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Abstract

The properties of tangent vectors to a di�erential space in a sense

of Sikorski are well�known. However, recently it has been noted that

further generalizations in the spirit of Sikorski di�erential spaces are

interesting. As a result a predi�erential space concept has been investi-

gated. Predi�erential spaces are constructed by requiring just a slightly

less assumptions on the algebra of functions than in the construction of

di�erential spaces. This article presents a few facts about the properties

of vectors tangent to a predi�erential space. It is based on some previous

results from the di�erential spaces theory.
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1 Introduction

Suppose that there is a family A of real functions de�ned on a given set M ,
i.e.

A := {f1, . . . , fn, . . . | ∀n fn :M → R} . (1)

Of course, A is an algebra with pointwise operations of addition and mul-
tiplication. By requirement that all functions from A are continuous, some
topology is obtained on M . This topology is denoted by τA. Then one can
consider two further conditions on A.

The �rst is called superposition closure and consists of all compositions of
functions from A with arbitrary smooth (i.e. in�nitely di�erentiable) functions
from Rk. The superposition closure of A is usually denoted by scA. In other
words, scA := {ω ◦ (f1, . . . , fk) | ω ∈ C∞(Rk), f1, . . . , fk ∈ A, k ∈ N}.
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The second condition is called localization closure and it consists of all
functions which locally (with respect to the topology τA) coincide with at least
one function from A on M . Localization closure of A on M is usually denoted
by AM . In other words, AM := {f :M → R | ∀p∈M∃gp∈A,Up∈τAgp|Up = f |Up}.

If A = scA, then the pair (M,A) is called predi�erential space. If A =
(scA)M , then the pair (M,A) is called di�erential space. For example, the dif-
ferential space (M,A), where A := C∞(M) is a smooth manifold in a classical
sense. However, by considering other algebras of function A one can study
more �weird� spaces. Functions f1, . . . , fn, . . . in Eq. (1) are called generators.

Di�erential spaces are interesting for investigation, because the di�erential
geometry can be constructed over them [4], [2]. Predi�erential spaces are
interesting not only because the di�erential geometry can be constructed over
them, but also because of some interesting relationship with di�erential spaces
[1].

2 Main Results

The basics of di�erential spaces can be found e.g. in [4] or [2]. It is reminded
that if (M,A) is a predi�erential space and p is a point inM , then the mapping
v : A → R, which is R�linear and satis�es the Leibniz rule, is called a tangent
vector (to (M,A) at the point p).

Of course, every di�erential space is a predi�erential space. The contrary
is not true. Suppose that (M,A) is a predi�erential space, which is not a
di�erential space, i.e. A = scA 6= (scA)M .

There is a natural mapping idM : (M,AM) → (M,A). Indeed ∀f∈A f ◦
idM = f ∈ AM , so the considered mapping is smooth in a sense of di�er-
ential spaces theory [2]. Therefore it is interesting to �nd whether (idM)∗p :
Tp(M,AM)→ Tp(M,A) is an isomorphism. Indeed

Theorem 2.1. (idM)∗p : Tp(M,AM)→ Tp(M,A) is an isomorphism.

Proof. Indeed, in general (F∗xw)(β) = w(F ∗β) = w(β◦F ), where F : (M1,A1)→
(M2,A2), x ∈M1, w ∈ Tx(M1,A1) and β ∈ A2.

Let ṽ ∈ Tp(M,AM), then ∀f∈A ((idM)∗pṽ)(f) = ṽ(f ◦ idM) = ṽ(f). There-
fore (idM)∗pṽ = ṽ|A.

Now, it is easy to notice that if v ∈ Tp(M,A), then there exists the unique
ṽ ∈ Tp(M,AM) such that ṽ|A = v.

Of course, tangent vectors can be seen as derivations [2]. All derivations of
the algebra A are denoted by DerA.

Theorem 2.2. Every derivation in point p, v ∈ Tp(M,A), v : A → R, is

a local operator. In other words ∀f∈A (f |U = 0)⇒ (v(f) = 0), where U is an

arbitrary open neighborhood of p ∈M .
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Proof. (idM)∗p : Tp(M,AM) → Tp(M,A) is an isomorphism. Therefore there
exists exactly one ṽ ∈ Tp(M,AM), such that (idM)∗pṽ = v and ṽ|A = v. If
f ∈ A and f |U = 0, then ṽ(f) = 0. On the other hand, v(f) = ṽ(f), so
v(f) = 0.

Theorem 2.3. X ∈ DerA is a local operator. In other words ∀f∈A (f |U =
0)⇒ ((Xf)|U = 0) for an arbitrary U ∈ τA.

Proof. Let p ∈ M . Consider Xp : A → R, such that Xp(f) := (Xf)(p) for
an arbitrary f ∈ A. Of course, Xp ∈ Tp(M,A) and the mapping p 7→ Xp is
a smooth tangent vector �eld on (M,A) [2]. (In other words Xp is a tangent
vector and Xf ∈ A for an arbitrary f ∈ A.)

On the other hand, there exists the unique X̃p ∈ Tp(M,AM), such that
X̃p|A = Xp. Therefore consider X̃ ∈ DerAM , such that X̃(p) = X̃p.

The smoothness of X̃ has to be veri�ed. Therefore, let f be an arbitrary
function from A. Then (X̃f)(p) = X̃p(f) = Xp(f) = (Xf)(p) for an arbitrary
p ∈M . As a result X̃f = Xf ∈ A.

Therefore, if f |U = 0, then (X̃f)|U = 0. As a result (Xf)|U = 0, because
(Xf)|U = (X̃f)|U .

Theorem 2.4. If A�module X(M,A) of smooth vector �elds on (M,A) is

locally free, then AM�module X(M,AM) of smooth vector �elds on (M,AM)
is locally free.

Proof. Let X ∈ X(M,A). If X(M,A) is locally free, then there exists the
local basis w1, . . . , wn with respect to an arbitrary open set U ⊂M , such that
X(p) =

∑n
i=1 ϕi(p)wi, where ϕi ∈ A|U for every i = 1, . . . , n.

Because of the previous Theorems, for every i = 1, . . . , n there exists the
unique w̃i ∈ Tp(U,AM |U), such that w̃i|A = wi. Therefore it is possible to
construct the unique X̃ ∈ X(M,AM), such that X̃(p) =

∑n
i=1 ϕ̃i(p)w̃i, where

ϕ̃i ∈ AM , ϕ̃i|U = ϕi for every i = 1, . . . , n and X̃|A = X. On the other hand,
this construction is �onto�, because of the isomorphism between Tp(M,AM)
and Tp(M,A) for every p.

3 Conclusions

The presented results are in agreement with previous results of investigation
on predi�erential spaces (for example in [1]). Notice that any di�erential space
emerges by localization closure of some predi�erential space. The major con-
clusion is that most geometrical properties are encoded on a predi�erential
level. Notice also that the last Theorem, but in the context of passing from A
to scA has been studied in [3].
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