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1 Introduction

By Tych we denote the category of all Tychonoff spaces and all their continu-
ous functions. A Hausdorff compact space we call a compact space or just a
compactum. By Comp we denote the full subcategory of Tych, whose objects
are compacta.

Recall that a covariant functor F : Comp → Comp is said to be normal
[21] if it satisfies the following properties:

1) preserves the empty set and singletons , i.e. F(∅) = ∅ and F({1}) = {1},
where {k} (k ≥ 0) denotes the set {0, 1, ..., k−1} of nonnegative integers
smaller than k. In this notatuons 0 = {∅}.

2) is monomorphic, i.e for any (topological) embedding f : A → X , the
mapping F(f) : F (A) → F (X) is also an embedding.

3) is epimorphic, i.e. for any surjective mapping f : X → Y , F(f) :
F (A) → F (X) is also surjective
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4) continuous, i.e. for any inverse spectrum S =
{

Xα; π
α
β : α ∈ A

}

of com-
pact spaces, the limit f : F (limS) → limF(S) of the mappings F (πα),
where πα : limS → Xα are the limiting projections of the spectrum S,
is a homeomorphism.

5) preserves intersections, i.e. for any family {Aα, α ∈ A} of closed subsets
of a compact space X , the mapping F (i) : ∩{F (Aα) : α ∈ A} → F (X)
defined by F (i)(x) = F (iα)(x), where i : Aα → X is the identity embed-
dings for all α ∈ A, is an embedding.

6) preserves preimages, i.e. for any mapping f : X → Y and an arbi-
trary closed set A ⊂ Y , the mapping F(f |f−1(A))(F−1(A) → F(A) is a
homeomorphism.

7) preserves weight, i.e. ω(F(X)) = ω(X) for any infinite compactum X .

In what follows we shall use bigger classes than classes of normal functors.
But any functors from this article shall preserve empty set, intersections and be
monomorphic. By exp we denote the well-known hyperspace functor of non-
empty closed subsets. This functor takes every (nonempty) compact space
X to the set of all its nonempty closed subsets endowed with the (finite)
Vietoris topology, and a continuous mapping f : X → Y to the mapping
exp (f) : exp (X) → exp (Y ), defined by F (f) (A) = A.

For a functor F and an element a ∈ F(X), the support of a is defined
as intersection of all closed sets A ⊂ X such that a ∈ F(A) (recall that we
consider only monomorphic functors preserving intersections). This support
we denote by suppF(X)(a). When it is clear what functor and space are meant,
we denote the support of a merely by supp(a).

A.Ch.Chigogidze [8] extended an arbitrary intersection-preserving monomor-
phic functor F : Comp → Comp to the category Tych by setting

Fβ (X) = {α ∈ F (βX) : supp(a) ⊂ X}

for any Tychnoff space X . If f : X → Y is a continuous mapping of Thychnoff
spaces and βf : βX → βY is the (unique) extension of f over their Stone-Cech
compactifications, then

F (βf) (F (βX)) ⊂ Fβ (X) .

The last inclusion is a corollary of a trivial fact

f(supp(a)) ⊃ supp (F(f)(a)) . (1.1)

Therefore, we can define the mapping

Fβ (f) = F (βf) |X,
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which makes Fβ into a functor.

A.Ch.Chigogidze proved [8] that if a functor F has certain normality prop-
erty, then Fβ has the same property (modified when necessary). In what follows
by a covariant functor F : Tych → Tych we shall mean a functor of type Fβ.
For such a functor F and any compact space X the space F(X) is a compact
space.

For a set A by |A| we denote the cardinality of A. For a subset A of a space

X by A
X
the closure of A in X . By dimX we denote the Lebesgue dimension,

defined by finite open coverings of a (normal) space X (see, for example, at
[1]).

One of the main notions of this article is a notion of projectively inductively
closed functor (p.i.c. - functor). This notion was introduced in [25], where we
gave sufficient conditions for a functor to be a p.i.c. - functor. In particular,
any finitary normal functor is a p.i.c. - functor. In [25] we proved also that
every preserving weight p.i.c. - functor of a finite degree preserves the class
of stratifiable spaces and the class of σ - paracompact spaces. The same is
true (even if we omit a preservation of weight) for paracompact Σ- spaces and
paracompact p-spaces.

The main result of the present paper is Theorem 3.2 stating that every
p.i.c. - functor of a finite degree satisfies the logarithmic law for dimension
dim of all paracompact Σ - spaces. For compacta a similar result was received
by V.N.Basmanov [4]. Corollaries 3.6 and 3.7 state the assertion of Theorem
3.2 takes place for all paracompact p - spaces, all paracompact σ -spaces, all
stratifiable, in particular, metrizable spaces. This assertion holds for every
normal finitary functor (Corollaries 3.8 and 3.9). We prove also that every
p.i.c. - functor (in particular, finitely open functor preserving preimages) of a
finite degree transforming finite sets into finite-dimensional compacta preserves
weakly countable - dimensional Σ - paracompact spaces (Theorems 3.14 and
3.15). Corollary 3.16 states that every normal finitary functor preserves weakly
countable - dimensional -paracompact spaces.

All spaces are assumed to be Tychonoff, and all mappings, continuous.
Any additional information on general topology and covariant functors one
can find, for example, in ([10], [11], [21]).

2 Preliminaries

Recall some definitions and facts, concerning this paper.

Definition 2.1 [2]. A network for a space X is a collection N of subsets
of X such that whenever x ∈ U . With U open, there exists F ∈ N with
x ∈ F ⊂ U . A family A of subsets of X is said to be σ -locally finite if it is a
union of countably many families An which are locally finite in X .
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Definition 2.2 [19]. A topological space X is called a σ -space, if it has a
σ-locally finite network.

Remark 2.3. A rather simple observation of the Definition 2.2 shows us
that every closed subset of a σ -space is a σ-space.

Theorem 2.4 [16]. A countable product of paracompact σ -spaces is a
paracompact σ-space.

In 1969 K.Nagami [18] has invented more general class than the class of
-spaces.

Definition 2.5. A space X is a (strong) - Σ - space if there exists a
σ - discrete collection N , and a cover c of X by closed countably compact
(compact) sets such that, whenever C ∈ c and C ⊂ U with open U , then
C ⊂ F ⊂ U for some F ∈ N .

Clearly, from Definitions 2.1 and 2.5 we have

Proposition 2.6. Every perfect preimage of a σ- space is a strong Σ -
space. In particular, every σ- space is a Σ - space.

K.Nagami [18] has shown that the class of strong Σ - spaces is strictly
larger than the class of perfect preimages of σ - spaces. On the other hand,
the class of perfect preimages of σ - spaces is much larger than the class of σ-
spaces. For example, every compact σ - space is metrizable.

Definition 2.7 [3]. A space X is called a p-space if there exists a countable
family un such that:

1) un consists of open subsets of βX ;

2) X ⊂ ∪un for each n;

3) ∩nst (x, un) ⊂ X for every x ∈ X .

Here for a family ν of subsets of a space Y by st (y, ν) we denote the set
∪{V ∈ ν : y ∈ V }.

Theorem 2.8 [3]. The class of paracompact p spaces coincides with the
class of perfect preimages of metrizable spaces.

Corollary 2.9 Every paracompact p space is a perfect preimages of a para-
compact σ - space and, consequently, is a paracompact Σ - space.

Theorem 2.8 also yields

Corollary 2.10 [3]. Every countable product of paracompact p- spaces is
again a paracompact p-space.

Proposition 2.11 [3]. Every closed subspace of a paracompact p space is
again a paracompact p space.

Let us recall some more notions and facts.

Definition 2.12 [7]. A space X is stratifiable if there is a function G which
assigns to each n ∈ ω and closed set H ⊂ X an open set G(n,H) containing
H such that

(1) If H ⊂ K then G (n,H) ⊂ G (n,K) ;

(2) H = ∩nG (n,H).
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This class of stratifiable spaces was defined in 1961 by J.Ceder [7]. But he
called these spaces by M3-spaces. The latter form was proposed by C.R.Borges
[5] in 1966.

Theorem 2.13 [15]. Every stratifiable space is a σ - space.
Theorem 2.14 [5]. Stratifiable spaces are preserved by closed mappings.
From Theorem 2.14 we get.
Corollary 2.15. An image of a metrizable space under closed mapping is

stratifiable. In particular, every metrizable space is stratifiable.
Going back to functors F : Comp → Comp, we, evidently, have

a ∈ F(supp(a)). (2.1)

If a functor F preserves preimages, then F preserves supports [21], i.e.

f (supp (a)) = supp (F (f) (a))) . (2.2)

The property (2.2) can be conversed.
Proposition 2.16 [21]. Any monomorphic preserving intersections functor

preserves supports if and only if it preserves preimages.
Definition of the functor F and property (2.2) imply that

f(suppF(X) (a)) = suppFβ (Y )
Fβ (f) (a) (2.3)

for any preimage preserving functor F : Comp → Comp, continuous mapping
f : X → Y , and a ∈ Fβ (X).

Now we recall one construction given by V.N.Basmanov [4].
Let F : Comp → Comp be a functor. By C (X, Y ) we denote the space of

all continuous mappings from X to Y with compact-open topology.
In particular, C ({k} , Y ) is naturally homeomorphic to the k-th power Y k

of the space Y ; the homeomorphism takes each mapping ξ : {k} → Y to the
point (ξ (0) , ..., ξ (k − 1)) ∈ Y k.

For a functor F , compact space X , and a positive integer k, V.N.Basmanov
[4] defined the mapping π F ,X,k : C ({k} , X)×F ({k}) → F (X) by πF ,X,k ( ξ, a) =
F (ξ) (a) for any ξ ∈ C ({k} , X) and a ∈ F ({k}).

When it is clear what functor F and what space X are meant, we omit the
subscripts F and X and write πX,k or πk instead of π F ,X,k.

According to Shchepin’s theorem ([25], Theorem 3.1), the mapping F :
C (Z, Y ) → C ( F (Z) , F (Y )) is continuous for any continuous functor F
and compact spaces Z and Y . This implies the following assertion.

Proposition 2.17 [4]. If F is a continuous functor, X is a compact space,
and k is a positive integer, then the mapping π F ,X,k is continuous.

Let Fk be a subfunctor of a functor F defined as follows. For a compact
spaceX , Fk(X) is the image of the mapping π F ,X,k and for a mapping f : X →
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Y, Fk (f) is the restriction of F(f) to Fk(X). Denote by f̄ : C ({k} , X) →
(C {k} , Y ) the mapping which takes ξ to composition f ◦ ξ. It is easy to see
that

πY,k ◦ f̄ × idF({k}) = F (f) ◦ πX,k. (2.4)

Therefore, F (f) (Fk (X)) ⊂ Fk (Y ). Hence, Fk is a functor. A functor F
is called a functor of degree n, if Fn(X) = F(X) for any compact space X ,
but Fn−1 (X) 6= F (X) for some X . The next assertion (Proposition 2.18) is
Shchepin’s definition of the functor Fk. But using Basmanov’s definition we
should prove it. One can find the proof in [24].

Proposition 2.18. For any continuous functor ? and a compact space X,
we have

Fk (X) = {a ∈ F (X) : supp (a) ≤ k} .

Corollary 2.19. For any compact space X, we have

expk (X) = {a ∈ exp (X) : |a| ≤ k} .

The definition of a support and the property (2.1) imply
Proposition 2.20. For a functor F , a compact space X , and a closed

subset A of X ,
F (A) = {a ∈ F (X) : supp (a) ⊂ A} .

For a Tychonoff space X , a functor F : Comp → Comp, and a positive integer
k, we put

Fk (X) = πF ,βX,k((C({k}), X)× F ({k}))

and denote the restriction of πF ,βX,k to C ({k}) × F ({k}) by π F ,X,k. If f :
X → Y is a continuous mapping, then

(βf) (Fk (X)) ⊂ Fk (Y ) ,

in view of the equality (2.4) for the mapping βf . Therefore, setting

Fk (f) = Fk (βf) |F (X)

we obtained a mapping

Fk (f) : Fk(X) → Fk (Y ) .

Thus, we have defined the covariant functor

Fk : Tych → Tych

that extends the functor Fk : Comp → Comp to the category Tych. Proposi-
tion 2.18 implies the following assertion.
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Proposition 2.21 [24]. If F : Comp → Comp is a continuous functor,
then Fk : Tych → Tych is a subfunctor of the functor Fβ, and

Fk (X) = Fβ (X) ∩ Fk (βX) . (2.5)

Proposition 2.22 [24]. For a compact space X, a continuous functor F
and a positive integer k, the set Fk(X) is closed in Fβ(X).

Propositions 2.21 and 2.22 imply

Proposition 2.23 [24]. For a Tychonoff space X, a continuous functor
F , and a positive integer k, the set Fk(X) is closed in Fβ (X).

Proposition 2.24 [24]. For a Tychonoff space X, a continuous functor
F , and a positive integer k, the set Fk(X) is closed in Fk+1(X).

Recall that a functor F is said to be finitely open [24], if the set Fk({k + 1})
is open in F({k + 1}) for any positive integer k. The dual for this definition
states that F({k + 1})\ Fk({k + 1}) is closed in F({k + 1}).

Remark 2.25. As an example of a finitely open functor one can take any
finitary functor F , i.e. a functor F such that F ({k}) is finite for any positive
integer k. In particular, the hyperspace functor exp and its subfunctors expm

are finitary and, consequently, finitely open functors.

Lemma 2.26 [25] For any continuous, preserving preimages functor Fβ

the mapping πFβ ,X,1 is a homeomorphism.

Definition 2.27. An epimorphism f : X → Y is called inductively closed
if there exists a closed subset A of X such that f(A) = Y and f |A is a closed
mapping.

Definition 2.28 [25]. A functor Fβ is said to be projectively inductively
closed (p.i.c.) if the mapping πFβ ,X,k is inductively closed for any Tychonoff
space X and positive integer k.

The next theorem gives us sufficient conditions for a functor Fβ to be
projectively inductively closed (a p.i.c.-functor)

Theorem 2.29 [25]. Every continuous, finitely open functor Fβ : Tych →
Tych, that preserves preimages is a p.i.c.-functor

From Remark 2.25 and Theorem 2.29 we get

Corollary 2.30. Every finitary normal functor, in particular, the functor
expm is a p.i.c.-functor.

Theorem 2.31 [25]. Let Fβ be a p.i.c.-functor of a finite degree. Then
Fβ preserves the class of paracompact Σ-spaces and the class of paracompact
p-spaces.
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3 Dimension

Remark 3.1. One of the main tools for the proof of Theorem 3.2. is the
inequality

dim(
∏m

i=1
Xi) ≤

∑

m
i=1 dimXi. (∗)

The most general result here belongs to B.A. Pasynkov. In ([20], 1975) he
declared that the inequality (*) holds for any paracompact Σ-spaces Xi. But
the proof is still unpublished, though there is a hand-written text of it. In ([13],
1983) V.V. Filippov proved that the inequality (*) holds for any paracompact
p-spaces . This result was declared by V.V. Filippov in ([12], 1973). In 1989
the inequality (*) was proved for paracompact σ -spaces independently by
I.M.Leibo [16] and T.F. Zhuraev (see [22], [23]).

Theorem 3.2. Let Fβ be a p.i.c.-functor of finite degree m, and let X be
a paracompact Σ-space. Then

dimFβ(X) ≤ mdimX + dimFβ({m}) ≡ d(m) (3.1)

Proof. If dimX = ∞, the assertion is trivial. Now let dimX = n < ∞.
We prove our assertion by induction on m. If m = 1, the equality (3.1)
holds, since F1(X) is homeomorphic to the product X × F ({1}) by Lemma
2.26. Hence, dim(X×F ({1}) ≤ dimX +dimF ({1}) according to Remark 3.1,
because F ({1}) is a paracompact Σ-space being a compact space. Now let for
all 1 < k ≤ m the equality

dimFl(X) ≤ l dimX + dimFβ({l}) ≡ d(l) (3.1l)

has been proven. Let us prove the equality (3.1k). Recall, that for a positive
integer p by Sp is denoted the symmetric group of all homeomorphisms σ ∈
C({p}, {p}). It consists exactly of p! elements. Fix b ∈ Fl(X)\Fl−1(X). Let
supp(b) = {x0, x1, ..., xl−1}, and let b = πl(ξ, a) = F (ξ)(a). Let hξ : {l} →
supp(b) be a bijection defined by: hξ(i) = xξ(i). By j : supp(b) → X we denote
the identical injection, i.e. j(xi) = xi. Let g : supp(b) → {l} be a bijection
defined by: g(xi) = i. The composition

σξ ≡ g ◦ J ◦ hξ : {l} → {l}. (3.2)

is a bijection by definitions of g, J, and hξ. It is clear that (3.2) implies

ξ = j ◦ hξ. (3.3)

Therefore,
σξ = g ◦ ξ and ξ = g−1 ◦ σξ (3.4)

Hence, ξ is a bijection from {k} to supp(b) and an injection from {k} to Fk(X).
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In what follows we need more definitions and facts. Let X be a topological
space let G be a topological group, and let e be the neutral element of G. Let
α : G × X → X be a continuous mapping. We denote α(g, x) by g(x). The
mapping α is called an action of the group G on the space X if:

e(x) = x and g2(g1(x)) = g2g1(x) (3.5)

In this definition we assume that we consider only one fixed action α. Let
x ∈ X . An orbit of x with respect to the action α is the set x̄ = {g(x) : g ∈
G}. Clearly, two orbits x̄1 and x̄2 either coincides or disjoint. So, we have
decomposition R(G) of the space X , whose members are orbits x̄. A quotient
set of X with respect to this decomposition we denote by X/G. A quotient
mapping X → X/G we denote by q − q(G). The set X/G is endowed by
the quotient topology with respect to the mapping q. Thus, we have quotient
mapping q : X → X/G defined by: q(x) = x̄.

Theorem 3.3. [6] The quotient mapping q : X → X/G is open.
Now we are going back to the proof of Theorem 3.2. Since b ∈ Fk(X)\Fk−1(X)

is fixed, we may assume that g−1 : k → supp(b) is the identity mapping. Hence,
in view of (3.4) we may identify ξ with σξ or we may assume that ξ = ξb ∈ Sk.

Put Z = π−1
k (Fk(X)\Fk−1(X)). In the space Z we define an action α of

the group Sk in the following way:

α(σ, (ξ, α)) = (ξ ◦ σ−1, F (σ)(α))

or, what the same

σ(ξ, α) = (ξ ◦ σ−1, F (σ)(α)) (3.6)

First of all we have to show that

α(Sk × Z) = Z (3.7)

Since e(ξ, α) = (ξ, α) we have to verify only that

α(Sk × Z) ⊂ Z (3.8)

To do that, it suffices to check that if

πk(ξ, a) = b ∈ Fk(X)\Fk−1(X) then πk(σ(ξ, a)) = b.

We have

πk(σ(ξ, a)) = (in view of (3.6)) =

= πk(ξ◦σ
−1, F (σ)(a)) = F (ξ◦σ−1)(F (σ)(a) = F (ξ◦σ−1◦σ)(a) = F (ξ)(a) = b.

Thus, inclusion (3.8) and, consequently, equality (3.7) hold.
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Let q : Z → Z/Sk be the quotient mapping. We are going to show that

Z/Sk is homeomorphic to Fk(X)\Fk−1(X) (3.9)

and
mappings q and πk | Z coincide as mapping of sets. (3.10)

From property (3.10) we shall get that decomposition of Z generated by map-
pings q and πk | Z coincide. The space Z is equipped with quotient topology.
On the other hand, since F is a p.i.c.-functor, the mapping πk is inductively
closed and, consequently, is a quotient one. But πk |Z is a restriction of the
quotient mapping πk onto a preimage of open in Fk(X) set Fk(X)\Fk−1(X).
Therefore, πk |Z is a quotient mapping. Hence, from (4.10) we shall get that
spaces Z/Sk and Fk(X)\Fk−1(X) are identically homeomorphic.

To prove (3.10), it suffices to show that

(ξ, α) = π−1
k (b) for b = πk(ξ, a) ∈ Fk(X)\Fk−1(X) (3.11)

Let σ(ξ, a) ∈ (ξ, a). Then πk(σ(ξ, a))= by (3.6) = πk(ξσ
−1, F (σ)(a)) =

F (ξσ−1)(F (σ)(a)) = F (ξσ−1σ)(a) = F (ξ)(a) = πk(ξ, a) = b. Hence, we
proved that

(ξ, a) ⊂ π−1
k (b).

Now let π−1
k (b)= {(ξi, ai) : i = 1, ..., s}. Then b = πk(ξi, ai) = F (ξi)(ai) for

each i ∈ {1, ..., s}. Hence, F (ξi)(ai) = b = F (ξ)(a) for each i ∈ {1, ..., s}. But
for each i ∈ {1, ..., s} there exists σi ∈ Sk such that ξ = ξiσi. Hence, ξi = ξσ−1

i

for each i ∈ {1, ..., s}. Then πk(ξi, ai) = F (ξσ−1
i )(ai) = F (ξ)(F (σ−1

i )(ai) = b =
F (ξ)(a) for each i ∈ {1, ..., s}. But ξ is an injection and F is monomorphic
functor. Therefore, F (ξ) is a monomorphism. Hence a = F (σ−1

i )(ai)or ai =
F (σi)(a) for each i ∈ {1, ..., s}. Consequently, for each i ∈ {1, ..., s} we have
(ξi, ai) = (ξσ−1

i , F (σi)(a)) ∈ (ξ, a) So, π−1
k (b) ⊂ (ξ, a). Equality (3.11) is

proved. Hence, equality (3.10) holds.
Thus, q and πk |Z coincide like mappings of the topological space Z. This

implies, in view of Theorem 3.3. the following statement:

πk |Z is an opening mapping. (3.12)

Further, we have
∣

∣π−1
k (b)| = k! (3.13)

for every b ∈ Fk(X)\Fk−1(X).
Indeed, (3.11) implies that

∣

∣π−1
k (b)|= |(ξ, a)| . On the other hand, |(ξ, a)| >

k! according to (3.6), because σ1 6= σ2 implies (ξσ−1
1 F (σ1)(α)) 6= (ξσ−1

2 F (σ2)(α))
for each σ1, σ2 ∈ Sk.

Lemma 3.4. The mapping πk |Z is a local homeomorphism.
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Proof. Let b ∈ Fk(X)\Fk−1(X). Then
∣

∣π−1
k (b)| = k! in view of (3.13).

Let π−1
k (b) = {zi : i ∈ {k!}}. Let {Ui : i ∈ {k!}} be a disjoint family of open

neighborhoods of points zi in the space Z.
Denote the set πk(Ui)by Vi. Then according to (3.12), every Vi is an open neigh-
borhood of the point b. Set V = ∩{Vi : i ∈ {k!}} andWi = ((πk |Z )−1(V ))∩Ui.
Let us show that

πk(Wi) = V (3.14)

for every i ∈ {k!}.
Inclusion⊂ is trivial. Now let b1 ∈ V . Then, clearly, π−1

k (b1) ⊂ (πk |Z )−1(V ).
On the other hand, π−1

k (b′)∩(Ui) is not empty for any b′ ∈ Vi, since Vi = πk(Ui).
Hence π−1

k (b′) ∩ (Ui) is not empty, because b1 ∈ V ⊂ Vi. Thus, equality (3.14)
is proved.

At last, πk |Wi is a one-to-one correspondence. Indeed, π−1
k (b1) ∩Wi is a

nonempty set in view of (3.14). On the other hand, if
∣

∣π−1
k (b1) ∩Wi |> 2 then

∣

∣π−1
k (b1 )| > k!. But this contradicts to (3.13).
So, πk |Wi : Wi → V is a homeomorphism being a one-to-one continuous

open mapping. Lemma 3.4 is proved.
Remark 3.5. Clearly, we proved more than just the assertion of Lemma

3.4. Namely, we proved that every point b ∈ Fk(X)\Fk−1(X) has an open
neighborhood V = Vb such that π−1

k (Vb) is a union of a disjoint open family
{W b

i : i ∈ {k!}} with property: πk

∣

∣W b
i : W b

i → Vb is a homeomorphism for
every i ∈ {k!}.

To prove inequality (3.1k), in view of Dowker‘s theorem (see [1, Ch 4] or
[9]) and an inductive assumption, it suffices to show that for every closed in
Fk(X) set A ⊂ Fk(X)\Fk−1(X) we have

dimA 6 k dimX + dimFβ({k}) ≡ d(k) (3.15)

One the one hand, we have

dim(Xk × Fβ({k})) 6 k dimX + dimFβ({k}) (3.16)

according to Remark 3.1, since X and Fβ({k}) are paracompact
∑

-spaces

(the last is true view of Proposition 2.6). On the other hand, the space
Fk(X)\Fk−1(X) is locally homeomorphic to an open subset of the product
Xk × Fβ({k}) in view of Lemma 3.4. Moreover, according to Remark 3.5,
there is a open covering {Uγ : γ ∈ Γ} of the set Fk(X)\Fk−1(X) such that
every π−1

k (Uγ) is homeomorphic to the product Uγ × {k!} ⊂ Xk × Fβ({k}).
Denote by Vγ the intersection Uγ ∩ A. The family ν ∈ {Vγ : γ ∈ Γ} is

an open covering of the space A. But A is a paracompact space as a closed
subset of the space Fk(X) which is paracompact, because of Theorem 2.31.
Hence, there exists an open in A locally finite refinement ω = {Wδ : δ ∈ D}
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of the covering υ. Again, every π−1
k (Wδ) is homeomorphic to the product

Wσ × {k!} ⊂ Xk × Fβ({k}).
There exists a closed in A (and, consequently, in Fk(X)) refinement s =

{Sδ : δ ∈ D} of ω such that Sδ ⊂ Wδ (see, for instance, [1]). Every Sδ

is homeomorphic to a closed subset of Xk × Fβ({k}), because the closed in
Xk × Fβ({k}) set π

−1
k (Sδ) is homeomorphic to the product Sδ × {k!} which is

a discrete union of Sδ‘s. Hence,

dimSδ 6 dim(Xk × Fβ({k})) 6 (by (3.16)) 6 d(k)

The covering s is locally finite, since Sδ ⊂ Wδ. Consequently, dimA 6 d(k)
according to locally finite sum theorem for dim (see [1, Ch 4] or [9]). Thus,
inequality (3.15) is checked. Hence, we proved that inequality (3.1k) holds.
So, by induction, Theorem 3.2. is proved.

Proposition 2.6, Corollaries 2.9, 2.15 and Theorem 3.2 yield.
Corollary 3.6. Let F be a p.i.c.-functor of finite degree m, and let X be

either a paracompact σ - space or a paracompact p-space. Then

dimFβ(X) 6 m dimX + dimFβ(m)

Corollary 3.7. Let F be a p.i.c.-functor of finite degree m, and let X be
a stratifiable, in particular metrizable, space. Then

dimFβ(X) 6 m dimX + dimFβ(m)

Since every finitary functor is finitely open, in view of Remark 2.25, Theorems
2.29 and 3.2, and Corollaries 2.30, 3.6, and 3.7 imply two following statements.

Corollary 3.8. Let F be a normal finitary functor of finite degree m,

in particular, the functor expm, and let X be a paracompact
∑

−space (in

particular, a paracompact σ - space or a paracompact p - space). Then

dimFβ(X) 6 m dimX

Corollary 3.9. Let F be a normal finitary functor of finite degree m, in
particular, the functor expm, and let X be a stratifiable, in particular metrizable
space. Then

dimFβ(X) 6 m dimX

Remark 3.10. If somebody doesn‘t like to apply statements with un-
published proofs, then he (she) can be satisfied with Corollary 3.6. In fact,
this assertion can be proved like Theorem 3.2. Necessary changings are: 1) in-
equality (3.16) holds in view of Corollary 2.10 and Remark 3.1 for paracompact
p-spaces, and according to Theorem 2.4, Remark 3.1, and Morita‘s theorem
[17] on dimension of a product of a paracompact space and a compact space



On paracompact spaces 187

for paracompact σ - space; 2) as for a paracompactness of the set A, one can
use (in addition to Theorem 2.31) Proposition 2.6 for a σ - space.

Let us recall
Definition 3.11. A space X is said to be weakly countable-dimensional if

X is a union of a countable family of closed subsets Xi such that dimXi < ∞
for each i.

The next two statements are trivial.
Proposition 3.12. Every closed subspace of a weakly countable-dimensional

space is a weakly countable-dimensional space again.
Proposition 3.13. Let Y be a weakly countable-dimensional space and m

be natural number. If every closed finite-dimensional subspace X of Y satisfies
the inequality (*). Then Y m is a weakly countable-dimensional space.

Remark 3.1, Corollaries 3.6 and 3.7, and Propositions 3.12 and 3.13 imply.
Theorem 3.14. Let F be a p.i.c-functor of a finite degree transform-

ing finite sets into finite-dimensional compacta, let X be a weakly countable-
dimensional space, and let X belong to one of the following classes:

a) Σ - paracompact space;
b) p-paracompact spaces;
c) σ - paracompact spaces;
d) stratifiable spaces;
e) metrizable spaces.
Then Fβ(X) is a weakly countable-dimensional space.
Theorems 2.29 and 3.14 imply.
Theorem 3.15. Let F be a continuous finitely open functor of a finite

degree transforming finite sets into finite-dimensional compacta and preserving
preimages, let X be a weakly countable-dimensional space, and let X belong to
one of the following classes:

a) Σ - paracompact space;
b) p-paracompact spaces;
c) σ - paracompact spaces;
d) stratifiable spaces;
e) metrizable spaces.
Then Fβ(X) is a weakly countable-dimensional space.
Remark 2.25, Corollary 2.30, and Theorem 3.14 yield.
Corollary 3.16. Let F be a normal finitary functor of a finite degree, in

particular, the functor expm, let X be a weakly countable-dimensional space,
and let X belong to one of the following classes:

a) Σ - paracompact space;
b) p-paracompact spaces;
c) σ - paracompact spaces;
d) stratifiable spaces;
e) metrizable spaces.
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Then Fβ(X) is a weakly countable-dimensional space.
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