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Abstract

The main goal of the paper is to propose a new approach to the

problem of approximation of solutions for differential problems. A stan-

dard approach is based on discrete approximations. We replace it by a

sequence of dynamic equations. In this paper, we investigate the con-

vergence of closed sets being domains of considered problems, i.e. time

scales. Then we apply our results for the study of an approximation

property of dynamic equations. Our results allow us to characterize

a set of solutions for differential problems as a limit of a sequence of

dynamic ones.

We point out a kind of convergence of time scales which is applicable

and most useful for the study of continuous dependence of solutions for

dynamic equations on time scales. It forms an approximation for the

differential equations by dynamic equations and allows us to extend the

difference approach in numerical algorithms. Finally, we study some

Cauchy problems without uniqueness of solutions, which are approxi-

mated by simple dynamic problems.
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1 Introduction

When in 1988, Stefan Hilger introduced the calculus of time scales (measure
chains) in order to unify continuous and discrete analysis, his supervisor Bernd
Aulbach pointed out the three main purposes of this new calculus: unification
of separately considered cases, some of their extensions and finally a discretiza-
tion of continuous problems. The first two goals are widely investigated. We
concentrate on the last one. Many results concerning differential problems
carry over quite easily to corresponding results for difference equations, while
other results seem to be completely different from their continuous counter-
parts. The study of dynamical systems should help us to understand such
a situation and to avoid proving results twice once for differential equations
and once again for difference equations. But in some cases the “continuous”
differential problem seems to be quite complicated, so the discretized version,
i.e. the difference or dynamic equation should be treated as an approximation
for an original one. Since it was known at the beginning of time scale calculus,
it is a little bit surprising that these kind of results are not intensively studied.
The difference equations are usually used as approximations of some differen-
tial equations, but in the more general context of dynamic equations it is not
well described. This is a basic step for numerical analysis on time scales.

Moreover, some mathematical models are considered for both continuous
and discrete versions: in biology ([20] or for population dynamics [29]), eco-
nomics ([2]) or in the control theory ([3]), for instance. In such cases, it was
proposed a unification for both approaches by using dynamical equations. If
there is a problem with solving such an equation, then some numerical proce-
dures are used.

If we have a mathematical model based on differential problem, we replace
a derivative by some difference scheme, so we approximate it. We propose
another approach. We approximate the domain of the considered equation
(by a time scale) and we solve exactly the problem on the approximated set.
In this paper we describe the method how to construct a sequence of sets
convergent to original domain. The construction of approximated problem is
based on time scale calculus, so we consider the convergence of sequences of
time scales. Instead of different numerical schemes we propose to consider
sequences of time scales convergent to the original domain of the problem. In
the paper we present a characterization of such a convergence allowing us to
extend standard procedures. Recall, that discrete time scales (similar to the
usual approach) can be also considered (cf. Section 5.1).

The main idea is clear: by taking a time scale T which is “close”, in some
sense, to R (or another time scale S) we expect that the solution (if exists) of
one problem are “close” to solutions for the second one. In fact, we will expect
the convergence of sets of solutions when time scales are convergent (continuous
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dependence of solutions on a time scale). Let us note that the convergence of
times scales can replace the previously proposed ([1]) approach: bot problems
should be considered on a set of common points for the “target” time scale and
an approximated one. The paper is supplemented by an overview of earlier
attempts of this type allowing us to carry out the comparative discussion. Let
us stress, that the main goal of this paper is to explain the idea of convergence
of domains for approximated problems and to compare it with earlier ones. It
is the reason for emphasizing on examples and comparative lemmas.

Our main purpose is to define the convergence which is “proper” in the
context of dynamic equations. Because such a kind of results is not restricted
to dynamic equations, we will compare the proposed algorithm with existing
results, we will extend them and unify previously introduced types of conver-
gence. Thus we will apply our scheme of proofs for some problems, even for the
case which is not considered in difference equations, namely for the problem
for which lack of uniqueness of solutions.

There are some earlier results of this type (see [1, 13, 14, 17, 16, 23, 31]).
Unfortunately, almost all of them are devoted to study the case of compact time
scales and the convergence is considered in the sense of the Hausdorff distance
[1, 17, 23, 18]. This is a strong requirement and cannot be extended to the case
of arbitrary time scale. There are also another approaches ([13, Definition 22]
or when the convergence is taken with respect to the Fell topology [14, 31, 32]).
Nevertheless, it is a little bit surprising that they are introduced independently
on existing types of convergence in multivalued analysis. We compare the
convergence in some topologies defined on families of closed subsets of a space
R and we propose to take the “best” one. In our opinion, the convergence
in the sense of Kuratowski as a “proper” choice. Our comparison result for
convergence of sets allows us to treat the previous results in a unified manner
(at least for the case of time scales). We indicate some new tools allowing us to
investigate the convergence of time scales associated with our approximation
problem. This paper is complemented by a series of illustrative examples.

We focus on some special time scales, allowing us to solve dynamic prob-
lems. In particular, we are interested in covering difference equations (usually
Euler scheme with possibly variable time steps zn+1 = zn + hnf(zn)), but we
are not restricted only to this case and we investigate the general case.

2 Time scales and dynamic equations

In this section we briefly recall some basics about time scales and to introduce
some notation (see [10] and references therein).

A time scale T is a nonempty closed subset of real numbers R, with the
subspace topology inherited from the standard topology of R. By R+ we will
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denote the interval [0,+∞).
The three most popular examples of calculus on time scales are differential

calculus, difference calculus, and quantum (q-difference) calculus i.e., when
T = R,T = N and T = qZ = {qt : t ∈ Z} ∪ {0}, where q > 1.

Definition 2.1. The forward jump operator σ : T → T and the backward
jump operator ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t} and
ρ(t) = sup {s ∈ T : s < t}, respectively.

We put inf ∅ = supT (i.e., σ(M) = M if T has a maximum M) and
sup ∅ = inf T (i.e., ρ(m) = m if T has a minimum m).

The jump operators σ and ρ allow to classify the points in time scale in the
following way: t is called right dense, right scattered, left dense, left scattered,
dense and isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t)
and ρ(t) < t < σ(t), respectively.

The mapping µ(t) = σ(t) − t will be called the graininess of T.

Definition 2.2. Let f : T → X and t ∈ T. Then define the ∆-derivative
f∆(t) to be the element of X (if it exists) with the property that for any ε > 0
there exists a neighbourhood of t on which

∥

∥f(σ(t)) − f(s) − f∆(t)[σ(t) − s]
∥

∥ ≤ ε|σ(t) − s|.

Remark 2.3. Concerning the ∆-derivative, it turns out that

(i) f∆ = f ′ is the usual derivative if T = R,

(ii) f∆ = ∆f is the usual forward difference operator if T = Z, and

(iii) f∆ = ∆qf is the q-derivative if T = qN0 = {qt : t ∈ N0}, q > 1.

The last property is useful in our consideration:

Lemma 2.4. ([10]) If the ∆-derivative exists at some point t ∈ T, then
x(σ(t)) − x(t) = µ(t) · x∆(t).

3 Convergence of time scales

A very basic question is to discuss and then to define a method for the conver-
gence of time scales, which is useful in our approach. It means, that we need
to choose a kind of convergence allowing us to construct some approximated
solutions for a given differential problem.

On a family of all closed sets there are many topologies (see [4, 30]). Our
approach is based on the fact that for a given time scale T, we choose their
approximation T1 in such a way to solve the problem on T1 and to treat
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this solution as an approximated solution for the original one. The is one
natural requirement - the existence of solutions on T (but not necessarily the
uniqueness of solutions). On the other hand, it means that we construct step-
by-step a sequence of time scales (rather than the net). Thus the desired
“nice” topology of convergence of time scales should be either metrizable or
we need to control only sequences of sets. In earlier papers a few topologies
were considered. However, we prefer to check sequences of time scales and we
will concentrate on the sequential convergence.

Let us present a short historical background. We need to collect all the
related results justifying our choice of convergence.

A starting point for a discussion should be the Hausdorff metric (see [4], for
instance). By Cl(X) we will denote a family of closed subsets of a metric (X, d).
Define a distance function between a point and sets: dist(a, B) = infb∈B d(a, b).

For X, Y ∈ Cl(X) let us define the following quantities:

e(X, Y ) = sup
x∈X

dist(x, Y ) = sup
x∈X

inf
y∈Y

d(x, y) = inf{r > 0 : X ⊂ B(Y, r)},

and
h(X, Y ) = max{e(X, Y ), e(Y,X)} .

By convention, e(∅, Y ) = 0. The quantity e(X, Y ) is called the excess (or:
non-symmetric distance) between X and Y while h(X, Y ) is said to be the
Hausdorff distance between X and Y .

Unfortunately, for unbounded closed subsets of X , their Hausdorff distance
can be equal to +∞ (h([−n, n],R) = +∞ for any n ≥ 1, for instance), so we
may exclude this convergence from our consideration (at least for unbounded
time scales) (cf. also [14, Section 3]. It is too restrictive type of convergence.
Note that for compact time scales it was proposed as a main tool for such a
kind of results (see [1, 17, 23]).

Nevertheless, we should be very careful with conclusions, because even
equivalent metrics can give us different hyperspaces of closed sets (cf. a version
for the truncated metric, non-equivalent to euclidean metric on R in [31]) and
then such a kind of results strictly depends on a considered metric!

Another type of convergence was proposed in [13, Definition 22]. It was
observed by the authors that it is not the optimal choice. This definition is
based on some ideas taken from the Kuratowski limit of sets, but it is not in a
correct form. Note that in this sense we have no convergence for Tn = [−n, n]
(condition (3) is not satisfied) or for Tn = [ 1

n
, 1 − 1

n
] (not a closed set cf. the

definition of LiAn below). We will discuss the Kuratowski convergence too.

In [14, 31, 32] the Viétoris topology was investigated, so we are able to
exclude this topology from our considerations (see [4]). Note that on a compact
space (for bounded time scales, for instance) this topology agree with the Fell
topology ([30]) which will be described below.
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Finally, the Fell topology should be considered ([14]). This topology is
generated by two families of sets. For each subset A of X define

A− = {B ∈ 2X : B ∩A 6= ∅},

and
A+ = {B ∈ 2X : B ⊂ A}.

The lower Fell topology on 2X is generated by subbasis of open sets of the
form W− where W is an open subset of X . The upper Fell topology on 2X

is generated by subbasis of open sets of the form C+ where C has compact
complement in X .

Outside the class of locally compact spaces this topology cannot be useful
in our investigations (it is not a Hausdorff topology, in general, so we can
expect nets convergent to two different limits). Fortunately, all time scales
are obviously locally compact (which is not true for metric spaces, cf. [14,
Theorem 4.6]).

It is hard to use such a definition for the investigation of convergence of
sets. Nevertheless, we have a very interesting characterization:

Proposition 3.1. ([4, Corollary 5.1.7] or [14, Theorem 5.3]) A sequence of
closed sets An in R is convergent to A under the Fell topology if and only
if for all compact subsets K ⊂ R we have limn→∞ e(K ∩ A,An) = 0 and
limn→∞ e(K ∩An, A) = 0.

In the case of A = R the second condition is superfluous (as it is always
satisfied). This proposition allows us to check the convergence in the Fell
topology in the language of excesses between the sets, which will be used
later. This means also that the convergence in this topology is relatively easy
to be checked (cf. [14, Section 4.2]) and it was suggested as the best choice
for the considered problem (cf. also [1, 13, 14, 31, 32, 27]). However, we will
show how to simplify this procedure.

Some properties and examples of convergent time scales can be found in
[14, 31, 32] or (in an indirect form) in [1].

It seems to be necessary to investigate the convergence in yet one more
sense, namely the Kuratowski (or: Kuratowski-Painlevé) convergence. Before
describing this kind of convergence let us note that it is strictly related to some
upper and lower semi-continuity properties of multifunctions (in the multival-
ued analysis). Because the set of solutions form a multifunction, it seems to be
a very natural approach. Let us mention, for instance, a paper [15] in which
the convergence of variational inequalities is treated by this method. In the
context of time scales similar idea of convergence of attractors can be found
in [24] with the Hausdorff distance of time scales.

Define the so-called upper and lower limits of a sequence An ⊂ X of sets.
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Definition 3.2. ([6, 26] or [28, Definition 1.9]) Let (An) be a sequence of
closed sets in a metric space X. Then the Kuratowski limit inferior LiAn is
the set of points y ∈ X each neighbourhood of which meets all but finitely many
sets An. By the Kuratowski limit superior LsAn we will mean a set of all points
y ∈ X each neighbourhood of which meets infinitely many sets An.

If LiAn = LsAn = A we simply write LimAn = A and we will say that (An)
is convergent to A in the sense of Kuratowski. The Kuratowski convergence
is not topological (Mrówka’s Theorem, see [28, Proposition 2.2]), but in an
interesting case of X = R we have a topology associated with this kind of
convergence (since this is a Hausdorff and locally compact space, cf. [5] and
[28, Corollary 2.5]). It is useful to consider sequences of time scales and we do
not investigate the nets. This kind of convergence is known ([13, 14, 31]), but
we need to clarify the problem. We can use also the following characterizations
of the Kuratowski limits:

LsAn = {x ∈ X : lim inf
n→∞

dist(x,An) = 0},

LiAn = {x ∈ X : lim
n→∞

dist(x,An) = 0}
and

LsAn =

∞
⋂

n=1

∞
⋃

k=n

Ak and

∞
⋃

n=1

∞
⋂

k=n

Ak ⊂ LiAn.

First, the Fell topology on a family of closed subsets of a space X is metrizable
iff X is locally compact and second countable [4, Theorem 5.1.5]). As X = R

satisfies both conditions we are able to restrict our attention to sequences of
time scales. This is the reason for which just sequences are used in [14, Section
5.3]. For a general version (with nets) of Theorem 5.3 in [14], see Corollary
5.1.7 in [4].

Now, it should be clear that both the convergence in the Fell topology, as
well as the Kuratowski convergence seem to be adequate for our problem. In
our opinion, the last one appear to be more natural and easier (cf. our example
below) and we recommend its use. In the case of an arbitrary topological space
X denote by τF the Fell topology and by τK the Kuratowski topology. Indeed,
we have the following:

Lemma 3.3. (cf. [30, Theorem 2.6]) For an arbitrary topological space X
we have: τF ⊂ τK.

However, in the interesting case X = R, we get the following result (cf.
also [30, Theorem 1.1]):

Lemma 3.4. ([4, Theorem 5.2.10] or [28, Proposition 2.4]) For a locally
compact space X, a sequence of closed sets is convergent in τF if and only if
it is convergent in τK and the limits coincides.
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We need to compare an approach from [14, Theorems 5.2, 5.3 and 5.5] with
our. Let us present a special case of the above lemma. It allows us to indicate
the role of compact sets in the mentioned results.

Proposition 3.5. ([4, Proposition 5.2.5]) Consider a sequence of closed
sets (An) in a locally compact metric space X. The following are equivalent:

• [K1] A ⊂ LiAn and for each compact subset K of X, we have Ls(K ∩
An) ⊂ A,

• [K2] An is convergent in the Fell topology to A.

Note that for compact spaces S the Fell topology is equivalent with the
Hausdorff topology ([4, Corollary 5.1.11]). Thus for bounded time scales the
Hausdorff distance is still in use. Earlier results on continuous dependence
were proved for time scales “close” to each other with respect to the Hausdorff
topology ([1, 17, 23]), but thanks to this remark, they can be interpreted as
particular cases of our treatment.

The readers more interested on some topologies sequentially equivalent to
the Kuratowski convergence are referred to the interesting papers [8, 9]. Very
interesting results of Arzela-Ascoli type for sequences of sets convergent in
the sense of Kuratowski can be found in [6, 7]. For a survey about different
topologies on families of closed sets we refer to [4] or [28].

We need to solve one more problem: if there exists sequence of time scales
convergent in the sense of Kuratowski to a fixed one? We have very interesting
result:

Proposition 3.6. ([4, Theorem 5.2.12]) Let X be second countable Haus-
dorff space and let An be a sequence in Cl(X). Then (An) has a subsequence
which is convergent in the sense of Kuratowski.

Note that clearly R satisfies both assumptions from the above result. We
need to construct such a sequence of time scales (Tn) in such a way to easily
solve the considered problem on each Tn. Such solutions will be treated as
approximated solutions for the original one - as will be described later.

Let us conclude this section by recalling, that a very interesting charac-
terization for the Kuratowski convergence (and other types of convergence of
sets) in terms of distance functions can be found in [6, Section 4] or [7].

3.1 Difference approximations

In this part we will compare different types of convergence of time scales by
considering some of them being of particular interest. The most important
one is Tn = hn · Z+ (the so-called Eulerian time scales cf. [19]). If hn → 1,
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then Tn → Z+ ([14, Lemma 4.3]) in the Fell topology. We will study the case
hn → 0, which seems to be more interesting. In particular, we investigate the
difference approach for differential problems.

It is intuitively expected that if hn → 0, then this sequence should be
convergent to R+ (cf. [13, Section 6]. We will check this property for some
different topologies and then we will compare the convergence of the obtained
sequences for considered topologies. This idea was exploited in [13, Example
14].

Now, we will check the convergence in details. This will explain our main
convergence theorem and our motivations.

Lemma 3.7. Put Tn = 1
10n

· Z+ and T = R+ = [0,+∞).
[H] (Tn) is not convergent to T in the Hausdorff metric.
[DHOV] (Tn) is not convergent to T in the sense of [13, Definition 22].
[F] (Tn) is convergent to T in the Fell topology.
[K] (Tn) is convergent to T in the sense of the Kuratowski convergence.

Proof: We use the previously considered properties of convergent se-
quences of sets..

• [H] The Hausdorff distance: h(Tn,T) = +∞, so it is not a convergent
sequence in the Hausdorff metric.

• [DHOV] (In the sense of [13, Definition 22]) It is clear that Tn form an
increasing sequence of sets (note that for the case hn = ( 1

πn this is not
true!). But the condition (3) [13, Definition 22] is not satisfied:

⋃

∞

n=1 Tn

is not equal T. There is no convergence of Tn in this sense.

• [F] The Fell topology: it is clear that we can use Proposition 3.1 instead
of the direct use of the definition, which simplify the proof. This will be
also one of our goals of the paper - to indicate equivalent conditions for
the Kuratowski (or: Fell) convergence. This will made convergence easy
to be checked.

Take an arbitrary compact set K ⊂ R+. Then K∩T = K∩R+ = K and
e(K ∩T,Tn) = 1

10n
. Finally, limn→∞ e(K ∩T,Tn) = 0. We need to check

the second condition. For arbitrary sets A,B, we have e(A,B) = 0 ⇐⇒
A ⊂ B and K ∩ Tn ⊂ T, we get e(K ∩ Tn,T) = 0 for any n. Note that
K ∩ Tn is a finite set. By Proposition 3.1 this sequence is convergent
with respect to the Fell topology to R+.

To show some advantages of the result by Esty and Hilger [14] and our
Theorem 4.1 let us present now a direct proof derived directly from the
definition of the Fell topology. Such results was presented in [14, Lemmas
4.1-4.5], for instance.
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Let V = R+ ∈ V +. Then R+ ⊂ V and R+ = V . Thus for arbitrary
n ∈ N, we Tn ⊂ R+ ⊂ V . Whence all time scales Tn belong to V + and
we have then this sequence is convergent in the upper Fell topology to
R+.

Consider the second case. For open sets U1, U2, ..., Uk (k - finite) let R+ ∈
U−

1 ∩ U−

2 ∩ ...
... ∩ U−

k . For each i = 1, 2, ..., k choose an arbitrary point ui ∈ Ui.
As Ui are open we can separate these points by choosing numbers δi > 0
such that the balls centered at ui with radius δi are subsets of Ui. Put
δ = mini=1,2,...,k δi. As 1

10n
is convergent to zero, then there exists a

number N ∈ N such that for all n > N we have 1
10N

< δ.

Then for all n > N and arbitrary i = 1, 2, ..., k ui + 1
10n

≤ ui + δ ∈ Ui.
Finally for such indices n, we have Tn ∈ U−

1 ∩ U−

2 ∩ ... ∩ U−

k and (Tn) is
convergent to R+ in the lower Fell topology. We are done.

• [K1] Let us now check the convergence in the Kuratowski topology. Take
an arbitrary x ∈ R+. Denote by ent(x) an integer part of x. Then
ent(x) ≤ x ≤ ent(x) + 1, whence

ent(10nx)

10n
≤ x ≤ ent(10nx) + 1

10n

for any n. Because both ent(10nx) and ent(10nx)+1 are integer numbers,

we get ent(10nx)
10n

, ent(10nx)+1
10n

∈ Tn. It is clear that they are both converging
to x (as decimal approximations of x). Thus x ∈ LimTn and finally
T = LimTn.

• [K2] It is not a problem to investigate the Kuratowski convergence by
using the properties of this limit. In our case we have Tn ⊂ Tn+1 ⊂
R+. To simplify the proof, we use some known properties of increasing
sequences of sets with respect to the Kuratowski limit and then LimTn =
⋃

∞

n=1 Tn. Since the closure is taken with respect to the metric topology,
it is also a sequential closure and we need only to prove that the last
set is equal to be R+. Indeed, take an arbitrary nonnegative number
x ∈ R+. Note that the sequence constructed above is convergent to x.
Thus sequential closure (as well as the topological one) of

⋃

∞

n=1 Tn is
equal to R+.

3.2 Some convergent sequences of time scales

Let us start with the lemma, which will clarify the motivation of our result. It
will be directly used in our Example 5.1, clarifying our main result.
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Lemma 3.8. For an arbitrary sequence (hn) of positive numbers convergent
to 0 a sequence of time scales of the form Tn = hn · Z+ converge to R+ under
the Fell (or: Kuratowski) topology.

Proof: It suffice to note that for an arbitrary sequence hn → 0 as
n → ∞ and for sufficiently big indices n, there exists a number N ∈ N with
1

10N
≤ hn ≤ 1

10N−1 . This means that we can repeat the proof from the above
subsection.

Example 3.9. It is a good place to stress on the role of the Kuratowski
convergence for our type of problems.

• [S1] (cf. [14, Lemma 4.1]) Tn = [−n, n] is Kuratowski convergent to
R. Indeed, this is an increasing sequence of sets and then LimTn =
⋃

∞

k=1 Tk = R.

• [S2] (cf. [14, Lemma 4.3]) Tn = (1− 1
n
)·Z It is not an increasing sequence,

but
⋂

∞

k=n Tk = Z so is
⋃

∞

n=1

⋂

∞

k=n Tk =
⋃

∞

n=1 Z = Z. Moreover, for any n,
⋃

∞

k=n Tk = Tn and then
⋂

∞

n=1

⋃

∞

k=n Tk =
⋂

∞

n=1 Tn = Z. The Kuratowski
limit exists and LimTn = Z.

• [S3] ([14, Lemma 4.4] without the proof) Let (hn) be an arbitrary in-
creasing sequence of positive numbers convergent to 1 (in case of hn ≥ 1
we have nothing to do). Consider Tn =

⋃

z∈Z+
[z, z + hn]. Then it is an

increasing sequence of sets and LimTn =
⋃

∞

k=1 Tk = R+.

• [S4] Finally, maybe the simplest, but an illustrative example. Let Tn =

{1, 1
2
, ..., 1

n
}. For any n ∈ N,

⋃

∞

k=n Tn = {0} ∪ { 1
n

: n ∈ N} and
⋂

∞

n=1

⋃

∞

k=n Tn = {0} ∪ { 1
n

: n ∈ N}. Similarly
⋂

∞

k=n Tn = Tn and
⋃

∞

n=1

⋂

∞

k=n Tn = { 1
n

: n ∈ N} and then the sequence is Kuratowski con-
vergent to {0}∪{ 1

n
: n ∈ N}. The proof based on limits and accumulation

points of Tn is also quite obvious.

Note that the examples considered in [31, Section 3], i.e. for Tn = [0, n]
and Tn = Z + 1

n
are obvious and the sequences are convergent to R+ and Z,

respectively.

We have also one more, very natural, example of a sequence of time scales
justifying our choice of a type of convergence.

Example 3.10. Let us recall a construction of a Cantor set K . We will
show that this set is, in fact, the Kuratowski limit of time scales Cn used
in a classical construction. Recall that K is closed, compact, perfect and
uncountable. The Cantor set K is defined as

K :=

∞
⋂

k=1

Ck = C0 \
∞
⋃

n=1

Rn, (1)
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where R1 := (1
3
, 2
3
). We define C1 as the two remaining pieces

C1 := C0 \R1 =

[

0,
1

3

]

⋃

[

2

3
, 1

]

. (2)

Now repeat the process on each remaining segment, removing the open set

R2 :=

(

1

9
,
2

9

)

⋃

(

7

9
,
8

9

)

(3)

to form the four-piece set

C2 := C1 \R2 =

[

0,
1

9

]

⋃

[

2

9
,

1

3

]

⋃

[

2

3
,

7

9

]

⋃

[

8

9
, 1

]

. (4)

Continue the process, forming C3, C4, . . . Note that Ck has 2k pieces.
Because the sequence (Cn) is obviously decreasing, by the properties of the

Kuratowski limit we have LimCk =
⋂

∞

k=1Ck =: K.

Some time scales should be even defined as Kuratowski limits of (very
natural) time scales (”fat Cantor sets”, for instance). The direct proof of
convergence of Ck with respect to the Fell topology is left to the reader. As a
consequence we obtain the following result:

Lemma 3.11. A Cantor set K is the Kuratowski limit of a sequence of time
scales Cn taken from the classical construction.

4 Convergence conditions

As a conclusion of our considerations, let us present a theorem which will be
useful for studying the convergence of time scales. This idea is suggested by
Esty and Hilger [14] in the case of T = R. We stress on applicability of such
kind of results, we collect some related results and we present a general version.
This seems to be also a unification tool for many problems considered in the
context of differential equations or inclusions.

We are in a position to formulate some equivalent conditions allowing us
to investigate the convergence of time scales. Now let us summarize all our
previous results.

Theorem 4.1. Let Tn,T be a sequence of time scales. The following are
equivalent:

(F) Tn is convergent to T with respect to the Fell topology,

(E) For any compact set K of R, we have limn→∞ e(K ∩ Tn,T) = 0 and
limn→∞ e(K ∩ T,Tn) = 0,
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(K) Tn is convergent to T in the sense of Kuratowski,

(D) For any compact set, K we have {x : lim infn→∞ dist(x,K∩Tn) = 0} ⊂ T

and T ⊂ {x : limn→∞ dist(x,Tn) = 0}.
Proof: (F ) ⇐⇒ (E) is proved in [14, Theorem 4.6].

The equivalence of (F ) and (K) is established in Lemma 3.4.

(K) ⇐⇒ (D) follows from the definition of the Kuratowski convergence
and our Proposition 3.5.

If T = R then obviously some of the above conditions can be simplified
(they are trivially satisfied, cf. [14, section 5.2]). For compact times scales the
Hausdorff distance can be used to express such a convergence, but it is covered
in (E) (see also [1], [17], [23]).

Let us explain the role of compact sets K in our condition (D) by recalling
the following lemma (adapted from [6, Lemma 3.4]):

Lemma 4.2. Assume, that a sequence (fn) of distance functions fn(x) =
dist(x,Tn) is pointwise convergent to a finite-valued function f . Then Tn is
convergent in the sense of Kuratowski. If a function f is continuous then the
limit T = {x : f(x) = 0}.

Example 4.3. Let us stress on a role of compactness of sets in the above
conditions. Let Tn = {0, n}. It is clear that the sets of all limit points and
accumulation points are both the same, namely {0}, so it is a Kuratowski
convergent sequence to T = {0}. However, e(Tn,T) = dist(n, {0}) = n is not
convergent to 0. But for an arbitrary compact set K we have K ⊂ [−N,N ]
and then K ∩ Tn = {0} for n > N . Then e(K ∩ Tn),T) = dist(0, {0}) = 0 for
such n and then condition (E) is satisfied.

It is clear that if possible, we can use some parameters specific to this kind of
sets for the investigations of convergence of time scales (cf. the condition (M)).
Especially, the convergence of graininess or forward jump functions seem to be
useful. As will be indicated in the next example we should be very careful. We
present some conditions related to properties of time scales, as well as of points
in time scales. Following Esty and Hilger [14] let us introduce the following
parameter:

Definition 4.4. ([14]) Let a, b ∈ R. If inf T ≤ a ≤ b ≤ supT, then we
define µa,b(T) = max{µ(t) : [t, σ(t)] ∩ [a, b] 6= ∅} and +∞ if the last set is
empty.

Are the properties of points important? We need to adapt the notion
of almost uniform convergence to the case of time scales. By considering a
compact set K ⊂ R we have TK = T ∩K is closed, so is a time scale. We
denote the graininess on such a time scale by µK .
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Definition 4.5. Let Tn,T be a sequence of time scales equipped with the
graininess functions µn and µ, respectively. We will say that a sequence (µn)
is almost uniform convergent to µK if for each compact subset K ⊂ R a se-
quence of truncated graininess functions µK

n is uniformly convergent to µK i.e.,
supt∈Tn∩K

µK
n is convergent.

This definition allows to reject from considerations some “pathological”
points.

Example 4.6. Let Tn = {−n, 0, 2}. Put a = −1
2
≥ inf Tn and b = 1 ≤

supTn. Then the set of all points t ∈ Tn (say Sn) satisfying the condition
[t, σ(t)] ∩ [a, b] 6= ∅ is just {−n, 0}. This means that supt∈Sn

µ(t) = n (cf. [14,
Section 5.3]).

It is easy to check that TN converges to T = {0, 2} in the Kuratowski (or:
Fell) topology. But supt∈T µ(t) = 2. An estimation of limn→∞ supt∈Sn

µ(t) by
supt∈T µ(t) is not feasible. The problem lies in a fact of divergent sequence
(−n).

Now, let us check the almost uniform convergence. For any fixed compact
set K, there exists N ∈ N such that Tn ∩K = {0, 2}. Thus µK

n (0) = 2 = µ(0)
and µK

n (2) = 0 = µ(2) and then for an arbitrary compact K, (µK
n ) is uniformly

convergent to µ.

Example 4.7. In [14, p. 1015] a sequence of time scales Tn = (−∞,− 1
n
]∪

{n} is indicated as (Fell) convergent. It is true, but this is a good example
to show the difference between original graininess µn on Tn and a truncated
µK
n for compact set K. It is clear that supt∈Tn

µn(t) = n + 1
n
→ ∞, but this

sequence is almost uniformly convergent to µ. Note that µn(− 1
n
) = n+ 1

n
, but

µK
n (t) = 0 for each t ∈ Tn (because σ(− 1

n
) = − 1

n
on Tn ∩K)!

We are in a position to discuss some sufficient conditions for convergence
expressed in terms of the above definitions (cf. [14]) (it is possible for points
in t ∈ Tn ∩ T).

Theorem 4.8. For t ∈ Tn ∩ T consider the following conditions

(M) limn→∞ µn(t) = µ(t) and the convergence is almost uniform on T,

(M2) For all a < t < b we have limn→∞ µa,b(Tn) = µa,b(T),

(M3) limn→∞ µn(t) = µ(t),

(S) for an arbitrary t 6= supT we have limn→∞ σn(t) = σ(t).

Then (M2) ⇒ (M) ⇒ (S) and (M2) ⇒ (M) ⇒ (M3). If for all n and
all compact subsets K ⊂ R we have Tn ⊂ T and supt∈K∩Tn

µK
n (t) → 0 , then

(M) ⇒ (E) (or any equivalent condition).
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Proof: For any compact set K, there exists an interval [a, b] such that
K ⊂ [a, b] and then

0 ≤ sup
t∈K∩Tn

µK
n (t) ≤ sup

t∈[a,b]

µn(t) ≤ µa,b(Tn).

By applying (M2) we get (M). Since singletons are compact, obviously (M) ⇒
(M3).

Because µn(t) = σn(t)−t and by the condition (M), µn(t) → µ(t) = σ(t)−t
as n → ∞, then σn(t) → σ(t) (a Hausdorff space), so we get (S).

It remains to prove, that under an additional assumption we have the
implication (M) ⇒ (E). Thus assume that for all n and all compact subsets
K ⊂ R, we have Tn ⊂ T and supt∈K∩Tn

µK
n (t) → 0.

Observe that K ∩ Tn ⊂ Tn ⊂ T. Then e(K ∩ Tn,T) = 0.
To prove the second condition in (E), fix an arbitrary x ∈ K. Consider the

set L of all points t from Tn such that t ≤ x and R as the set of all points t
from Tn such that x ≤ t. Either L has its maximum or R has its minimum.
Note that we can omit the points x for which such sets are empty (there are
no relations with the function µK

n ).
Assume that L is nonempty and has a maximal point (other cases can be

studied by a similar manner). Put τ as its supremum. Thus σn(τ) ∈ Tn is
bigger than x. We have τ ≤ x ≤ σn(τ). Denote by a = σn(τ) − x and by
b = x− τ . As min(a, b) ≤ a+b

2
we get

min(a, b) ≤ (σ(τ) − x) + (x− τ)

2
=

σn(τ) − τ

2
=

µn(τ)

2
.

If τ = supTn ∩ K, then x = τ and then µn(τ) = 0. Otherwise we have an
immediate estimation µn(τ) ≤ supt∈K∩Tn

µK
n (τ) =: αK

n . Then at least one of
the points τ and σn(τ) lies in the ball B(x, αK

n /2) and then Tn∩B(x, αK
n /2) 6=

∅. But x is arbitrarily chosen, so e(K,Tn) ≤ αK
n /2.

Since e(K ∩ T,Tn) ≤ e(K,Tn) we get

0 ≤ e(K ∩ T,Tn) ≤ αK
n

2
.

By (M), αK
n → 0 as n → ∞ and limn→∞ e(K ∩ T,Tn) = 0. The condition (E)

is proved. Due to Theorem 4.1 we can take an arbitrary equivalent condition.
The case when R has its minimum can be studied by similar manner, so let us
omit the details.

Note that the additional condition mentioned above is satisfied for T = R

or, for increasing approximations for time scales of the type [a, b] or [a,∞),
for instance. It is well-known that for compact time scales we have some
equivalences (but let us recall Example 4.6 for a general lack of equivalence).
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Corollary 4.9. ([14, Theorem 5.2]) If T = R in Theorem 4.1, then each of
the equivalent conditions implies that limk→∞ inf Tk = −∞ and limk→∞ supTk =
+∞.

Remark 4.10. Note that such a set of conditions is very useful when we
study different sequences of time scales. As an example may serve the Lemma
3.11, where the direct use of the Kuratowski convergence allows one to check
the convergence. However, a calculation of graininess for both the Cantor set,
as well as particular steps in the construction require more efforts.

Remark 4.11. Let us note that a suggested choice for the convergence of
time scales with respect to the Fell topology seems to be proper. However, it is
worthwhile to study such problems by the well-known methods from multival-
ued analysis. It is much simpler to study this convergence via the Kuratowski
convergence. Moreover, we obtain a detailed answer to [31, Conjecture 3.3]:
positive in the case of time scales, nonetheless negative for an arbitrary space
X .

We still have an open problem: at least for some time scales T an upper
(LsAn = A) or lower (LiAn = A) Kuratowski convergence seems to be sat-
isfactory, when we study approximated solutions on T. How to characterize
such time scales?

Since our main goal of the paper is to characterize all “proper” kind of
convergence of sequences of time scales and to give as detailed theory as possi-
ble we restrict ourselves to relatively simple examples of applications. We are
motivated by some studies on dynamic approximations of differential problems
(see the next Section). For a more detailed theory about continuous depen-
dence of solutions of dynamic problems on their domains (time scales) we refer
the reader to [12].

5 An example

It seems to be very hard to imagine a general “convergence” result, i.e. Tn →
T in the Kuratowski (or any different) sense should implies convergence of
appropriate sets of solutions for an arbitrary dynamical equation. But even
particular cases seems to be interesting and realizing one of the main goals of
dynamic equations, as well as for difference equations. Recall that the goal of
this paper is to check what happens when one considers a dynamical equation
on a time scale near to the original domain of the problem.

Let us consider now a case of the Cauchy problem without uniqueness of
solutions. We are able to show how to apply our approach in such a case.

It was suggested many times that this seems to be most interesting case
when we deal with such a property of dynamic equations. Note that it is an
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initial requirement for difference treatment of differential problems. Surpris-
ingly, the proposed approach was never investigated. We study the dynamic
problem with sufficiently regular right-hand side, i.e. with function f satisfy-
ing all conditions for the Peano theorem on time scales (cf. [10, 11], [22] and a
correction in [21]) - is rd-continuous and continuous with respect to the second
argument. The existence of approximated solutions is therefore guaranteed.
However lack of uniqueness of solutions restricts the use of classical numerical
methods.

To be familiar with earlier investigation we start with classical differential
problem. However, we will also present more general result.

Example 5.1. A) Consider the following problem on R+:

x′(t) = 2
√
x , x(0) = 0. (5)

It is well known that it has a trivial solution x(t) ≡ 0 and a family of solutions
indexed by C ≥ 0 of the form: x(t) = 0 for t ≤ C and x(t) = (t − C)2 for
t > C.

B) Now, consider the time scale T = hZ+ with some (fixed) h > 0. This is,
in fact, classical discretization for differential problems, but in the considered
case there is lack of uniqueness of solutions, so usually it was not investigated as
a difference equation. This dynamical equation over the time scale T = hZ+ is
in fact the Euler (forward) numerical scheme with constant time step h applied
to the differential equation (”the Eulerian time scale”).

We prefer the dynamic approach, so let us consider two cases. Fix an initial
condition x(0) = 0. In this example, we will assume that the points t are taken
only from T.

x∆(t) = 2
√

x(t) (6)

and

x∆(t) = 2
√

x(σ((t)). (7)

Both problems are considered in many papers. Let us recall that an interesting
discussion about the two forms, in particular about their differences, can be
found in [25]. We will indicate one more difference, which suggest the approach
via equation (7).

[Case I.] By the definition of the ∆-derivative we get

x(σ(0)) − x(0)

µ(t)
= 2

√

x(0).

This implies that x(σ(0)) = 0 and then by repeating this procedure we get
only the trivial solution x(t) ≡ 0.
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[Case II.] We have

x(σ(0))) − x(0)

µ(t)
= 2

√

x(σ((0)))

and then
x(σ(0)) = 2h

√

x(σ(0)).

It means that we have two possible solutions: either we get x(σ(0)) = 0 or
x(σ(0)) = (2h)2. If we choose the first one, in the next step we will only
have the same choice. Thus if we get x(σ(t)) = 0 in every step, we get trivial
solution.

If not, i.e. for a fixed t0 in some step we choose x(t0) = (2h)2, we have a
positive value of x, which implies that for t bigger than t0 we have increasing
function and there is no “return” to the previous choice. But this means that
the choice of numerical scheme (”Euler forward or backward scheme”) does
not matter.

For t > t0 we will have

x(σ(t)) − x(t)

µ(t)
= 2

√

x(σ((t)))

and then
x(σ(t)) = 2h

√

x(σ((t))) + x(t).

In particular,
x(σ(t0)) = 2h

√

x(σ((t0))) + (2h)2.

We get
x(σ(t0)) = [h · (1 +

√
5)]2.

The remaining values for t > t0 can be obtained recursively:

x(σ(t)) = h +
√

h2 + x(t).

As t0 is of the form t0 = k · h for some k ∈ Z+, we get the direct formula

xk+1 = h +
√

h2 + xk. (8)

For t < t0 we have y(t) = 0 = x(t). In a point t0 = k · h we have, y((σ(t0)) =
4h2 = x(t0). Then in the next points of our time scale we have the values
of y: 9h2, 16h2, ... . The approximated values of x can be easily calculated:

(1+
√

5)2·h2, (1+
√

1 + (1 +
√

5)2)2·h2, ... Note that the values are independent

on the choice of t0.
Letting h be arbitrarily small (by taking a sequence is convergent to 0, for

instance), we see that in every point t we have a good estimation for an exact
solution y of (5): |x(t) − y(t)| ≤ const. · h2.

Let us note that x is arbitrary, so the uniqueness is not required for (5).
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As a consequence we get the following result. Let us stress on a specific
kind of dependence of solutions on time scales allowing us to move domains
Tn.

Theorem 5.2. Let y be an arbitrary solution of (5) on R+. Take an arbi-
trary number ε > 0. Then for any sequence of time scales (Tn)n = (hnZ+)n
there exists a limit x of solutions (7) on Tn with |x(t) − y(t)| < ε for t ∈ Tn.
Conversely, for every ε > 0 and every solution xn of (7) on Tn there exists a
solution y for (5) such that |xn(tn) − y(t)| < ε for t ∈ T for some sequence
(tn) with tn ∈ Tn, tn → t ∈ T.

Proof: Let us sketch the proof. For any fixed C ≥ 0, we take a solution
y(t) of (5) as in part “A)”. For n ∈ N there exists a point tn0 ∈ Tn “close” to
C. Assume that we constructed solutions of (7) on Tn by the above method

with such a fixed tn0 < C and σ(tn0 ) > C and call the appropriate solutions x
tn
0
n

and x
σ(tn

0
)

n , respectively. Then by the above consideration we have

xtn
0
n (t) ≤ y(t) ≤ xσ(tn

0
)

n (t)

for t ∈ T and t > tn0 (note that xtn
0
(t) = y(t) = x

σ(tn0 )
n = 0 for t less than tn0 ).

We have y(t) = (t− C)2 and x
(tn0 )
n (t) = x

σ(tn0 )
n (t + h).

If we put hn → 0 in the direct formula (8) (with hn instead of h), then
x2
k+1(t) ≈ xk(t) and for sufficiently small h we have a desired estimation. Both

x
tn0
n and x

σ(tn0 )
n can be used in our thesis with tn = tn0 or tn = σ(tn0 ), respectively.

Our previous considerations allow us to say that an arbitrary solution xn

of (7) is , in fact, an approximation for a solution of (5).

6 Conclusion and future directions

Besides previously mentioned problems in the paper let us add one more re-
mark. It seems to be clear that by taking a differential (or: dynamic) problem
on T we are able to construct a sequence of time scales Tn convergent to T

in the sense of Kuratowski. Since we are not forced to do it for an arbitrary
sequence, we can suppose that our sequence should satisfy some additional
conditions. It facilitates us to check the convergence and allows us to solve the
approximated problem. Then on a intersection of time scales, we can compare
solutions or simply treat the obtained solution on Tn as a approximation for
that in T (cf. [1]). Let us stress that even a direct form of the Kuratowski
convergence seems to be optimal when study dependence of solutions on time
scales and approximation problems. However, it it worthwhile to study some
equivalent conditions for convergence of time scales specified for dynamic prob-
lems (cf. Theorem 4.1). Note that we need to choose also a proper form of
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the approximated problem, i.e. either (5) or (7). We are not restricted to the
case of problems with uniqueness of solutions for the original problem. This
should be an advantage of the theory of dynamic equations. But for “spares”
time scales, the intersection of T and Tn can be an empty set and we need a
convergence of solutions as in Theorem 5.2.

ACKNOWLEDGEMENTS. This work is partially supported by the
Scientific and Technical Research Council of Turkey (TÜBITAK), 2221-Fellowships
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