ON SOME PROPERTIES OF GENERALIZED q-MITTAG LEFFLER FUNCTION

S.K. Sharma

School of Physical Sciences, ITM University, Gwalior – 474 001, INDIA e-mail: sksharma_itm@rediffmail.com

R. Jain

School of Mathematics and Allied Science, Jiwaji University, Gwalior – 474 001, INDIA e-mail: renujain3@rediffmail.com

Abstract

In the present paper, we make an attempt to introduce q-analogue of generalized Mittag Leffler function $E_{\alpha,\beta}(z;q)$ and its q-recurrence relations with q-derivative. Also, we present q-fractional operators and properties of $E_{\alpha,\beta}^{\gamma}(z;q)$ by using fractional q-calculus.

2000 Mathematics Subject Classification: 33E12, 26A33, 33D05.

Key Words and Phrases: Mittag Leffler function, q-beta function, fractional q-derivative.

1. Introduction

In 1903, the Swedish mathematician Gosta Mittag Leffler [5] introduced the function $E_{\alpha}(z)$ by

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n + 1)}, \quad (\alpha \in \mathbb{C}, \operatorname{Re}(\alpha) > 0)$$
(1.1)

The generalization of $E_{\alpha}(z)$ was studied by Wiman [12], who defined the function $E_{\alpha,\beta}(z)$ as below

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)}, \quad (\alpha,\beta,\gamma \in \mathbb{C}, \operatorname{Re}(\alpha) > 0, \operatorname{Re}(\beta) > 0, \operatorname{Re}(\gamma) > 0) \quad (1.2)$$

In 1971, Prabhakar [6] introduced the function $E_{\alpha,\beta}^{\gamma}(z)$, $\alpha,\beta,\gamma\in\mathbb{C}$, $\mathrm{Re}(\alpha)>0$, $\mathrm{Re}(\beta)>0$, $\mathrm{Re}(\gamma)>0$ which is defined by

$$E_{\alpha,\beta}^{\gamma}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(\alpha n + \beta)} \cdot \frac{z^n}{n!}$$
(1.3)

where $(\lambda)_n$ is the Pochammer symbol [7] defined by

$$(\lambda)_n = \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases} 1, & n = 0, \lambda \neq 0 \\ \lambda(\lambda + 1) \dots (\lambda + n - 1), & n \in \mathbb{N}, \lambda \in \mathbb{C} \end{cases}$$
(1.4)

N being the set of positive integers.

In the sequel to this study, we define the q-analogue of generalized Mittag – Leffler function $E_{\alpha,\beta}^{\gamma}(z;q)$ as follows

Definition 1 : For $\alpha, \beta, \gamma \in \mathbb{C}$, $\text{Re}(\alpha) > 0$, $\text{Re}(\beta) > 0$, $\text{Re}(\gamma) > 0$ and |q| < 1 the function $E_{\alpha,\beta}^{\gamma}(z;q)$ is defined as

$$E_{\alpha,\beta}^{\gamma}(z) = \sum_{n=0}^{\infty} \frac{(q^{\gamma};q)_n}{(q;q)_n} \cdot \frac{z^n}{\Gamma_a(\alpha n + \beta)}$$
(1.5)

where $\Gamma_{\!_{q}}(\lambda)$ is the q-gamma function.

The q-analogue of the Pochhammer symbol (q-shifted factorial) is defined by

$$(\lambda;q)_n = \prod_{k=0}^{n-1} (1 - \lambda q^k) = \frac{(\lambda;q)_{\infty}}{(\lambda q^n;q)_{\infty}}$$

$$(1.6)$$

and the q-analogue of the power $(a - b)^n$ is

$$(a-b)^{0} = 1, (a-b)^{n} = \prod_{k=0}^{n-1} (a-bq^{k})$$
(1.7)

There is following relationship between them:

$$(a-b)^n = a^n (b/a; q)_n, (a \neq 0)$$

$$=a^{n}\frac{\binom{b_{a}';q)_{\infty}}{\binom{q^{n}b_{a}';q)_{\infty}}}$$
(1.8)

Also, Predrag M. Rajkovic, et. al. [8], define a q-derivative of a function f(z) by

$$D_{q}f(z) = \frac{f(z) - f(qz)}{z - qz} \quad (z \neq 0)$$
 (1.9)

Further, the $\Gamma_q(z)$ satisfies the functional equation,

$$\Gamma_q(z+1) = \frac{1-q^z}{1-q} \Gamma_q(z) \tag{1.10}$$

Again, the q-analogue of the beta function is defined by

$$B_{q}(x,y) = \int_{0}^{1} t^{x-1} \frac{(tq;q)_{\infty}}{(tq^{y};q)_{\infty}} d_{q}(t)$$
(1.11)

The relation between q-beta function and q-gamma function is

$$B_q(x, y) = \frac{\Gamma_q(x)\Gamma_q(y)}{\Gamma_q(x+y)}$$
, (Re(x) > 0, Re(y) > 0)
(1.12)

The detailed account of generalized Mittag-Leffler function can be found in research monographs due to Agrawal [1], Kilbas, et. al. [3], Gupta and Debnath [2], and Shukla and Prajapati [9, 10, 11].

In this paper, the motive is to evaluate the recurrence relation with q-derivative and in the last section, properties of $E_{\alpha,\beta}^{\gamma}(z;q)$ by using fractional q-calculus.

2. Recurrence Relations

Theorem 1 : If $\alpha, \beta, \gamma \in \mathbb{C}$, $Re(\alpha) > 0$, $Re(\beta) > 0$, $Re(\gamma) > 0$ then

$$E_{\alpha,\beta}^{\gamma}(z;q) = E_{\alpha,\beta}^{\gamma+1}(z;q) - zq^{\gamma} E_{\alpha,\alpha+\beta}^{\gamma}(z;q)$$
(2.1)

Proof: From (1.5), we write

$$E_{\alpha,\beta}^{\gamma}(z;q) = \sum_{n=0}^{\infty} \frac{(q^{\gamma};q)_n}{(q;q)_n} \cdot \frac{z^n}{\Gamma_q(\alpha n + \beta)} = \frac{1}{\Gamma_q(\beta)} + \sum_{n=1}^{\infty} \frac{(q^{\gamma};q)_n}{(q;q)_n} \cdot \frac{z^n}{\Gamma_q(\alpha n + \beta)}$$

$$= \frac{1}{\Gamma_{q}(\beta)} + \sum_{n=1}^{\infty} \frac{(1-q^{\gamma})(q^{\gamma+1};q)_{n-1}}{(q;q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n + \beta)}$$

Since $(1-q^{\gamma}) = (1-q^{\gamma+n}) - q^{\gamma}(1-q^n)$ then, the above equation becomes equal to

$$\begin{split} &\frac{1}{\Gamma_{q}(\beta)} + \sum_{n=1}^{\infty} \frac{(q^{\gamma+1};q)_{n-1}}{(q;q)_{n}} \cdot \frac{[(1-q^{\gamma+n})-q^{\gamma}(1-q^{n})]z^{n}}{\Gamma_{q}(\alpha n+\beta)} \\ &= \frac{1}{\Gamma_{q}(\beta)} + \sum_{n=1}^{\infty} \frac{(q^{\gamma+1};q)_{n}}{(q;q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)} - q^{\gamma} \sum_{n=1}^{\infty} \frac{(q^{\gamma+1};q)_{n-1}}{(q;q)_{n-1}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)} \\ &= \sum_{n=0}^{\infty} \frac{(q^{\gamma+1};q)_{n}}{(q;q)_{n}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)} - q^{\gamma} \sum_{n=1}^{\infty} \frac{(q^{\gamma+1};q)_{n-1}}{(q;q)_{n-1}} \cdot \frac{z^{n}}{\Gamma_{q}(\alpha n+\beta)} \end{split}$$

On replacing n by m+1 in second summation, the RHS of above equation becomes

$$\sum_{n=0}^{\infty} \frac{\left(q^{\gamma+1};q\right)_n}{\left(q;q\right)_n} \cdot \frac{z^n}{\Gamma_a(\alpha n+\beta)} - q^{\gamma} z \sum_{m=0}^{\infty} \frac{\left(q^{\gamma+1};q\right)_m}{\left(q;q\right)_m} \cdot \frac{z^m}{\Gamma_a[\alpha m + (\alpha+\beta)]}$$

In view of definition (1.5), the above expression becomes

$$E_{\alpha,\beta}^{\gamma+1}(z;q) - \gamma z E_{\alpha,\alpha+\beta}^{\gamma+1}(z;q)$$

This completes the proof of the result (2.1).

Theorem 2: Let $\alpha, \beta, \gamma, \omega \in \mathbb{C}$, then for any n = 1, 2, 3, ...

$$D_q^n[z^{\beta-1}E_{\alpha,\beta}^{\gamma}(\omega z^{\alpha};q)] = z^{\beta-n-1}E_{\alpha,\beta-n}^{\gamma}(\omega z^{\alpha};q)$$
(2.2)

where $Re(\beta) > n$.

Proof: Consider the function

$$f(z) = z^{\beta-1} E_{\alpha,\beta}^{\gamma}(\omega z^{\alpha}; q)$$
 in (1.9) and applying the definition (1.5)

$$D_q[z^{\beta-1}E_{\alpha,\beta}^{\gamma}(\omega z^{\alpha};q)]$$
 becomes

$$\sum_{n=0}^{\infty} \frac{\left(q^{\gamma};q\right)_{n}}{\left(q;q\right)_{n}} \frac{\left(1-q^{\alpha n+\beta-1}\right)}{\left(1-q\right)} \frac{\omega^{n} z^{\alpha n+\beta-2}}{\Gamma_{a}(\alpha n+\beta)}$$

According to the functional equation (1.10) the above expression becomes

$$\sum_{n=0}^{\infty} \frac{(q^{\gamma}; q)_n}{(q; q)_n} \frac{\omega^n z^{\alpha n + \beta - 2}}{\Gamma_a(\alpha n + \beta - 1)}$$

which equals $z^{\beta-2}E_{\alpha,\beta-1}^{\gamma}(\omega z^{\alpha};q)$

Finally, we obtain

$$D_{q}[z^{\beta-1}E_{\alpha,\beta}^{\gamma}(\omega z^{\alpha};q)] = z^{\beta-2}E_{\alpha,\beta-1}^{\gamma}(\omega z^{\alpha};q)$$

Iterating this result, upto n-1 times, we obtain the required formula.

3. Fractional q-Calculus

We define the fractional q-integral of operator and the fractional qderivative of Miller and Ross [4] type by

Definition 2: The fractional q-integral operator of order ν defined as for Re(ν) > 0

$$I_{q}^{\nu} f(t) = \frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t} (t - q\xi)^{(\nu - 1)} f(\xi) d_{q} \xi$$
(3.1)

Definition 3 : The fractional q-differential operator of order μ defined as

$$D_a^{\mu} f(t) = D_a^k \{ I^{k-\mu} f(t) \}$$
 (3.2)

where $Re(\mu) > 0$ and if k is the smallest integer with the property that $k \ge Re(\mu)$.

Theorem 3 : Let $\gamma \in \mathbb{C}$, Re(γ) > 0 and c is any arbitrary constant, then

$$I_{q}^{\nu}E_{1,1}^{\gamma}(ct;q) = t^{\nu}E_{1,\nu+1}^{\gamma}(ct;q)$$
(3.3)

Proof: Consider the function $f(t) = E_{1,1}^{\gamma}(ct;q)$ in (3.1) and applying the definition (1.5), the LHS of above expression becomes.

$$\frac{1}{\Gamma_q(\nu)}\int\limits_0^t(t-q\xi)^{(\nu-1)}\sum_{n=0}^\infty\frac{(q^\gamma;q)_n(c\xi)^n}{(q;q)_n\Gamma_q(n+1)}d_q\xi$$

Now, using relation (1.8) above expression reduce to

$$\frac{1}{\Gamma_{q}(v)} \sum_{n=0}^{\infty} \frac{(q^{\gamma};q)_{n} c^{n}}{(q;q)_{n}} \int_{0}^{t} \frac{t^{v-1} \left(\frac{q\xi}{t};q\right)_{\infty}}{\left(\frac{q^{\nu}\xi}{t};q\right)_{\infty}} \xi^{n} d_{q}\xi$$

On simplification, we have

$$\frac{1}{\Gamma_{q}(\nu)}\sum_{n=0}^{\infty}\frac{\left(q^{\gamma};q\right)_{n}c^{n}}{\left(q;q\right)_{n}}t^{\nu+n-1}\int\limits_{0}^{t}\left(\frac{\xi}{t}\right)^{n}\frac{\left(\frac{q\xi}{t};q\right)_{\infty}}{\left(\frac{q^{\nu}\xi}{t};q\right)_{\infty}}d_{q}\xi$$

substituting ξ =xt, which yields

$$= \frac{1}{\Gamma_{q}(v)} \sum_{n=0}^{\infty} \frac{(q^{\gamma};q)_{n} c^{n}}{(q;q)_{n}} t^{v+n} \int_{0}^{1} x^{n} \frac{(qx;q)_{\infty}}{(q^{v}x;q)_{\infty}} d_{q}x$$

Using the definition of beta function (1.11), the above expression becomes

$$\frac{1}{\Gamma_{q}(\nu)} \sum_{n=0}^{\infty} \frac{(q^{\nu};q)_{n} c^{n}}{(q;q)_{n}} t^{\nu+n} B_{q}(n+1,\nu)$$

Also, using the relation (1.12) and on simplification, the RHS of above equation reduce to

$$t^{\nu} \sum_{n=0}^{\infty} \frac{(q^{\gamma};q)_{n}}{(q;q)_{n}} \frac{(ct)^{n}}{\Gamma_{q}(\nu+n+1)} = t^{\nu} E_{1,\nu+1}^{\gamma}(ct;q)$$

This completes the proof of the result (3.3).

Theorem 4 : Let $\gamma \in \mathbb{C}$, Re(γ) > 0 and c is any arbitrary constant, then

$$D_a^{\mu} E_{1,1}^{\gamma}(ct;q) = t^{-\mu} E_{1,1-\mu}^{\gamma}(ct;q) \tag{3.4}$$

Proof: Consider the function $f(t) = E_{1,1}^{\gamma}(ct;q)$ in (3.2)

The LHS of above expression reduce to $D_q^k \left\{ I_q^{k-\mu} E_{1,1}^{\gamma}(ct;q) \right\}$

Now using theorem (3) it becomes $D_q^k \left\{ t^{k-\mu} E_{1,k-\mu+1}^{\gamma}(ct;q) \right\}$

Using definition (1.5) and on simplification we have

$$\sum_{n=0}^{\infty} \frac{(q^{\gamma}; q)_n c^n}{(q; q)_n} D_q^k \left\{ \frac{t^{k-\mu+n}}{\Gamma_q (k-\mu+n+1)} \right\}$$

On applying (1.9) and (1.10) upto k times the above equation reduce to

$$\sum_{n=0}^{\infty} \frac{(q^{\gamma};q)_{n} c^{n}}{(q;q)_{n}} \frac{t^{-\mu+n}}{\Gamma_{q}(n+1-\mu)}$$

It can be written as $t^{-\mu}E_{1,1-\mu}^{\gamma}(ct;q)$

This completes the proof of the result (3.4).

References

- 1. R.P. Agrawal, A propos d'une note de M. Pierre Humbert. C.R. Acad. Sci. Paris. **296**, (1953), 2031 2032.
- 2. I.S. Gupta and L. Debnath, Some properties of the Mittag Leffler functions. Integral Trans. Special Function. **18**(5), (2007), 329 336.
- 3. A.A. Kilbas Saigo, M. Saigo and R.K. Saxena, Generalized Mittag Leffler function and generalized fractional calculus operators. Integral Transform Special Function. **15**, (2004), 31 49.
- 4. K.S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley–New York. (1993).
- 5. G.M. Mittag Leffler, Sur la nouvelle function $E_{\alpha}(x)$. C.R. Acad. Sci. Paris. (ser. II) **137**, (1903), 554 558.
- 6. T.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohoma Math. J. **19**, (1971), 7 15.
- 7. E.D. Rainville, Special Functions, Macmillan, New York. (1960).
- 8. P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals and derivatives in q-calculus. Applicable Analysis and Discrete Mathematics. **1**, (2007), 311 323.
- 9. A.K. Shukla and J.C. Prajapati, On a generalization Mittag Leffler of function and its properties. J. Math. Anal. Appl. **336**, (2007), 797 811.
- A.K. Shukla and J.C. Prajapati, On recurrence relation of generalized Mittag –
 Leffler function. Survey in Mathematics and its applications 4, (2009), 132 –
 138.
- 11. A.K. Shukla and J.C. Prajapati, Some remarks on generalized Mittage–Leffler function Proyecciones Universided Catolica del Norte. Antofagasta. Chile. **28**, (2009), 27 34.
- 12. A. Wiman, Uber den Fundamental satz in der Theorie de Funktionen $E_{\alpha}(x)$, Acta Math. **29**, (1905), 191 201.

Received: June, 2014