Mathematica Aeterna, Vol. 4, 2014, no. 6, 613-619

ON SOME PROPERTIES OF GENERALIZED q-MITTAG LEFFLER FUNCTION

S.K. Sharma
School of Physical Sciences, ITM University, Gwalior - 474 001, INDIA
e-mail : sksharma_itm@rediffmail.com

R. Jain

School of Mathematics and Allied Science, Jiwaji University, Gwalior - 474 001, INDIA
e-mail : renujain3@rediffmail.com

Abstract

In the present paper, we make an attempt to introduce q -analogue of generalized Mittag Leffler function $E_{\alpha, \beta}(z ; q)$ and its q-recurrence relations with q-derivative. Also, we present q-fractional operators and properties of $E_{\alpha, \beta}^{\gamma}(z ; q)$ by using fractional q-calculus.

2000 Mathematics Subject Classification: 33E12, 26A33, 33D05.
Key Words and Phrases: Mittag Leffler function, q-beta function, fractional qderivative.

1. Introduction

In 1903, the Swedish mathematician Gosta Mittag Leffler [5] introduced the function $\mathrm{E}_{\alpha}(\mathrm{z})$ by

$$
\begin{equation*}
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+1)}, \quad(\alpha \in \mathrm{C}, \operatorname{Re}(\alpha)>0) \tag{1.1}
\end{equation*}
$$

The generalization of $\mathrm{E}_{\alpha}(\mathrm{z})$ was studied by Wiman [12], who defined the function $\mathrm{E}_{\alpha, \beta}(\mathrm{z})$ as below

$$
\begin{equation*}
E_{\alpha, \beta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta)}, \quad(\alpha, \beta, \gamma \in \operatorname{C}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0) \tag{1.2}
\end{equation*}
$$

In 1971, Prabhakar [6] introduced the function $E_{\alpha, \beta}^{\gamma}(z), \alpha, \beta, \gamma \in \mathrm{C}, \operatorname{Re}(\alpha)>0$, $\operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0$ which is defined by

$$
\begin{equation*}
E_{\alpha, \beta}^{\gamma}(z)=\sum_{n=0}^{\infty} \frac{(\gamma)_{n}}{\Gamma(\alpha n+\beta)} \cdot \frac{z^{n}}{n!} \tag{1.3}
\end{equation*}
$$

where $(\lambda)_{n}$ is the Pochammer symbol [7] defined by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}=\left\{\begin{array}{lr}
1, & n=0, \lambda \neq 0 \tag{1.4}\\
\lambda(\lambda+1) \ldots(\lambda+n-1), & n \in N, \lambda \in \mathrm{C}
\end{array}\right.
$$

N being the set of positive integers.
In the sequel to this study, we define the q -analogue of generalized Mittag - Leffler function $E_{\alpha, \beta}^{\gamma}(z ; q)$ as follows

Definition 1: For $\alpha, \beta, \gamma \in \mathrm{C}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0$ and $|\mathrm{q}|<1$ the function $E_{\alpha, \beta}^{\gamma}(z ; q)$ is defined as

$$
\begin{equation*}
E_{\alpha, \beta}^{\gamma}(z)=\sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)} \tag{1.5}
\end{equation*}
$$

where $\Gamma_{\mathrm{q}}(\lambda)$ is the q -gamma function.
The q -analogue of the Pochhammer symbol (q -shifted factorial) is defined by

$$
\begin{equation*}
(\lambda ; q)_{n}=\prod_{k=0}^{n-1}\left(1-\lambda q^{k}\right)=\frac{(\lambda ; q)_{\infty}}{\left(\lambda \mathrm{q}^{\mathrm{n}} ; q\right)_{\infty}} \tag{1.6}
\end{equation*}
$$

and the q -analogue of the power $(\mathrm{a}-\mathrm{b})^{\mathrm{n}}$ is

$$
\begin{equation*}
(a-b)^{0}=1,(a-b)^{n}=\prod_{k=0}^{n-1}\left(a-b q^{k}\right) \tag{1.7}
\end{equation*}
$$

There is following relationship between them :

$$
(a-b)^{n}=a^{n}(b / a ; q)_{n},(a \neq 0)
$$

$$
\begin{equation*}
=a^{n} \frac{(b / a ; q)_{\infty}}{\left(q^{n} b / a ; q\right)_{\infty}} \tag{1.8}
\end{equation*}
$$

Also, Predrag M. Rajkovic, et. al. [8], define a q-derivative of a function $\mathrm{f}(\mathrm{z})$ by

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{z-q z} \quad(z \neq 0) \tag{1.9}
\end{equation*}
$$

Further, the $\Gamma_{q}(z)$ satisfies the functional equation,

$$
\begin{equation*}
\Gamma_{q}(z+1)=\frac{1-q^{z}}{1-q} \Gamma_{q}(z) \tag{1.10}
\end{equation*}
$$

Again, the q-analogue of the beta function is defined by

$$
\begin{equation*}
B_{q}(x, y)=\int_{0}^{1} t^{x-1} \frac{(t q ; q)_{\infty}}{\left(t q^{y} ; q\right)_{\infty}} d_{q}(t) \tag{1.11}
\end{equation*}
$$

The relation between q -beta function and q -gamma function is

$$
\begin{equation*}
B_{q}(x, y)=\frac{\Gamma_{q}(x) \Gamma_{q}(y)}{\Gamma_{q}(x+y)},(\operatorname{Re}(\mathrm{x})>0, \operatorname{Re}(\mathrm{y})>0) \tag{1.12}
\end{equation*}
$$

The detailed account of generalized Mittag-Leffler function can be found in research monographs due to Agrawal [1], Kilbas, et. al. [3], Gupta and Debnath [2], and Shukla and Prajapati $[9,10,11]$.

In this paper, the motive is to evaluate the recurrence relation with q derivative and in the last section, properties of $E_{\alpha, \beta}^{\gamma}(z ; q)$ by using fractional qcalculus.

2. Recurrence Relations

Theorem 1: If $\alpha, \beta, \gamma \in \mathrm{C}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0$ then

$$
\begin{equation*}
E_{\alpha, \beta}^{\gamma}(z ; q)=E_{\alpha, \beta}^{\gamma+1}(z ; q)-z q^{\gamma} E_{\alpha, \alpha+\beta}^{\gamma}(z ; q) \tag{2.1}
\end{equation*}
$$

Proof: From (1.5), we write

$$
E_{\alpha, \beta}^{\gamma}(z ; q)=\sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}=\frac{1}{\Gamma_{q}(\beta)}+\sum_{n=1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}
$$

$$
=\frac{1}{\Gamma_{q}(\beta)}+\sum_{n=1}^{\infty} \frac{\left(1-q^{\gamma}\right)\left(q^{\gamma+1} ; q\right)_{n-1}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}
$$

Since $\left(1-q^{\gamma}\right)=\left(1-q^{\gamma+n}\right)-q^{\gamma}\left(1-q^{n}\right)$ then, the above equation becomes equal to

$$
\begin{aligned}
& \frac{1}{\Gamma_{q}(\beta)}+\sum_{n=1}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{n-1}}{(q ; q)_{n}} \cdot \frac{\left[\left(1-q^{\gamma+n}\right)-q^{\gamma}\left(1-q^{n}\right)\right] z^{n}}{\Gamma_{q}(\alpha n+\beta)} \\
& =\frac{1}{\Gamma_{q}(\beta)}+\sum_{n=1}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{n}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}-q^{\gamma} \sum_{n=1}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{n-1}}{(q ; q)_{n-1}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)} \\
& =\sum_{n=0}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{n}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}-q^{\gamma} \sum_{n=1}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{n-1}}{(q ; q)_{n-1}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}
\end{aligned}
$$

On replacing n by $\mathrm{m}+1$ in second summation, the RHS of above equation becomes

$$
\sum_{n=0}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{n}}{(q ; q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)}-q^{\gamma} z \sum_{m=0}^{\infty} \frac{\left(q^{\gamma+1} ; q\right)_{m}}{(q ; q)_{m}} \cdot \frac{z^{m}}{\Gamma_{q}[\alpha m+(\alpha+\beta)]}
$$

In view of definition (1.5), the above expression becomes

$$
E_{\alpha, \beta}^{\gamma+1}(z ; q)-\gamma E_{\alpha, \alpha+\beta}^{\gamma+1}(z ; q)
$$

This completes the proof of the result (2.1).
Theorem 2 : Let $\alpha, \beta, \gamma, \omega \in \mathrm{C}$, then for any $\mathrm{n}=1,2,3, \ldots$

$$
\begin{equation*}
D_{q}^{n}\left[z^{\beta-1} E_{\alpha, \beta}^{\gamma}\left(\omega z^{\alpha} ; q\right)\right]=z^{\beta-n-1} E_{\alpha, \beta-n}^{\gamma}\left(\omega z^{\alpha} ; q\right) \tag{2.2}
\end{equation*}
$$

where $\operatorname{Re}(\beta)>\mathrm{n}$.
Proof: Consider the function

$$
\begin{aligned}
& f(z)=z^{\beta-1} E_{\alpha, \beta}^{\gamma}\left(\omega z^{\alpha} ; q\right) \text { in (1.9) and applying the definition (1.5) } \\
& D_{q}\left[z^{\beta-1} E_{\alpha, \beta}^{\gamma}\left(\omega z^{\alpha} ; q\right)\right] \text { becomes } \\
& \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}}{(q ; q)_{n}} \frac{\left(1-q^{\alpha n+\beta-1}\right)}{(1-q)} \frac{\omega^{n} z^{\alpha n+\beta-2}}{\Gamma_{q}(\alpha n+\beta)}
\end{aligned}
$$

According to the functional equation (1.10) the above expression becomes

$$
\sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}}{(q ; q)_{n}} \frac{\omega^{n} z^{\alpha n+\beta-2}}{\Gamma_{q}(\alpha n+\beta-1)}
$$

which equals $z^{\beta-2} E_{\alpha, \beta-1}^{\gamma}\left(\omega z^{\alpha} ; q\right)$
Finally, we obtain

$$
D_{q}\left[z^{\beta-1} E_{\alpha, \beta}^{\gamma}\left(\omega z^{\alpha} ; q\right)\right]=z^{\beta-2} E_{\alpha, \beta-1}^{\gamma}\left(\omega z^{\alpha} ; q\right)
$$

Iterating this result, upto $\mathrm{n}-1$ times, we obtain the required formula.

3. Fractional q-Calculus

We define the fractional q -integral of operator and the fractional q derivative of Miller and Ross [4] type by

Definition 2: The fractional q-integral operator of order v defined as for $\operatorname{Re}(v)>0$

$$
\begin{equation*}
I_{q}^{v} f(t)=\frac{1}{\Gamma_{q}(v)} \int_{0}^{t}(t-q \xi)^{(v-1)} f(\xi) d_{q} \xi \tag{3.1}
\end{equation*}
$$

Definition 3 : The fractional q-differential operator of order μ defined as

$$
\begin{equation*}
D_{q}^{\mu} f(t)=D_{q}^{k}\left\{I^{k-\mu} f(t)\right\} \tag{3.2}
\end{equation*}
$$

where $\operatorname{Re}(\mu)>0$ and if k is the smallest integer with the property that $k \geq \operatorname{Re}(\mu)$.
Theorem 3 : Let $\gamma \in \mathrm{C}, \operatorname{Re}(\gamma)>0$ and c is any arbitrary constant, then

$$
\begin{equation*}
I_{q}^{v} E_{1,1}^{\gamma}(c t ; q)=t^{v} E_{1, v+1}^{\gamma}(c t ; q) \tag{3.3}
\end{equation*}
$$

Proof : Consider the function $\mathrm{f}(\mathrm{t})=E_{1,1}^{\gamma}(c t ; q)$ in (3.1) and applying the definition (1.5), the LHS of above expression becomes.
$\frac{1}{\Gamma_{q}(v)} \int_{0}^{t}(t-q \xi)^{(v-1)} \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}(c \xi)^{n}}{(q ; q)_{n} \Gamma_{q}(n+1)} d_{q} \xi$
Now, using relation (1.8) above expression reduce to
$\frac{1}{\Gamma_{q}(v)} \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n} c^{n}}{(q ; q)_{n}} \int_{0}^{t} \frac{t^{\nu-1}\left(\frac{q \xi}{t} ; q\right)_{\infty}}{\left(\frac{q^{\nu} \xi}{t} ; q\right)_{\infty}} \xi^{n} d_{q} \xi$
On simplification, we have
$\frac{1}{\Gamma_{q}(v)} \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n} c^{n}}{(q ; q)_{n}} t^{\nu+n-1} \int_{0}^{t}\left(\frac{\xi}{t}\right)^{n} \frac{\left(\frac{q \xi}{t} ; q\right)_{\infty}}{\left(\frac{q^{v} \xi}{t} ; q\right)_{\infty}} d_{q} \xi$
substituting $\xi=x$, which yields
$=\frac{1}{\Gamma_{q}(v)} \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n} c^{n}}{(q ; q)_{n}} t^{v+n} \int_{0}^{1} x^{n} \frac{(q x ; q)_{\infty}}{\left(q^{v} x ; q\right)_{\infty}} d_{q} x$
Using the definition of beta function (1.11), the above expression becomes $\frac{1}{\Gamma_{q}(v)} \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n} c^{n}}{(q ; q)_{n}} t^{v+n} B_{q}(n+1, v)$

Also, using the relation (1.12) and on simplification, the RHS of above equation reduce to

$$
t^{\nu} \sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n}}{(q ; q)_{n}} \frac{(c t)^{n}}{\Gamma_{q}(v+n+1)}=t^{\nu} E_{\mathrm{l},, v+1}^{\gamma}(c t ; q)
$$

This completes the proof of the result (3.3).
Theorem 4: Let $\gamma \in \mathrm{C}, \operatorname{Re}(\gamma)>0$ and c is any arbitrary constant, then

$$
\begin{equation*}
D_{q}^{\mu} E_{1,1}^{\gamma}(c t ; q)=t^{-\mu} E_{1,1-\mu}^{\gamma}(c t ; q) \tag{3.4}
\end{equation*}
$$

Proof : Consider the function $\mathrm{f}(\mathrm{t})=E_{1,1}^{\gamma}(c t ; q)$ in (3.2)
The LHS of above expression reduce to $D_{q}^{k}\left\{I_{q}^{k-\mu} E_{1,1}^{\gamma}(c t ; q)\right\}$
Now using theorem (3) it becomes $D_{q}^{k}\left\{t^{k-\mu} E_{1, k-\mu+1}^{\gamma}(c t ; q)\right\}$
Using definition (1.5) and on simplification we have
$\sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n} c^{n}}{(q ; q)_{n}} D_{q}^{k}\left\{\frac{t^{k-\mu+n}}{\Gamma_{q}(k-\mu+n+1)}\right\}$
On applying (1.9) and (1.10) upto k times the above equation reduce to
$\sum_{n=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{n} c^{n}}{(q ; q)_{n}} \frac{t^{-\mu+n}}{\Gamma_{q}(n+1-\mu)}$
It can be written as $t^{-\mu} E_{1,1-\mu}^{\gamma}(c t ; q)$
This completes the proof of the result (3.4).

References

1. R.P. Agrawal, A propos d'une note de M. Pierre Humbert. C.R. Acad. Sci. Paris. 296, (1953), 2031 - 2032.
2. I.S. Gupta and L. Debnath, Some properties of the Mittag - Leffler functions. Integral Trans. Special Function. 18(5), (2007), 329 - 336.
3. A.A. Kilbas Saigo, M. Saigo and R.K. Saxena, Generalized Mittag Leffler function and generalized fractional calculus operators. Integral Transform Special Function. 15, (2004), $31-49$.
4. K.S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley-New York. (1993).
5. G.M. Mittag - Leffler, Sur la nouvelle function $E_{\alpha}(x)$. C.R. Acad. Sci. Paris. (ser. II) 137, (1903), 554 - 558.
6. T.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohoma Math. J. 19, (1971), 7 - 15.
7. E.D. Rainville, Special Functions, Macmillan, New York. (1960).
8. P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals and derivatives in q-calculus. Applicable Analysis and Discrete Mathematics. 1, (2007), 311 - 323.
9. A.K. Shukla and J.C. Prajapati, On a generalization Mittag - Leffler of function and its properties. J. Math. Anal. Appl. 336, (2007), 797 - 811.
10. A.K. Shukla and J.C. Prajapati, On recurrence relation of generalized Mittag Leffler function. Survey in Mathematics and its applications 4, (2009), 132 138.
11. A.K. Shukla and J.C. Prajapati, Some remarks on generalized MittageLeffler function Proyecciones Universided Catolica del Norte. Antofagasta. Chile. 28, (2009), 27 - 34.
12. A. Wiman, Uber den Fundamental satz in der Theorie de Funktionen $E_{\alpha}(x)$, Acta Math. 29, (1905), 191 - 201.

Received: June, 2014

