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Abstract

Vector classes Lp (X) and Hp (X) are considered, where X is a Ba-
nach space. These classes are the generalizations of similar Lebesgue
and Hardy classes in scalar case. Two different definitions for Hardy
class are given, and their equivalence is proved. Riemann boundary
value problems in different formulations are considered. Under certain
conditions, their correct solvability is proved. Subspace bases in Lp (X)
are also considered. An abstract analogue of the ”1/4-Kadets” theorem
is obtained.
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1 Introduction

Classical Hardy classes are playing an important role in many areas of mathe-
matics, including harmonic analysis. The theory of these classes is well devel-
oped, and valuable monographs like [1-3], etc have been dedicated to it. Their
abstract generalizations have been studied by many authors (see, for example,
[4-11]). In general, these works either consider the case of Hilbert space or
introduce various Hardy class-related definitions, studying their equivalence
and the conjugate spaces of them. It should be noted that, in the context of
the factorization of operators, the abstract Hardy classes have been defined
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(see the monographs [4, 10] and references therein), some of their properties
have been studied and some abstract analogues of boundary value problems
of the theory of analytic functions have been considered. The obtained results
were mainly used in factorization of some classes of operators and operator
pencils. Riemann boundary value problems in Hardy classes in scalar case
have been extensively studied in [12]. An abstract analogue of this problem
was considered in a Banach algebra in the context of the factorization of op-
erators (see, for example, [10]). The direct generalizations of these problems
in finite-dimensional case have also been well studied, their theory being de-
veloped in [13]. In this paper, we consider infinite dimensional case of above
classes. Vector classes Hp (X) are defined in two ways: as a subspace of the
Lebesgue vector space Lp (X) and as a space of vector-valued analytic func-
tions. The equivalence of these two definitions is proved. We state the natural
analogues of classical Riemann problems in Hardy classes and, under certain
restrictions, prove their correct solvability. The obtained results are applied
to issues of double and perturbed bases in Lp (X) . Abstract analogues of the
Riemann problem in various settings are considered. The obtained results are
used to study the basicity of systems of subspaces in Lp (X), where X is a
separable Banach space. An abstract analogue of the ”1/4-Kadets theorem”
is obtained. It should be noted that in the scalar case similar results were
obtained in [14-17].

2 L±
p (X) classes

We will use the standard notation. N will be the set of all positive integers,
while Z+ = {0}

⋃

N ; Z will denote the set of all integers; C will be the set of
all complex numbers. ⇔ will mean “if and only if”, and ∃! will mean “there
exists a unique”. B-space will mean “a Banach space”. We will use a concept of
subspace basis. LetX be a B-space. System of subspaces

{

X+
n ;X

−
k

}

n,k∈N ⊂ X

is said to be a basis for X if ∀x ∈ X , ∃! {x±
n }n∈N , x±

n ∈ X±
n :

x =

∞
∑

n=1

x+
n +

∞
∑

n=1

x−
n .

Let X be a separable B-space. Denote by Lp (X) a class of measurable (no
matter strongly or weakly because X is separable) functions on ϑ : [0, 2π] → X
such that

‖ϑ‖pp =
1

2π

∫ 2π

0

‖ϑ (t)‖pX dt < +∞ , 1 ≤ p < +∞,

where ‖ · ‖X is a norm in X . With such a norm, Lp (X) turns into a separable
B-space. Functions from Lp (X) that coincide with each other a.e. (with
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respect to the Lebesgue measure) are considered identical. Let the sequence
{ϑn}n∈N ⊂ Lp (X) converge to ϑ ∈ Lp (X) in Lp (X), i.e.

‖ϑn − ϑ‖pp → 0, n → ∞.

Then we can choose a subsequence {ϑnk
}
k∈N such that

∞
∑

k=1

∫ 2π

0

‖ϑnk
(t)− ϑ (t)‖pX dt < +∞ .

It follows from the theorem of Beppo Levi that the series
∑∞

k=1 ‖ϑnk
(t)− ϑ (t)‖pX

converges a.e., and, as a result, ‖ϑnk
(t)− ϑ (t)‖p

X
→ 0 , k → ∞, a.e. on

[0, 2π]. Consequently, every convergent sequence in Lp (X) has a subsequence

which is also a.e. convergent. Denote by L
(k)
p (X) the subspace of Lp (X)

formed by functions of the form eikta, a ∈ X , where k ∈ Z is an integer. Let
q : 1

p
+ 1

q
= 1 be the conjugate of the number p. Similarly we define the space

Lq (X) and the family of subspaces
{

L
(k)
q (X)

}

k∈Z
. It is known (see, for ex-

ample [9, 14]) that Lq (X
∗) can be identified with (Lp (X))∗, and an arbitrary

element ϑ∗ ∈ (Lp (X))∗ is realized by the element ϑ ∈ Lq (X
∗) through the

expression

ϑ∗ (f) =

∫ 2π

0

ϑ∗ (t) f (t) dt, ∀f ∈ Lp (X) ,

where ϑ∗ (f) =: 〈f, ϑ∗〉 is the value of functional ϑ∗ on the element f . Let us
show that

Lp (X) =
+∞
∑

k=−∞

.

+L(k)
p (X) ,

i.e. every ϑ ∈ Lp (X) has the expansion

ϑ (t) =

+∞
∑

k=−∞
eiktϑk,

where ϑk ∈ X, ∀k ∈ Z. We first show that the system
{

L
(k)
p (X)

}

k∈Z
is

complete in Lp (X). Let the element ϑ∗ ∈ (Lp (X))∗ cancel all the L
(k)
p (X)’s

out, k ∈ Z, i.e.
ϑ∗ (fk) = 0 , ∀fk ∈ L(k)

p (X) , ∀k ∈ Z.

Let ϑ ∈ Lq (X
∗) be realized by ϑ∗ and fk have the form fk (t) = eiktf , f ∈ X .

Thus, we have

∫ 2π

0

eikt (f, ϑ (t)) dt = 0, ∀f ∈ X, ∀k ∈ Z.
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It hence follows that (f, ϑ (t)) = 0 a.e. on [0, 2π], i.e. (f, ϑ (t)) = 0, ∀t ∈ I\Ef ,
where I ≡ [0, 2π] and mesEf = 0. Let X̃ ⊂ X be a countable, everywhere
dense set in X . Assume E =

⋃

f∈H̃
Ef . It is clear that mesE = 0. From

(f, ϑ (t)) = 0, ∀f ∈ X̃, ∀t ∈ I\E it follows that ϑ (t) = 0, ∀t ∈ I\E. Com-

pleteness of system
{

L
(k)
p (X)

}

k∈Z
in Lp (X) is now proved. Take ∀f ∈ Lp (X).

Obviously

fk =
1

2π

∫ 2π

0

f (t) e−iktdt ∈ X, ∀k ∈ Z.

Consider Pk : Lp (X) → L
(k)
p (X) , k ∈ Z: Pkf = eiktfk. It is not difficult to

see that
PiPj = δijPj , ∀i, j ∈ Z,

where δij is the Kronecker symbol. Applying Holder’s inequality, we get that
Pk is continuous. Consider the partial sums

Sn =

n
∑

k=−n

Pk, n ∈ Z+ = Z\ {−N} . (1)

Using the expression for Pk in (1), absolutely similar to the classical case
we obtain

Snf =
1

2π

∫ 2π

0

Dn (τ − t) f (τ) dτ , ∀n ∈ N,

where Dn (t) is the Dirichlet kernel

Dn (t) =
sin
(

n+ 1
2

)

t

2 sin t
2

, n ∈ N.

We have

‖ [Snf ] (t) ‖X ≤ 1

2π

∫ 2π

0

‖f (τ + t)‖X
2 sin τ

2

dτ , ∀n ∈ N.

Hence we immediately obtain

‖ [Snf ] ( · ) ‖pp ≤ ‖H [‖f‖X ] ( · ) ‖
p

p
, (2)

where H is the Hilbert transform

[Hf ] (t) =
1

2π

∫ 2π

0

f (τ + t)

2 sin τ
2

dτ .

Throughout this paper we consider f as a function periodically extended (with
the period 2π) to the whole of axis R. Since the Hilbert transform acts bound-
edly in Lp (0, 2π) , 1 < p < +∞, from (2) we obtain

‖ [Snf ] ( · ) ‖p ≤ cp ‖f (·)‖p , ∀n ∈ N,
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where cp is a constant depending only on p. As a result, we get that the family
of projectors {Sn}n∈N is uniformly bounded in Lp (X). Then, as is known (see,
for example, [19]), system {Pn}n∈Z forms a basis for Lp (X). Consequently,
∀f ∈ Lp (X) has an expansion in Lp (X):

f (t) =
+∞
∑

n=−∞
(Pnf) (t) =

+∞
∑

n=−∞
eintfn.

It is absolutely obvious that such an expansion is unique. Thus, we have

Theorem 2.1 The family of projectors {Pn}n∈Z forms a strong basis for
Lp (X), i.e.

I =

+∞
∑

n=−∞
Pn ⇔ Lp (X) =

+∞
∑

n=−∞

·
+L(n)

p (X) .

Assume
L+
p (X) ≡ {f ∈ Lp (X) : Pnf = 0 , ∀n < 0} .

L+
p (X) is a subspace of Lp (X). Take ∀f ∈ L+

p (X) :

f (t) =
+∞
∑

n=0

eintfn. (3)

Let ω ≡ {z ∈ C : |z| < 1} and ∂ω ≡ {z ∈ C : |z| = 1}. By Pr ( · ) we denote
the Poisson kernel

Pr (t) =
1− r2

1− 2r cos t + r2
.

By virtue of the relation

(

reit
)k

=
1

2π

∫ 2π

0

Pr (t− s) eiksds, k ≥ 0 , 0 ≤ r < 1,

we obtain from (3) that

∞
∑

k=0

(

reit
)k

fk =
1

2π

∫ 2π

0

Pr (t− s) f (s) ds.

Suppose

F
(

reit
)

=
∞
∑

k=0

(

reit
)k

fk.

So

F
(

reit
)k

=
1

2π

∫ 2π

0

Pr (t− s) f (s) ds.
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The latter formula implies the validity of the following generalized Fatou the-
orem [4]:

Theorem F. F (reit) tends strongly to f (t) in X if z = reit tends non-
tangentially to eit staying in the unit circle for every point t for which

1

2s

∫ t+s

t−s

f (τ) dτ → f (t) strongly as s → 0,

i.e. almost everywhere.
Similarly, using the relation

zk =
1

2πi

∫

∂ω

τkdτ

τ − z
, z ∈ ω, k ≥ 0 ,

we get the formula

F (z) =
1

2πi

∫

∂ω

f (τ) dτ

τ − z
, (4)

where f (eit) ≡ f (t). It is clear that (4) presents an analytic function in C\∂ω.
Take ∀ϑ ∈ X∗. We have

ϑ (F (z)) =
1

2πi

∫

∂ω

ϑ (f (τ))

τ − z
dτ.

Using classical Sokhotski-Plemelj formulas ( see e.g. [12] ), we obtain that

ϑ
(

F± (τ)
)

= ±1

2
ϑ (f (τ)) + S [ϑ (f (τ))] for almost every τ ∈ ∂ω, (5)

where S is a singular operator

[Sg] (ξ) =
1

2πi

∫

∂ω

g (τ)

τ − ξ
dτ, ξ ∈ ∂ω.

Relation (5) holds for every τ ∈ ∂ω\Eϑ with mesEϑ = 0. Let Y ⊂ X∗ be a
countable, everywhere dense set in X∗ . Assume E =

⋃

ϑ∈X̃
Eϑ. It is clear that

mesE = 0. Consequently

ϑ
(

F± (τ)
)

= ±1

2
ϑ (f (τ)) + S [ϑ (f (τ))] , ∀τ ∈ ∂ω\E, (6)

∀ϑ ∈ Y . As Y is everywhere dense in X∗, it is evident that (6) holds for
∀ϑ ∈ X∗. Therefore we obtain the following Sokhotski-Plemelj formula

F± (τ) = ±1

2
f (τ) + [Sf ] (τ) for almost every τ ∈ ∂ω. (7)
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Since the shift

Φ (t) =

(
∫ π

−π

‖f (θ − t)− f (θ)‖pX dθ

)
1
p

,

is continuous as t → 0 (see, for example, [9]), then, absolutely similar to the
classical case, we can prove that the relation

∫ π

−π

∥

∥F
(

reit
)

− f (t)
∥

∥

p

X
dt → 0, (8)

holds as r → 1− 0. From

∥

∥F
(

reit
)
∥

∥

X
≤ 1

2π

∫ π

−π

Pr (t− s) ‖f (s)‖X ds,

it follows directly that the inequality

‖Pr (f)‖p ≤ M ‖f‖p ,

is valid, where M is a constant independent of f and r, and Pr ( · ) is the
Poisson operator

[Pr (f)] (t) ≡
1

2π

∫ π

−π

Pr (t− s) f (s) ds.

Similar considerations are also valid for the Cauchy operator

[Kr (f)] (t) ≡
1

2πi

∫

∂ω

f (τ) dτ

τ − reit
.

Thus, the following theorem is true.

Theorem 2.2 Let X be a separable B-space with the separable conjugate
X∗ and f ∈ Lp (X) , 1 < p < +∞. Then the Sokhotski-Plemelj formula (7) is
true for the function F (z) defined by the Cauchy type integral (4). Moreover,
if f ∈ L+

p (X) , then

lim
r→1−0

‖[Tr (f)] (t)− f (t)‖p = 0, ‖Tr (f)‖p ≤ M ‖f‖p ,

where either Tr = Pr is the Poisson operator or Tr = Kr is the Cauchy opera-
tor, r : 0 ≤ r < 1, and M is a constant independent of f .

Similarly we define a class of L−
p (X):

L−
p (X) ≡ {f ∈ Lp (X) : Pnf = 0 , ∀n ≥ 0} .



978 Najafov and Sadigova

Consequently, ∀g ∈ L−
p (X) has the expansion

g (t) =

−1
∑

n=−∞
gne

int =

∞
∑

n=1

g−ne
−int,

where

gn =
1

2π

∫ π

−π

g (t) e−intdt, ∀n ≤ −1.

It is absolutely clear that ĝ ∈ L+
p (X), where ĝ (t) ≡ g (−t). The function from

H+
p (X) corresponding to ĝ will be denoted by Ĝ (z). It is clear that Ĝ (0) = 0.

Let

H+,0
p (X) ≡

{

F ∈ H+
p (X) : F (0) = 0

}

,

and

L+,0
p (X) ≡ H+,0

p (X) /∂ω.

Denote

L̂+,0
p (X) ≡

{

g : ĝ (t) = g (−t) ∈ L+,0
p (X)

}

.

It is not difficult to see that Lp (X) has a direct expansion

Lp (X) = L+
p (X)

.

+ L̂+,0
p (X) .

Let g ∈ L̂+,0
p . We have

Ĝ
(

reit
)

=
1

2π

∫ π

−π

Pr (θ − t) ĝ (θ) dθ =
1

2π

∫ π

−π

Pr (−θ − t) ĝ (−θ) dθ =

=
1

2π

∫ π

−π

Pr (θ + t) g (θ) dθ.

It is clear that Ĝ ∈H+,0
p (X). So we obtain the following Cauchy type integral

Ĝ (z) =
1

2πi

∫

∂ω

ĝ (τ) dτ

τ − z
=

1

2πi

∫

∂ω

g (τ̄) dτ

τ − z
.

3 Equivalent definition for classes H±
p (X)

Denote by H̃+
p (X) the class of analytical X-valued functions f in ω with the

norm

‖f‖H̃p
≡ sup

0<r<1

∫ π

−π

∥

∥f
(

reit
)
∥

∥

p
dt < +∞. (9)
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From Theorem 2.2 it follows directly that H+
p (X) ⊂ H̃+

p (X). Take ∀F ∈
H̃+

p (X). Let

F (z) =

∞
∑

n=0

fnz
n , z ∈ ω.

It is absolutely clear that Fϑ (z) = ϑ (F (ϑ)) ∈ H+
p , ∀ϑ ∈ X∗. Assume that X∗

is separable. It is known that Fϑ (z) has non-tangential boundary values F+
ϑ (z)

a.e. on ∂ω, i.e. ∃eϑ ⊂ ∂ω : meseϑ = 0, and Fϑ (z) → F+
ϑ (τ) as z

⊲→ τ ∈ ∂ω\eϑ
non-tangentially. Let Y ⊂ X∗ be a countable, everywhere dense set in X∗. As-
sume e =

⋃

ϑ∈Y eϑ. It is clear that mese = 0 and Fϑ (z) → F+
ϑ (τ) as z

⊲→ τ (the
diacritic symbol ⊲ means non-tangential convergence) ∀τ ∈ ∂ω\e,∀ϑ ∈ Y . It

follows directly that Fϑ (z) → F+
ϑ (τ), z

⊲→ τ , ∀τ ∈ ∂ω\e, ∀ϑ ∈ X∗. It is known
that F+

ϑ ∈ Lp (∂ω). Let TF (ϑ) = lim
r→1

Fϑ (re
it) , ∀ϑ ∈ X∗. By Fatou’s lemma,

from (9) we have

(
∫

∂ω

|[TF (ϑ)] (τ)|p |dτ |
)

1
p

≤ sup
r

(
∫ π

−π

∣

∣Fϑ

(

reit
)
∣

∣

p
dt

)
1
p

≤ ‖ϑ‖ ‖F‖H̃p
.

Take ∀τ = eit ∈ ∂ω\e and fix it. Thus, ϑ (Fr (τ)) → F+
ϑ (τ), r→ 1 , ∀ϑ ∈ X∗,

i.e. the family {Fr (τ)} converges weakly in X as r→ 1 − 0, where Fr (τ) =

F (rτ). The weak completeness of X implies ∃f (τ) ∈ X :Fr (τ) → f (τ)
weakly in X as r→ 1 − 0, i.e. ϑ (Fr (τ)) → ϑ (f (τ)), r→ 1 − 0, ∀ϑ ∈ X∗,

∀τ ∈ ∂ω\e. Hence, F+
ϑ (τ) = ϑ (f (τ)), ∀ϑ ∈ X∗,∀τ ∈ ∂ω\e. It is absolutely

clear that ϑ (f (ϑ)) ∈ H+
p /∂ω = L+

p , ∀ϑ ∈ X∗. Consider

G
(

reit
)

=
1

2π

∫ π

−π

Pr (θ − t) f (t) dt,

where f (t) ≡ f (eit). We have

ϑ
(

G
(

reit
))

=
1

2π

∫ π

−π

Pr (θ − t)ϑ (f (t)) dt.

It is clear that ϑ (G (z))
⊲→ϑ (f (τ)) for almost every τ ∈ ∂ω. From the unique-

ness theorem we obtain

ϑ (F (z)) ≡ ϑ (G (z)) , ∀ϑ ∈ X∗,

and, consequently, F (z) ≡ G (z). Similarly, for some f ∈ Lp (X) we get

F (z) =
1

2πi

∫

∂ω

f (τ) dτ

τ − z
.
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It is clear

[ϑ (f)]n =

∫ π

−π

ϑ
(

f
(

eit
))

e−intdt = 0 , ∀n < 0, ∀ϑ ∈ X∗.

Hence
∫ π

−π

f
(

eit
)

e−intdt = 0 , ∀n < 0,

and, as a result, f ∈ L+
p (X), which means F ∈ H+

p (X). So we get the validity
of

Theorem 3.1 Let X be a separable B-space with the separable conjugate
X∗. Then the above defined spaces H+

p (X) and H̃+
p (X) coincide.

Using the results of previous section, from this theorem we immediately
obtain the following

Statement 3.2 Let the B-space X satisfy the conditions of Theorem 3.1.
Then, every element F ∈ H̃+

p (X) , 1 < p < +∞, has non-tangential boundary
values f (τ) ∈ L+

p (X) a.e. on ∂ω. Moreover, the Poisson

F
(

reit
)

=
1

2π

∫ 2π

0

Pr (t− s) f (s) ds,

and the Cauchy formulas

F (z) =
1

2πi

∫

∂ω

f (τ) dτ

τ − z
, z ∈ ω,

are true for it.

Similarly we define the class H−
p (X) of functions that are analytical outside

ω and vanish at infinity. The norm in H−
p (X) is defined as

‖f‖H−

p
= sup

1<r<+∞

(
∫ π

−π

∥

∥f
(

reit
)
∥

∥

p

X
dt

)
1
p

.

Absolutely similar to the previous case, we can show that every function f ∈
H−

p (X) has non-tangential boundary values f− ∈ Lp (X) from the outside of
ω with

∫ π

−π

f− (eit
)

e−intdt = 0 , ∀n ≥ 0.

Consequently, f− has an expansion

f− (t) =
∞
∑

n=1

f−ne
−int.

It follows directly that the spaces H+,0
p (X) and H−

p (X) are isometrically iso-
morphic. So we get the validity of
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Theorem 3.3 Let X be a separable B-space with the separable conjugate
X∗. Then the above defined spaces H+,0

p (X) and H−
p (X) are isometrically

isomorphic.

Similar to the previous case, we get the validity of

Statement 3.4 Let the B-space X satisfy the conditions of Theorem 3.3.
Then every element F ∈ H−

p (X) , 1 < p < +∞, has non-tangential boundary
values f ∈ L−

p (X) a.e. on ∂ω and the Cauchy formula

F (z) = [Krf ]
(

eit
)

, z = reit , r > 1,

is true for it.

4 Riemann boundary value problems with a

scalar coefficient

Let G : ∂ω → C be some scalar-valued function satisfying the following con-
ditions: 1) G±1 ∈ L∞ (∂ω) ; 2) argG is a piecewise Holder function on ∂ω. By

mH
−
p (X) we denote the class of analytic functions in C\ω, with their orders

m0 ≤ m at infinity, such that the regular parts of their Laurent series ex-
pansions in the neighborhood of an infinitely remote point belong to H−

p (X).
Consider the following Riemann problem

F+
1 (τ) +G (τ)F−

2 (τ) = g (τ) , τ ∈ ∂ω. (10)

By solution of problem (10) we mean a pair of analytic functions (F1;F2) ∈
H+

p (X)×m H−
p (X) whose non-tangential boundary values on ∂ω a.e. satisfy

the relation (10). Take ∀ϑ ∈ X∗ and assume Fϑ,k = ϑ (Fk), gϑ = ϑ (g). We
have

F+
ϑ,1 (τ) +G (τ)F−

ϑ,2 (τ) = gϑ (τ) , τ ∈ ∂ω. (11)

It is clear that (Fϑ,1;Fϑ,2) ∈ H+
p ×m H−

p . The theory of problems (11) in the
Hardy classes has been sufficiently well studied (see, for example, [12]). Let
the index æ of problem (11) be equal to zero. Then, as is known, this problem
has a unique solution in classes H+

p ×H−
p which can be represented in the form

of the Cauchy type integral Fϑ,1 (z) = Kϑ (z), for |z| < 1; Fϑ,2 (z) = Kϑ (z),
for |z| > 1, where

Kϑ (z) =
Y (z)

2π

∫ π

−π

gϑ (e
it) dt

Y + (eit) (1− ze−it)
,
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and Y (z) is a canonical solution of the corresponding homogeneous problem,
which depends only on the coefficient G. Using the arbitrariness of ϑ, we obtain
that the solution of problem (10) is expressed by the Cauchy type integral

F (z) =
Y (z)

2π

∫ π

−π

g (eit) dt

Y + (eit) (1− ze−it)
,

where F1 (z) = F (z) , |z| < 1; F2 (z) = F (z) , |z| > 1. It is not difficult to see
that in this case the problem (10) has a unique solution fromH+

p (X)×H−
p (X).

The general case is studied in a similar way. As a result, we arrive at the
following conclusion.

Theorem 4.1 Let the B-space X satisfy the conditions of Theorem 3.3 and
let the coefficient G of problem (10) satisfy the conditions 1), 2). Then the
problem (10) is solvable in classes H+

p (X)×mH−
p (X) if and only if the scalar

problem
F+ (τ) +G (τ)F− (τ) = ϑ (g (τ)) , τ ∈ ∂ω,

is solvable in classes H+
p ×m H−

p , ∀ϑ ∈ X∗.

Under conditions 1) and 2), the index æϑ of scalar problem is finite, and,
consequently, the problem is Noetherian (see, for example, [12]). In particular,
for æG = 0 the scalar problem is a Fredholm problem. As a result, we obtain
the following

Corollary 4.2 Let all the conditions of Theorem 4.1 be fulfilled and æG =
0. Then the problem (10) has a unique solution in H+

p (X) × H−
p (X) for

∀g ∈ Lp (X) , 1 < p < +∞.

5 Conjugation problem with operator coeffi-

cient

By Lp we will denote the Banach space of bounded operators from Lp (X) to
Lp (X), i.e. Lp≡ L (Lp (X) ;Lp (X)). Let A,B ∈ Lp (X) be some operators.
Take g ∈ Lp (X) and consider the equation

A (τ)F+ (τ) +B (τ)F− (τ) = g (τ) for almost every τ ∈ ∂ω, (12)

where F± ∈ L±
p (X). In other words, we search for the pair (F+;F−) ∈

L+
p (X) × L−

p (X), which satisfies the relation (12). Before proceeding to the
solution of problem (12), we make some preliminary considerations. From the
proof of Theorem 2.1 it follows directly that the relations

L+
p (X) =

∞
∑

k=0

+̇L(k)
p (X) , L−

p (X) =

∞
∑

k=1

+̇L(−k)
p (X) ,
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hold, and, moreover, the direct sum decomposition

Lp (X) = L+
p (X) +̇L−

p (X) , (13)

is valid. We denote by P± the projectors, generated by the decomposition (13).
It is known that P± are continuous (see, e.g., [20]). Consequently, ∃m > 0 :

∥

∥P+f
∥

∥

p
+
∥

∥P−f
∥

∥

p
≤ m ‖f‖p , ∀f ∈ Lp (X) . (14)

inf {m ′s satisfying (14)} will be denoted by θX
(

L+
p ;L

−
p

)

. Take ∀F ∈ Lp (X).
Define the operator T : Lp (X) → Lp (X) as follows

TF = AF+ +BF−,

where F± = P±F . As a result, equation (12) takes the form TF = g. Assume
∆T = I − T , where I ∈ Lp is an identity operator . Thus, we obtain the
equation

(I −∆T )F = g, g ∈ Lp (X) . (15)

It is absolutely clear that the equations (12) and (15) are equivalent. It is
known that if ‖∆T‖ < 1, then I −∆T = T is invertible. We have

∆TF = F − TF = F+ −AF+ + F− − BF− = (I −A)F+ + (I −B)F−.

Therefore
‖∆TF‖p ≤ ‖I − A‖

∥

∥F+
∥

∥

p
+ ‖I − B‖

∥

∥F−∥
∥

p
≤

≤ η (A;B) θX
(

L+
p ;L

−
p

)

‖F‖ ,
where η (A;B) = max {‖I −A‖ ; ‖I − B‖}. It is clear that if η (A;B) <
θ−1
X

(

L+
p ;L

−
p

)

, then ‖∆T‖ < 1. We will call θX
(

L+
p ;L

−
p

)

the direct norm of

decomposition (13) and denote it simply by θ+,−
X :

θ+,−
X = θX

(

L+
p ;L

−
p

)

.

So the following theorem is true

Theorem 5.1 Let the B-space X satisfy the conditions of Theorem 3.3,
and the operators A,B satisfy the inequality

η (A;B) <
(

θ+,−
X

)−1
. (16)

Then the equation (12) has a unique solution for ∀g ∈ Lp (X), 1 < p < +∞.
Moreover, ∃M > 0 :

∥

∥F±
g

∥

∥

p
≤ M ‖g‖p , ∀g ∈ Lp (X) ,

where F±
g are the solutions of equation (12) corresponding to g.
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In fact, the latter assertion of the above theorem follows directly from the
expression

F±
g = P±F = P± (T−1g

)

. (17)

Note that the operators A and B, due to the inequality (16), are automor-
phisms in Lp (X). Because it is not difficult to see that θX

(

L+
p ;L

−
p

)

≥ 1, and,
consequently, η (A;B) < 1. The rest follows from the classical facts. Let all
the conditions of Theorem 5.1 be fulfilled. Then the problem (12) is uniquely
solvable. Let F±

g be the corresponding solutions with F±
g ∈ L±

p (X). On the
basis of the above considerations, these solutions have the expansions

F+ =

∞
∑

n=0

f+
n e

int, F− =

∞
∑

n=0

f−
n e

−int.

Taking into account these expansions in (12), we obtain that every g ∈ Lp (X)

can be expanded in terms of the system
{

AL
(n)
p (X) ;BL

(−k)
p (X)

}

n≥0, k≥1
. The

fact that the operators A and B are automorphisms in Lp (X) implies the
uniqueness of such an expansion. Thus, the following theorem is valid.

Theorem 5.2 Let all the conditions of Theorem 5.1 be fulfilled. Then the
system of subspaces

{

AL(n)
p (X) ;BL(−k)

p (X)
}

n≥0, k≥1
,

forms a basis for Lp (X).

As an example, consider the case A = Ieiαt , B = Ie−iαt, where I ∈ Lp (X)
is an identity operator, and α ∈ R is some parameter. Let us estimate η (A;B).
Let the operators A and B in Lp (X) be generated by the operator functions
A (t) and B (t), respectively, i.e. A (t) , B (t) ∈ L (X) , ∀t ∈ [−π, π]. We have
(I − A) f = f (t)− A (t) f (t), ∀f ∈ Lp (X). Consequently

‖I − A‖
Lp

= sup
‖f‖Lp(X)=1

‖(I −A)‖Lp(X) =

= sup
‖f‖Lp(X)=1

(
∫ π

−π

‖f (t)−A (t) f (t)‖pX dt

)
1
p

=

= sup
‖f‖Lp(X)=1

(
∫ π

−π

‖(IX −A (t)) f (t)‖pX dt

)
1
p

≤

≤ sup
‖f‖Lp(X)=1

(
∫ π

−π

‖IX −A (t)‖p ‖f (t)‖pX dt

)
1
p

.
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Let
‖I − A‖ = sup vrai

t∈(−π,π)

‖IX − A (t)‖ .

Consequently
‖I − A‖

Lp
≤ ‖I − A‖∞ .

Similarly we establish
‖I − B‖

Lp
≤ ‖I − B‖∞ .

Let
η∞ (A;B) = max {‖I −A‖∞ ; ‖I − B‖∞} .

It is absolutely obvious that η (A;B) ≤η∞ (A;B). Therefore, from Theorem
5.2 we directly obtain the following

Corollary 5.3 Let the B-space X satisfy all the conditions of Theorem 3.3

and the inequality η∞ (A;B) <
(

θ+,−
X

)−1
hold. Then the system

{

AL(n)
p (X) ;BL(−k)

p (X)
}

n≥0, k≥1
,

forms a basis for Lp (X).

Consider the case when X is an H-space with the scalar product ( · ; · ).
In this case, L2 (X) is also an H-space with the scalar product

(f ; g)L2(X) =

∫ π

−π

(f (t) ; g (t)) dt, ∀f, g ∈ L2 (X) .

It is not difficult to see that the spaces L+
2 (X) and L−

2 (X) are orthogonal,
and, as a result, θ+,−

X =
√
2. So we get

Corollary 5.4 Let X be a separable H-space and the operators A,B satisfy
the condition η∞ (A;B) < 1√

2
. Then the system

{

AL(n)
p (X) ;BL(−k)

p (X)
}

n≥0, k≥1
,

forms a basis for L2 (X).

Now let’s consider the case A (t) = IXe
iα(t), B (t) = IXe

−iα(t), where α ∈
L∞ is some function. Let F ∈ L2 (X), where X is a separable H-space. We
have

∆TF = (I − A)F+ + (I − B)F− =
(

I − IXe
iα(t)
)

F++

+
(

I − IXe
−iα(t)

)

F− =
(

1− eiα(t)
)

F+ +
(

1− e−iα(t)
)

F−.
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Let ϑ ∈ X be an arbitrary element. From the previous expression we get

(∆TF ;ϑ) =
(

1− eiα(t)
) (

F+;ϑ
)

+
(

1− e−iα(t)
) (

F−;ϑ
)

.

It is absolutely obvious that (F±;ϑ) ∈ L±
p . For simplicity, we introduce the

following notation

F±
ϑ (t) ≡

(

F± (t) ;ϑ
)

, Fϑ (t) = F+
ϑ (t) + F−

ϑ (t) , u± = ReF±
ϑ , v± = ImF±

ϑ .

We have

∣

∣F±
ϑ

∣

∣

2
= |u±|2 + |v±|2 , |Fϑ|2 = |u+ + u−|2 + |v+ + v−|2 .

We will follow the method used in [21]. Thus

|(∆TF ;ϑ)|2 =

=
∣

∣

∣

(

2 sin2 α

2
− i sinα

)

(u+ + iv+) +
(

2 sin2 α

2
+ i sinα

)

(u− + iv−)
∣

∣

∣

2

=

= 4 sin4 α

2
(u+ + u−)

2+4 sin2 α

2
sinα (u+ + u−) (v+ − v−)+sin2 α (v+ − v−)

2+

+4 sin4 α

2
(v+ + v−)

2+4 sin2 α

2
sinα (v+ + v−) (u− − u+)+ sin2 α (u− − u+)

2 =

(

4 sin4 α

2
+ sin2 α

)(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)

+
(

4 sin4 α

2
− sin2 α

)

×

× (2u+u− + 2v+v−) + 4 sin2 α

2
sinα (2v+u− − 2u+v−) .

In view of relations

2u+u− = (u+ + u−)
2 −

(

u2
+ + u2

−
)

, 2v+v− = (v+ + v−)
2 −

(

v2+ + v2−
)

,

2v+u− ≤ v2+ + u2
−,−2u+v− ≤ u2

+ + v2−,

we have

|(∆TF ;ϑ)|2 ≤
(

4 sin4 α

2
+ sin2 α

)(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)

+
(

4 sin4 α

2
− sin2 α

)

·
[

|Fϑ|2 −
(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)]

+ 4 sin2 α

2
sinα

(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)

= 4 sin4 α

2
·

|Fϑ|2 + sin2 α
[

2
(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)

− |Fϑ|2
]

+ 4 sin2 α

2
sinα

(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)

.

Consequently

|(∆TF ;ϑ)|2 + sin2 α |Fϑ|2 ≤ 4 sin4 α

2
|Fϑ|2+
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+
(

2 sin2 α + 4 sin2 α

2
sin |α|

)(

∣

∣F+
ϑ

∣

∣

2
+
∣

∣F−
ϑ

∣

∣

2
)

.

Hence
sup

‖ϑ‖X=1

|(∆T (t)F (t) ;ϑ)|2 + sin2 α sup
‖ϑ‖X=1

|(F (t) ;ϑ)|2 ≤

4 sin4 α

2
sup

‖ϑ‖X=1

|(F (t) ;ϑ)|2 +
(

2 sin2 α + 4 sin2 α

2
sin |α|

)

×
(

sup
‖ϑ‖X=1

∣

∣

(

F+ (t) ;ϑ
)
∣

∣

2
+ sup

‖ϑ‖X=1

∣

∣

(

F− (t) ;ϑ
)
∣

∣

2

)

.

Thus
‖∆T (t)F (t)‖2 + sin2 α ‖F (t)‖2 ≤ 4 sin4 α

2
‖F (t)‖2+

+
(

2 sin2 α + 4 sin2 α

2
sin |α|

)(

∥

∥F+ (t)
∥

∥

2
+
∥

∥F− (t)
∥

∥

2
)

.

The latter means that

‖∆T (t)F (t)‖2 ≤ 4 sin4 α

2
‖F (t)‖2+4 sin2 α

2
sin |α|

(

∥

∥F+ (t)
∥

∥

2
+
∥

∥F− (t)
∥

∥

2
)

+

+ sin2 α
[

2
(

∥

∥F+ (t)
∥

∥

2
+
∥

∥F− (t)
∥

∥

2
)

− ‖F (t)‖2
]

.

As
2
(

∥

∥F+ (t)
∥

∥

2
+
∥

∥F− (t)
∥

∥

2
)

− ‖F (t)‖2 ≥ 0,

we have

‖∆T (t)F (t)‖2 ≤ 4 sin4 ‖α‖∞
2

‖F (t)‖2+

+4 sin2 ‖α‖∞
2

sin ‖α‖∞
(

∥

∥F+ (t)
∥

∥

2
+
∥

∥F− (t)
∥

∥

2
)

+ sin2 ‖α‖∞
[

2
(

∥

∥F+ (t)
∥

∥

2
+
∥

∥F− (t)
∥

∥

2
)

− ‖F (t)‖2
]

.

By integrating, we obtain

‖∆TF‖2
L2

≤
(

4 sin4 ‖α‖∞
2

− sin2 ‖α‖∞
)

‖F‖2
L2

+

+
(

2 sin2 ‖α‖∞
)

+ 4 sin2 ‖α‖∞
2

sin ‖α‖∞
(

∥

∥F+
∥

∥

2

L2
+
∥

∥F−∥
∥

2

L2

)

.

As
‖F‖2

L2
=
∥

∥F+
∥

∥

2

L2
+
∥

∥F−∥
∥

2

L2
,

we have

‖∆TF‖2
L2

≤
(

4 sin4 ‖α‖∞
2

+ 4 sin2 ‖α‖∞
2

sin ‖α‖∞ + sin2 ‖α‖∞
)

‖F‖2
L2

,
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‖∆TF‖
L2

≤
(

2 sin2 ‖α‖∞
2

+ sin ‖α‖∞
)

‖F‖
L2

.

As a result
‖∆T‖ ≤ 1− cos ‖α‖∞ + sin ‖α‖∞ .

It is absolutely clear that if ‖α‖∞ < π
4
, then ‖∆T‖ ≤ 1 . So we get the

validity of

Corollary 5.5 Let X be a separable H-space and ‖α‖∞ < π
4
. Then the

system
{

eiα(t)L(n)
p (X) ; e−iα(t)L(−k)

p (X)
}

n≥0, k≥1
,

forms a basis for Lp (X).

Note that in the scalar case, i.e. in case when X ≡ C is the complex
plane, this result was first established in [21]. This result is an abstract ana-
logue of the well-known ”1/4-Kadets” theorem on the Riesz basicity of per-
turbed system of exponents (see e.g. [22; 23]). Consider another case when
A (t) ≡ eiT (t), B (t) ≡ e−iT (t) with T (t) ∈ L (X) , ∀t ∈ [−π, π]. Suppose
δT = sup vrai

t∈(−π,π)

‖T (t)‖ < +∞. We have

∥

∥I − e±iT (t)
∥

∥ =

∥

∥

∥

∥

∥

∞
∑

k=1

(±i)k T k (t)

k!

∥

∥

∥

∥

∥

≤
∞
∑

k=1

δkT
k!

= eδT − 1.

Let F ∈ Lp (X). Consider

∥

∥

(

I − e±iT (t)
)

F (t)
∥

∥

p

Lp(X)
=

∫ π

−π

∥

∥

(

I − e±iT (t)
)

F (t)
∥

∥

p

X
dt ≤

≤
∫ π

−π

∥

∥I − e±iT (t)
∥

∥

p ‖F (t)‖pX dt ≤
(

eδT − 1
)p ‖F‖pLp(X) .

Hence
∥

∥I − e±iT (·)∥
∥

Lp
≤ eδT − 1.

Thus, if δT < ln 2, then
∥

∥I − e±iT (·)∥
∥

Lp
< 1.

Then from Theorem 5.2 we obtain

Corollary 5.6 Let the B-space X satisfy all the conditions of Theorem 5.1
and sup vrai

t∈(−π,π)

‖IX − T (t)‖ < ln 2.

Then the system
{

eiT (t)L(n)
p (X) ; e−iT (t)L(−k)

p (X)
}

n≥0, k≥1
,

forms a basis for Lp (X).
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6 Operator boundary value problem

Let X be a separable B-space. Consider the operator boundary value problem

A (τ)F+ (τ) +B (τ)F− (τ) = g (τ) , τ ∈ ∂ω, (18)

where A;B; g ∈ Lp. By solution of the problem (18) we mean a pair of
operator functions (F+ (z) ;F− (z)) such that (F+ (z) x;F− (z) x) ∈ H+

p (X)×
H−

p (X) for ∀x ∈ X and their non-tangential boundary values on ∂ω a.e. satisfy
the relation (18). So let’s assume that all the conditions of Theorem 5.1 are
fulfilled. Let g (τ) ∈ L (X) for almost every τ ∈ (−π, π) and

∫ π

−π

‖g (τ)‖p dτ < +∞. (19)

We denote the space of such operators by Lp (L (X)). Take ∀x ∈ X and
consider the boundary value problem

A (τ)F+
x (τ) +B (τ)F−

x (τ) = g (τ) x, τ ∈ ∂ω. (20)

From (19) it directly follows that gx (·) ∈ Lp (X), where F±
x (·) = F± (·)x,

gx (·) = g (·)x. We will solve the boundary value problem (20) in classes
H+

p (X)×H−
p (X). As it follows from Theorem 5.1, the operator T : H+

p (X)×
H−

p (X) → Lp (X) defined by

TF = A (τ)F+ (τ) +B (τ)F− (τ) ,

with F = F++F−, F± ∈ H±
p (X) is invertible. It is absolutely clear thatF±

x (·) =
P±T−1 (g (·)x), where P± : Lp (X) → H±

p (X) are the corresponding projec-
tors. We have

(
∫ π

−π

∥

∥F±
x (τ)

∥

∥

p

X
dτ

)
1
p

≤ c1

(
∫ π

−π

∥

∥T−1 (g (τ) x)
∥

∥

p

X
dτ

)
1
p

≤

≤ c2

(
∫ π

−π

‖g (τ) x‖pX dτ

)
1
p

≤ c2

(
∫ π

−π

‖g (τ)‖p dτ
)

1
p

‖x‖ ,

where ck , k = 1, 2; are the constants independent of g and x. Thus

∥

∥F±
x (·)

∥

∥

Lp(X)
≤ c2 ‖g (·)‖Lp(L(X)) ‖x‖ . (21)

By P we denote the restriction operator on ∂ω, i.e. PF = f/∂ω, F ∈
H±

p (X). It is clear that P performs an isomorphism P : H±
p (X) ↔ L±

p (X).
Let F±

x (·) = P−1F±
x (·). It is obvious that F±

x (z) ∈ H±
p (X) linearly de-

pends on x ∈ X . Denote by F±
g (z) the operator mapping the element x
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to the function F±
x (z), i.e.

[

F±
g (z)

]

(x) =F±
x (z). We have

[

F±
g (·)

]

(x) =
P−1P±T−1 (g (·) x). In fact, it is clear that Kϑ (z) = ϑ (F (z)). The rest obvi-
ously follows from the Sokhotski-Plemelj formula, becauseK±

ϑ (τ) = ϑ (F± (τ)).
Applying Sokhotski-Plemelj formula to F (z) and taking into account the sep-
arability of X∗, we find that the boundary values F1 and F2 satisfy the relation
(10) for almost everyτ ∈ ∂ω. Thus, we obtain that the relation

A (τ)
[

F+
g (τ)

]

(x) +B (τ)
[

F−
g (τ)

]

(x) = g (τ) x, (22)

holds for every x ∈ X and for almost everyτ ∈ ∂ω. In other words, ∃ex ⊂
∂ω, mes ex = 0, and the relation (22) is fulfilled for ∀τ ∈ ∂ω\ex. Let X̃ ⊂ X
be a countable, everywhere dense set in X . Then it is clear that mese = 0,
where e =

⋃

x∈X̃ ex. Consequently, the equality (22) holds for ∀τ ∈ ∂ω\e and

∀x ∈ X̃ . Hence, (22) holds for ∀x ∈ X and ∀τ ∈ ∂ω\e. As a result, we have

A (τ)F+
g (τ) +B (τ)F−

g (τ) = g (τ) , ∀τ ∈ ∂ω\e,

i.e. F±
g (z) are the sought operator functions. The uniqueness of solution

follows from the fact that an arbitrary solution of problem (18) must satisfy
the relation (22), and, as it follows from Theorem 5.1, such a solution is unique.
As a result, we get the validity of the following

Theorem 6.1 Let all the conditions of Theorem 5.1 be fulfilled with re-
spect to the B-space X and the operators A; B. Then the operator bound-
ary value problem (18) has a unique solution for an arbitrary operator g ∈
Lp (L (X)) , 1 < p < +∞.

7 Conclusion

Now let’s briefly overview the issues studied in this paper. 1) We gave two
different definitions for the vector Hardy class and proved their equivalence.
Analogous class in the exterior of the unit circle is also defined; 2) We con-
sidered the abstract Riemann boundary value problem in the Hardy classes
with scalar coefficients and studied its Noetherness under small perturbations;
3) We considered the abstract Riemann boundary value problem in the Hardy
classes with operator coefficients and studied its correct solvability; 4) We used
the obtained results to study the basicity of systems of subspaces in ; 5) We
obtained an abstract analogue of the ”1/4-Kadets” theorem for the bases from
subspaces.
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