On some properties of vectors tangent to a predifferential space

Krzysztof Drachal

Faculty of Mathematics and Information Science Warsaw University of Technology Warszawa, Poland

Abstract

The properties of tangent vectors to a differential space in a sense of Sikorski are well-known. However, recently it has been noted that further generalizations in the spirit of Sikorski differential spaces are interesting. As a result a predifferential space concept has been investigated. Predifferential spaces are constructed by requiring just a slightly less assumptions on the algebra of functions than in the construction of differential spaces. This article presents a few facts about the properties of vectors tangent to a predifferential space. It is based on some previous results from the differential spaces theory.

Mathematics Subject Classification: 58A40

Keywords: differential spaces, predifferential spaces, Sikorski differential spaces, tangent vectors

1 Introduction

Suppose that there is a family \mathcal{A} of real functions defined on a given set M, i.e.

$$\mathcal{A} := \{ f_1, \dots, f_n, \dots \mid \forall_n \ f_n : M \to \mathbb{R} \} \quad . \tag{1}$$

Of course, \mathcal{A} is an algebra with pointwise operations of addition and multiplication. By requirement that all functions from \mathcal{A} are continuous, some topology is obtained on M. This topology is denoted by $\tau_{\mathcal{A}}$. Then one can consider two further conditions on \mathcal{A} .

The first is called superposition closure and consists of all compositions of functions from \mathcal{A} with arbitrary smooth (i.e. infinitely differentiable) functions from \mathbb{R}^k . The superposition closure of \mathcal{A} is usually denoted by sc \mathcal{A} . In other words, sc $\mathcal{A} := \{\omega \circ (f_1, \ldots, f_k) \mid \omega \in C^{\infty}(\mathbb{R}^k), f_1, \ldots, f_k \in \mathcal{A}, k \in \mathbb{N}\}.$

The second condition is called localization closure and it consists of all functions which locally (with respect to the topology $\tau_{\mathcal{A}}$) coincide with at least one function from \mathcal{A} on M. Localization closure of \mathcal{A} on M is usually denoted by \mathcal{A}_M . In other words, $\mathcal{A}_M := \{f : M \to \mathbb{R} \mid \forall_{p \in M} \exists_{g_p \in \mathcal{A}, U_p \in \tau_{\mathcal{A}}} g_p|_{U_p} = f|_{U_p}\}.$

If $\mathcal{A} = \operatorname{sc}\mathcal{A}$, then the pair (M, \mathcal{A}) is called predifferential space. If $\mathcal{A} = (\operatorname{sc}\mathcal{A})_M$, then the pair (M, \mathcal{A}) is called differential space. For example, the differential space (M, \mathcal{A}) , where $\mathcal{A} := C^{\infty}(M)$ is a smooth manifold in a classical sense. However, by considering other algebras of function \mathcal{A} one can study more "weird" spaces. Functions f_1, \ldots, f_n, \ldots in Eq. (1) are called generators.

Differential spaces are interesting for investigation, because the differential geometry can be constructed over them [4], [2]. Predifferential spaces are interesting not only because the differential geometry can be constructed over them, but also because of some interesting relationship with differential spaces [1].

2 Main Results

The basics of differential spaces can be found e.g. in [4] or [2]. It is reminded that if (M, \mathcal{A}) is a predifferential space and p is a point in M, then the mapping $v : \mathcal{A} \to \mathbb{R}$, which is \mathbb{R} -linear and satisfies the Leibniz rule, is called a tangent vector (to (M, \mathcal{A}) at the point p).

Of course, every differential space is a predifferential space. The contrary is not true. Suppose that (M, \mathcal{A}) is a predifferential space, which is not a differential space, i.e. $\mathcal{A} = \operatorname{sc}\mathcal{A} \neq (\operatorname{sc}\mathcal{A})_M$.

There is a natural mapping $\mathrm{id}_M : (M, \mathcal{A}_M) \to (M, \mathcal{A})$. Indeed $\forall_{f \in \mathcal{A}} f \circ \mathrm{id}_M = f \in \mathcal{A}_M$, so the considered mapping is smooth in a sense of differential spaces theory [2]. Therefore it is interesting to find whether $(\mathrm{id}_M)_{*p} : T_p(M, \mathcal{A}_M) \to T_p(M, \mathcal{A})$ is an isomorphism. Indeed

Theorem 2.1. $(\mathrm{id}_M)_{*p}: T_p(M, \mathcal{A}_M) \to T_p(M, \mathcal{A})$ is an isomorphism.

Proof. Indeed, in general $(F_{*x}w)(\beta) = w(F^*\beta) = w(\beta \circ F)$, where $F : (M_1, \mathcal{A}_1) \to (M_2, \mathcal{A}_2), x \in M_1, w \in T_x(M_1, \mathcal{A}_1)$ and $\beta \in \mathcal{A}_2$.

Let $\widetilde{v} \in T_p(M, \mathcal{A}_M)$, then $\forall_{f \in \mathcal{A}} ((\mathrm{id}_M)_{*p} \widetilde{v})(f) = \widetilde{v}(f \circ \mathrm{id}_M) = \widetilde{v}(f)$. Therefore $(\mathrm{id}_M)_{*p} \widetilde{v} = \widetilde{v}|_{\mathcal{A}}$.

Now, it is easy to notice that if $v \in T_p(M, \mathcal{A})$, then there exists the unique $\widetilde{v} \in T_p(M, \mathcal{A}_M)$ such that $\widetilde{v}|_{\mathcal{A}} = v$.

Of course, tangent vectors can be seen as derivations [2]. All derivations of the algebra \mathcal{A} are denoted by Der \mathcal{A} .

Theorem 2.2. Every derivation in point $p, v \in T_p(M, \mathcal{A}), v : \mathcal{A} \to \mathbb{R}$, is a local operator. In other words $\forall_{f \in \mathcal{A}} (f|_U = 0) \Rightarrow (v(f) = 0)$, where U is an arbitrary open neighborhood of $p \in M$. Proof. $(\mathrm{id}_M)_{*p} : T_p(M, \mathcal{A}_M) \to T_p(M, \mathcal{A})$ is an isomorphism. Therefore there exists exactly one $\widetilde{v} \in T_p(M, \mathcal{A}_M)$, such that $(\mathrm{id}_M)_{*p}\widetilde{v} = v$ and $\widetilde{v}|_{\mathcal{A}} = v$. If $f \in \mathcal{A}$ and $f|_U = 0$, then $\widetilde{v}(f) = 0$. On the other hand, $v(f) = \widetilde{v}(f)$, so v(f) = 0.

Theorem 2.3. $X \in \text{Der}\mathcal{A}$ is a local operator. In other words $\forall_{f \in \mathcal{A}} (f|_U = 0) \Rightarrow ((Xf)|_U = 0)$ for an arbitrary $U \in \tau_{\mathcal{A}}$.

Proof. Let $p \in M$. Consider $X_p : \mathcal{A} \to \mathbb{R}$, such that $X_p(f) := (Xf)(p)$ for an arbitrary $f \in \mathcal{A}$. Of course, $X_p \in T_p(M, \mathcal{A})$ and the mapping $p \mapsto X_p$ is a smooth tangent vector field on (M, \mathcal{A}) [2]. (In other words X_p is a tangent vector and $Xf \in \mathcal{A}$ for an arbitrary $f \in \mathcal{A}$.)

On the other hand, there exists the unique $\widetilde{X_p} \in T_p(M, \mathcal{A}_M)$, such that $\widetilde{X_p}|_{\mathcal{A}} = X_p$. Therefore consider $\widetilde{X} \in \text{Der}\mathcal{A}_M$, such that $\widetilde{X}(p) = \widetilde{X_p}$.

The smoothness of \widetilde{X} has to be verified. Therefore, let f be an arbitrary function from \mathcal{A} . Then $(\widetilde{X}f)(p) = \widetilde{X}_p(f) = X_p(f) = (Xf)(p)$ for an arbitrary $p \in M$. As a result $\widetilde{X}f = Xf \in \mathcal{A}$.

Therefore, if $f|_U = 0$, then $(\widetilde{X}f)|_U = 0$. As a result $(Xf)|_U = 0$, because $(Xf)|_U = (\widetilde{X}f)|_U$.

Theorem 2.4. If \mathcal{A} -module $\mathfrak{X}(M, \mathcal{A})$ of smooth vector fields on (M, \mathcal{A}) is locally free, then \mathcal{A}_M -module $\mathfrak{X}(M, \mathcal{A}_M)$ of smooth vector fields on (M, \mathcal{A}_M) is locally free.

Proof. Let $X \in \mathfrak{X}(M, \mathcal{A})$. If $\mathfrak{X}(M, \mathcal{A})$ is locally free, then there exists the local basis w_1, \ldots, w_n with respect to an arbitrary open set $U \subset M$, such that $X(p) = \sum_{i=1}^n \varphi_i(p) w_i$, where $\varphi_i \in \mathcal{A}|_U$ for every $i = 1, \ldots, n$.

Because of the previous Theorems, for every $i = 1, \ldots, n$ there exists the unique $\widetilde{w}_i \in T_p(U, \mathcal{A}_M|_U)$, such that $\widetilde{w}_i|_{\mathcal{A}} = w_i$. Therefore it is possible to construct the unique $\widetilde{X} \in \mathfrak{X}(M, \mathcal{A}_M)$, such that $\widetilde{X}(p) = \sum_{i=1}^n \widetilde{\varphi}_i(p)\widetilde{w}_i$, where $\widetilde{\varphi}_i \in \mathcal{A}_M$, $\widetilde{\varphi}_i|_U = \varphi_i$ for every $i = 1, \ldots, n$ and $\widetilde{X}|_{\mathcal{A}} = X$. On the other hand, this construction is "onto", because of the isomorphism between $T_p(M, \mathcal{A}_M)$ and $T_p(M, \mathcal{A})$ for every p.

3 Conclusions

The presented results are in agreement with previous results of investigation on predifferential spaces (for example in [1]). Notice that any differential space emerges by localization closure of some predifferential space. The major conclusion is that most geometrical properties are encoded on a predifferential level. Notice also that the last Theorem, but in the context of passing from \mathcal{A} to sc \mathcal{A} has been studied in [3]. ACKNOWLEDGEMENTS. Research funded by the Polish National Science Centre grant under the contract number DEC-2012/06/A/ST1/00256. Moreover, the Author is deeply indebted to Prof. W. Sasin for his inspiring guidance and the support. The Author is also indebted to Delyan Dimiev, Managing Editor of Mathematica Aeterna.

References

- K. Drachal, W. Sasin, Construction of a Generator Boundary, in: (eds.) J. Šafránková, J. Pavlů, WDS'13 Proceedings of Contributed Papers: Part I – Mathematics and Computer Sciences, Matfyzpress, 2013, 69–73.
- [2] K. Drachal, Introduction to d-spaces theory, Math. Aeterna 3, 2013, 753-770.
- [3] G. Moreno, On the canonical connection for smooth envelopes, Demonstratio Math. 47, 2014, 459–464.
- [4] R. Sikorski, Wstęp do geometrii różniczkowej, Państwowe Wydawnictwo Naukowe, 1972.

Received: June, 2014