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Abstract

In this paper we work in a SIRS model similar to the one given in
[5], we study its dynamics under different conditions, local and global
stability, and some type of bifurcation, no periodic orbits shows up.
Two examples are also provided in order to illustrate particular cases
of the general model, numerical implementation is performed to show
behavior of the particular model in each case.

Mathematics Subject Classification: 37N25, 92D25

Keywords: Epidemiological model, Stability, Bifurcation.

1 Introduction

The word epidemiology means the study of epidemics and epidemic diseases,
its main objective consists in research the distribution and causes of population
diseases. Even when during the first decades of past century most of the efforts
were made only to the study epidemic and pandemic diseases nowadays this
whole picture has changed dramatically since their methods and principles are
used to attack other type of diseases and health conditions as well ([4, 7, 8]).

One of the most important mathematical tools used to model real life sit-
uations are differential equations, the type of model we address here is known
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as SIRS (Susceptible, Infective, Recovered individuals respectively), this ap-
proach assumes the disease remains in the population for large period of time
and part of the recovered populations turns back to be susceptible again, fur-
ther it also suppose newborns are also susceptible.

The phenomenon we study here is describe by a set of three differential
equations involving variables, depending on time, S, I, andRmentioned above.

2 Preliminary Notes

The model we consider here is inspired in [5] and given as

S ′ = B (N) + γR− bS −H (I, S) IS

I ′ = H (I, S) IS − (b+ v) I (1)

R′ = vI − (b+ γ)R.

We assume that all newborn individuals are susceptible, and that all coeffi-
cients are positive; S represents susceptible individuals, I the infected and R

the recovered ones; H(I, S) is the incidence rate per infective individual, b is
the per capita death rate, γ is the per capita rate of loss of immunity, v is
the per capita recovery rate, and B (N) is a C1 function which represents the
(non-negative) birth rate (a function of N = S + I + R). H(I, S) is assumed
to be differentiable; further, for all I, H(I, 0) = 0 ∀I and ∂H

∂S
> 0. The latter

condition reflects the biologically intuitive requirement that the incidence rate
be an increasing function of the number of susceptible.

By adding up the foregoing equations

S ′ + I ′ +R′ = B(N) − b(S + I +R).

So the behavior of the population is now described by

N ′ = B (N) − bN. (2)

Notice that solution of (2) exists locally and is unique. From now on we
assume existence of N0 > 0 such that B(N0)− bN0 = 0 and its asymptotically
stability. In case these hypotheses do not take place we will be in the presence
of extinction or uncontrollable growth of the population. In this paper we
restrict our study to the case S + I +R = N0 > 0.

For the sake of simplicity we normalize S, I and R, that is,

S =
S

N0
, I =

I

N0
, R =

R

N0
, b =

B(N0)

N0
.

So (1) now looks like

S
′

= b+ γR− bS −H(N0I,N0S)N0IS

I
′

= H(N0I,N0S)N0IS − (b+ v)I

R
′

= vI − (b+ γ)R,
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with S+ I+R = 1, and by setting H∗(I, S) = H(N0I,N0S)N0, above system
becomes

S
′

= b+ γR − bS −H∗(I, S)IS

I
′

= H∗(I, S)IS − (b+ v)I (3)

R
′

= vI − (b+ γ)R,

omitting bars and keeping in mind we are studding (3) on S + I +R = 1 now,
it is enough to consider the first two equations that look like

S ′ = (b+ γ) − (b+ γ)S − γI −H∗(I, S)IS (4)

I ′ = H∗(I, S)IS − (b+ v)I.

3 Main Results

Here we state and prove the main result of this research, numerical implemen-
tation is also included.

Theorem 3.1 Let Ω = {(I, S) : I ≥ 0, S ≥ 0, I+S ≤ 1}, then Ω is positive
invariant for the system (4).

Proof. Because I ′ +S ′ = b+γ− (b+γ)(I +S)−vI ≤ b+γ− (b+γ)(I +S),
then (I + S)′ ≤ (b+ γ)(1 − (I + S)).

Since H(I, 0) > 0 and ∂H
∂S

> 0 on Ω which is compact, so there exists h > 0
such that |H(I, S)| ≤ h on Ω.

Remark 3.2 System (4) can be written as

(

I ′

S ′

)

= f

(

I

S

)

, with

f

(

I

S

)

=













f1

(

I

S

)

f2

(

I

S

)













hence it is readily to check existence of P > 0

such that ||f || ≤ P . But then we may assure existence of global solutions of
(4).

In order to reduce number of parameters involved in (4) we perform the
following transformations

T = (b+ v)t, S(T ) = S((b+ v)t), I(T ) = I((b+ v)t), R(T ) = R((b+ v)t),

σ =
1

b+ v
, α =

γ + b

b+ v
, β =

γ

b+ v
.
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So (4) becomes

S ′ = α− αS − βI − σH∗(I, S)IS (5)

I ′ = σH∗(I, S)IS − I.

Where the derivatives are taken with respect to the new time T , we examine
the case in which incidence rate H∗(I, S) = kIp−1Sq−1 with p ≥ 1, q > 1,
k > 0 ([5]), and rewrite (5) as

I ′ = σkIpSq − I (6)

S ′ = α− αS − βI − σkIpSq.

3.1 Equilibria and Stability

We now study equilibria of (6) and their stability, these are given by E0 =
(0, 1), E1

e = (Ie, S
1
e ), and E2

e = (Ie, S
2
e ), with S1

e = 1
q
√

αkI
p−1

e

, S2
e =

− (1+β)
α

Ie + 1 and Ie > 0 variable, we may say then that depending on the
values of parameters there will be two positive equilibria (segment determined
by S2

e is secant to branch of S1
e in the first quadrant), only one equilibrium

(previous intersection is in one point) or no equilibrium (no intersection at all).
We denote such a point or points by Ee = (Ie, Se).

The above situation is depicted below (figure 1) with parameters α1=1.9,
β1=0.01, σ1=0.7, k1 = 2, p1 = 10 y q1 = 2, in this case two endemic (both
component of point are positive) equilibria show up.
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Figure 1: S1
e and S2

e
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The segment represents graphic of S2
e and the hyperbola S1

e , if we increase
p and keep fixed the rest of parameters the curve given by S1

e shows a similar
behavior to the one in the figure concerning the number of equilibria. In
conclusion, the possibilities for the equilibria are

1. Non endemic equilibria (E0 and no intersection of curves).

2. A non endemic equilibrium and one endemic (E0 and curves are tangent).

3. A non endemic equilibrium and two endemic (E0 and curves are secant).

Lemma 3.3 a) E0 is locally asymptotically stable.

b) Ee is locally asymptotically stable if

p < min

{

1 +
(β + 1)

α
q
Ie

Se

, 1 + α+ q
Ie

Se

}

.

Proof. Notice that Jacobian associated to (6) at (S, I) is given by

J(I, S) =

(

σkpIp−1Sq − 1 σkqIpSq−1

−β − σkpIp−1Sq −α− σkqIpSq−1

)

(7)

Therefore we get the first part by a direct application of Routh-Hurwitz
criterium and the last is just by checking that under the given hypothesis

det (J (Ee)) > 0, tr (J (Ee)) < 0.

Theorem 3.4 System (6) has no periodic orbits on Ω.

Proof. Let g(I, S) = 1
I
, I 6= 0, then

∂gf1

∂I
+
∂gf2

∂S
= −α − σkqIpSq−1 < 0,

so by Dulac’s Criterium ([3, 6]) there are no periodic orbits.
So far we have considered only p > 1, the case p = 1 it is worth to be

treated separately, in this case (6) becomes

I ′ = σkISq − IS ′ = α− αS − βI − σkISq (8)

and Jacobian

J (I, S) =







σkSq − 1 σkqISq−1

−β − σkSq −α − αkqISq−1





 . (9)
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Lemma 3.5 a) For σk ∈ (0, 1), E0 becomes locally asymptotically stable.

b) At σk = 1, E0 goes under a saddle node bifurcation.

c) For σk > 1, E0 is a saddle.

Proof. If λ1, λ2 are eigenvalues of J(E0) then

a) λ1 < 0 and λ2 < 0.

b) λ1 = 0 and λ2 = −α < 0.

c) λ1 · λ2 < 0.

Lemma 3.6 If σk > 1 then Ee is locally asymptotically stable in Ω interior.

Theorem 3.7 a) If σk ∈ (0, 1) then E0 is globally asymptotically stable
in Ω interior.

b) If σk > 1 then E0 is a saddle, its stable manifold coincides with S axis
and (Ee) is globally asymptotically stable in Ω interior.

Proof.

a) Under the given hypothesis I ′ < Sq − 1 < 0 therefore I ′(t, I0) < 0, t > 0
so

lim
t→+∞

ψ(t, ρ) = (0, 1),

where ψ(t, ρ) is any solution of (8) such that ψ(0, ρ) = ρ ∈ R2.

b) It is clear E0 is a saddle; an eigenvector corresponding to eigenvalue λ2

(given in previous lemma) is v = (0, 1)T where T means transposed,
of course the associated eigenspace is the set {(0, a)T, a ∈ R} which
coincides with S axis. The rest of the proof follows from Dulac’s criterium
(with g(I, S) = 1

I
) and Poincare-Bendixson theorem.

3.2 Examples

Finally we deal with two examples, one for [2] and the other one from [1]. The
firs one is given as

S ′ = −rSI − dS

I ′ = rSI − aI (10)

R′ = aI + dS.
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Because the first two equations are independent of the third one, so is enough
to work with these two, that is

S ′ = −rSI − dS (11)

I ′ = rSI − aI.

Our first result goes as

Theorem 3.8 R2
+ = {(S, I) ∈ R2 : S > 0, I > 0} is positively invariant for

(11) .

Equilibria of (11) are E0 = (0, 0) and E1 = (a
r
,−d

r
), but we disregard E1

since it does no have sense from biological point of view. Its jacobian at E0

is J(E0) =

(

−d 0
0 −a

)

, which means E0 es locally asymptotically stable.

Orbits of (11) are depicted below (Figure 2).

d = 0.6
a = 0.8

r = 0.4
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Figure 2: Susceptible vs Infected, r=0.4, d=0.6, a=0.8.

Proposition 3.9 System (11) has no periodic orbits in R2
+.

Proof. Just take g(I, S) = 1
I

and proceed as in pervious cases.
By using Poincare-Bendixson ([3, 6]) and foregoing proposition we assure

global stability of E0.

Theorem 3.10 Variable I reaches a maximum when S = a
r
.

Proof. If we plug S into second equation of (11) then I ′ = 0 at S = a
r

and
I ′′ < 0 at this value for S.

If we denote by Imax the maximum of I and integrate the second equation
of (11) with initial data S = S0 arbitrary but fixed, we get I ≡ I(t, S0, a) =
KerS0te−at, t > 0, which is increasing as a function of S0 and a decreasing one
as a function of a.
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In the SIR models considered so far immunity after recovery is permanent,
this is no always the case because it may decrease when time goes by, sometimes
virus mutation triggers the epidemic again and in this situation immunity is
not so strong. Temporal immunity can be describe by a SIRS model in which
transference rate from R to S is added to the model. The second model
incorporates temporal immunity and is given in [1] but it has not been study
in details. The model is given by

S ′ = −βSI + θR

I ′ = βSI − αI (12)

R′ = αI − θR,

where θ represents rate of loss of immunity and N , constant, is the whole size
of the population; in this case (12) becomes

S ′ = −βSI + θN − θS − θI (13)

I ′ = βSI − αI,

and as previous done, we see Ω = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ N} is
positively invariant for (13), the corresponding equilibria are P1 = (N, 0) and

P2 =
(

α
β
, θ

α+θ

(

N − α
β

))

. We point out that Nβ − α < 0 implies P2 is out

of first quadrant. The Jacobian at P1 is J(P1) =

(

−θ −(βN + θ)
0 βN − α

)

, with

eigenvalues λ1 = −θ < 0 y λ2 = βN − α. Notice that P1 is a saddle if
N > α

β
, locally asymptotically stable if N < α

β
and there exists a saddle node

bifurcation at N = α
β
.

In the same fashion

J(P2) =

(

−
(

θ
α+θ

(Nβ + θ)
)

−(α + θ)
θ

α+θ
(Nβ − α) 0

)

, det J(P2) = θ(Nβ − α)

and trJ(P2) = − θ
α+θ

(Nβ + θ) < 0. Therefore if N > α
β

then P2 is locally
asymptotically stable and there exists a saddle node bifurcation at N = α

β
.

Remark 3.11 Notice that either α > Nβ or α < Nβ point P2 moves
toward P1 as α → Nβ.

The incoming picture shows a bunch of orbit of (13) (Figure 3).
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Figure 3: Susceptible vs Infected, N = 1, β=0.8, θ=0.6, α=0.8.

Proposition 3.12 System (13) has no periodic orbits in R2
+.

Proof. Directly form Dulac’s Criterium with g(S, I) = 1
SI

.
Now we conclude global asymptotically stability of P1 (P2) under the con-

dition N < α
β

(N > α
β

respectively). The following picture depicts the case of

a saddle-node bifurcation of (13) (Figure 4).

Figure 4: Saddle node bifurcation at α = 0.8 = β.
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