can be
easily calculated as

hg(x) =
αcβ
x

(
β log

(
x
θ

))c−1 [
1− exp

{
−
[
β log

(
x
θ

)]c}]α−1
exp

{
−
[
β log

(
x
θ

)]c}
1−

[
1− exp

{
−
[
β log

(
x
θ

)]c}]α .

The limiting behavior for the EW-P hazard function and the pdf are given in
the following theorem.

Theorem 3.2. The limit of the EW-P hazard functionand the pdf as x →
+∞ is 0, and the limit as x→ θ is given by

lim
x→θ

hg(x) = lim
x→θ

g(x) =


0, c > 1
αβ/θ, c = 1
+∞, c < 1

(4)
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Proof. We only give the proofs for the hazard function, the statements for the
pdf can be verified similarly. According to the L’Hopital’s rule, we have

lim
x→+∞

hg(x) = − lim
x→+∞

∂

∂x
(log g(x)),

which ultimately leads to limx→+∞ hg(x) = 0.
The formula (4) can be proved by the definition (3) and the relationship

g(x) = hg(x)(1−G(x)).

The mode of the EW-P can be obtained by solving g′(x) = 0. More pre-
cisely,

g′(x) =
αcβ2

x2

(
β log

(x
θ

))c−2 [
1− e−[β log(xθ )]

c]α−2
e−[β log(xθ )]

c

k(x), (5)

where

k(x) =
(
− log

(x
θ

)
+ c− 1

) [
1− exp

{
−
[
β log

(x
θ

)]c}]
+ c
[
β log

(x
θ

)]c [
α exp

{
−
[
β log

(x
θ

)]c}
− 1
]
.

The following theorem shows that the EW-P distribution is unimodal.

Theorem 3.3. The EW-P distribution has a unique mode at x = x0. When
c ≤ 1, the mode is x = θ; when 1 < c < 1

1+α
, the mode x0 is the solution of

equation k(x) = 0.

Proof. Firstly, from (5) we know that the critical points of g(x) are x = θ and
x = x0 with k(x0) = 0.

For c ≤ 1, the inequality 0 < exp
{
−
[
β log

(
x
θ

)]c}
< 1 means that g(x) is

strictly decreasing. When c = 1, we have limx→θ g(x) = αβ
θ

; when c < 1, we
have limx→θ g(x) = +∞. Thus, g(x) has a unique mode at x = θ.

When c > 1, we have limx→θ g(x) = 0, let k
′
(x) = K1 +K2 with

K1 =
1

x

[
1− e−[β log(xθ )]

c]
− βc

x
log
(x
θ

)
e−[β log(xθ )]

c [
β log

(x
θ

)]c−1
− αβc2

x

(
β log

(x
θ

))2c−1
e−[β log(xθ )]

c

− βc2

x

(
β log

(x
θ

))c−1
,

K2 =
βc

x
exp

{
−
[
β log

(x
θ

)]c}[
β log

(x
θ

)]c−1
(c− 1 + cα).

When c > 1, K1 < 0, if c − 1 + cα < 0, we have k
′
(x) < 0, so k(x) is

strictly decreasing, Thus g(x) has a unique mode at x = x0, according to the
formula limx→+∞ g(x) = 0 and limx→θ g(x) = 0, it follows that g(x) has only
one mode.
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Some other related distributional propertied can also be given. For ex-
ample, the quantile function of EW-P distribution is obtained by inverting
G (Q(λ)) = λ directly as

Q(λ) = θ exp

{
1

β

[
− log

(
1− λ1/α

)]1/c}
. (6)

On the other hand, if X follows the EW-P distribution, the kth order
moment can be calculated as

E
(
Xk
)

=
+∞∑
i=0

ki

i!βi

+∞∑
n=0

(α− 1)n
n!

αθk(n+ 1)−i/c−1Γ

(
1 +

i

c

)
.

where(α− 1)n = (α− 1) · · · (α− n+ 1),Γ(α) =
∫ +∞
0

xα−1e−xdx.
The mean, variance, skewness, and kurtosis can be calculated from the

ordinary moments using the well known relationships.

4 Parameter estimation

In this section, we will discuss the parameter estimation of the EW-P distribu-
tion. Let X1, X2, . . . , Xn be a random sample of size n drawn from the density
in (3). The likelihood function is given by

L(c, β, θ, α) =
n∏
i=1

αcβ

Xi

[
β log

(
Xi

θ

)]c−1 [
1− exp

{
−
[
β log

(
Xi

θ

)]c}]α−1
∗ exp

{
−
[
β log

(
Xi

θ

)]c}
.

then the log-likelihood function satisfies

logL(c, β, θ, α) = n logα + n log c+ nc log β + (c− 1)
n∑
i=1

log

(
log

(
Xi

θ

))
−

n∑
i=1

logXi + (α− 1)
n∑
i=1

log
[
1− e−[β log(Xiθ )]

c]
−

n∑
i=1

[
β log

(
Xi

θ

)]c
.

Taking the derivatives of logL(c, β, θ, α) with respect to c, β, θ, α, one has

∂

∂c
lL =

n

c
+ n log β +

n∑
i=1

(α− 1)
[
β log

(
Xi
θ

)]c
e−[β log(Xiθ )]

c

log
(
β log

(
Xi
θ

))
1− e−[β log(Xiθ )]

c

+
n∑
i=1

log

(
log

(
Xi

θ

))
−

n∑
i=1

[
β log

(
Xi

θ

)]c
log

(
β log

(
Xi

θ

))
, (7)
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∂

∂β
lL =

nc

β
+

n∑
i=1

cβc−1(α− 1)
[
log
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θ

)]c
exp
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−
[
β log
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θ

)]c}
1− exp
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β log
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log
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∂

∂θ
lL =−

n∑
i=1

cβc(α− 1)
[
log
(
Xi
θ

)]c−1
exp

{
−
[
β log

(
Xi
θ

)]c}
θ
(
1− exp

{
−
[
β log

(
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θ

)]c})
+

1− c
θ

n∑
i=1

[
log

(
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θ
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+
cβc

θ
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i=1

[
log

(
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θ
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, (9)

∂

∂α
lL =

n

α
+

n∑
i=1

log

(
1− exp

{
−
[
β log

(
Xi

θ

)]c})
. (10)

Setting (7)-(10) to zero and solving them simultaneously yields the ML esti-
mators ĉ, β̂, θ̂, α̂.

Figure 1: CDF for fitted distributions of the fatigue life of 6061-T6 Aluminium
data.

5 The empirical analysis

In this section, we use the fatigue life of 6061-T6 aluminum data to present em-
pirical analysis. The data is borrowed from the literature [7], it represents the
fatigue life of 6061-T6 aluminum which is parallel with the direction of rolling
and oscillated at 18 cycles per second. The maximum likelihood estimates, the
log-likelihood value, the Akaike information criterion (AIC), the Kolmogorov-
Smirnov (K-S) test statistic, and the p-value for the K-S statistics for five
fitted distributions are reported in Table (1). The distributions are Pareto
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(IV) distribution, Beta-Pareto distribution, Beta-generalized Pareto distribu-
tion, Gamma-Pareto (IV) distribution and EW-P distribution. The empirical
results presented in Table (1) indicate that the T-X family of distributions
provide equally adequate fit to the data, and the EW-P distribution is the
most appropriated one. Figure (1) displays the empirical distribution and the
fitted EW-P distribution.

Table 1: Parameter estimates for different models.

Distribution Parameter NLL AIC K-S K-S
estimates p-value

Pareto(IV) β̂ = 0.0253 754.19 1512.38 0.5827 0.000
γ̂ = 0.1234

Beta-Pareto α̂ = 485.470 458.65 925.30 0.091 0.376

β̂ = 162.060

k̂ = 0.3943

θ̂ = 3.910

Beta-generalized α̂ = 12.112 457.85 925.70 0.070 0.700

Pareto β̂ = 1.702
µ̂ = 40.564

k̂ = 0.273

θ̂ = 54.837

Gamma-Pareto(IV) α̂ = 819.030 457.67 921.34 0.077 0.581
γ̂ = 0.0637
ĉ = 0.0935

Weibull-Pareto θ̂ = 54.4686 415.7771 837.5543 0.08553 0.2497

β̂ = 1.0522
ĉ = 5.5252

EW-P α̂ = 3.64483 414.7583 837.5166 0.0704 0.7266

β̂ = 0.40276

θ̂ = 9.35514
ĉ = 8.96530
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